PHYLOGENETIC ANALYSIS WHITHIN THE PRISTIMANTIS UNISTRIGATUS (ANURA, CRAUGASTORIDAE) GROUP BASED ON MORPHOLOGICAL CHARACTERS Análisis filogenético en el grupo Pristimantis unistrigatus (Anura, Craugastoridae) basado en caracteres morfológicos

Julio Mario Hoyos
Catalina Mantilla
Pontificia Universidad Javeriana, Departamento de Biología, Unidad de Ecología y Sistemática (UNESIS), Apartado 56710, Bogotá Colombia.jmhoyos@javeriana.edu.co, dmant010@fiu.edu
\section*{Diana Galindo}
Universidad de los Andes, Departamento de Biología, Bogotá, Colombia. dmgalindo48@ uniandes.edu.co

Lina salgar
Pontificia Universidad Javeriana, Departamento de Biología, Unidad de Ecología y Sistemática (UNESIS), A.A. 56710, Bogotá, Colombia.linasalgar@hotmail.com

Abstract

We present a phylogenetic analysis within the Pristimantis unistrigatus group (Anura, Craugastoridae) of Colombia. Characters from the superficial muscles of the hands and feet as well as external characters were taken for analysis. Most of the muscle characters were observed directly, and some were taken from the literature. Similarly, the external ones were taken mostly from the original descriptions and others from the literature as well. Two matrices were constructed, as the species belonging to this group have changed in recent years with respect to the initially proposed when the group was defined. The results lead us to conclude that the group is not monophyletic, although there are some relationships that are worth to survey because they are kept in the very last cladograms obtained for both proposals. It is suggested that these last relationships should be explored in particular, and the overall group in general, increasing the number of characters and taxa that belong to P. unistrigatus. An open question we left is whether actually is worth to keep these informal taxonomic hierarchy called group within the genera of anurans.

Key words. Neotropical frogs, Cordillera Oriental, superficial muscles, Pristimantis.

RESUMEN

Se presenta un análisis filogenético del grupo Prsitimantis unistrigatus (Anura, Craugastoridae) de Colombia. Para esto se tomaron caracteres de la musculatura superficial de manos y pies y caracteres externos. La mayoría de los caracteres musculares fueron observados directamente, y algunos fueron tomados de la literatura. Igualmente, los externos fueron tomados en su mayoría de las descripciones originales,

Abstract

y otros tomados de la literatura también. Se construyeron dos matrices, pues las especies que pertenecen al grupo han cambiado en los últimos años con respecto a lo propuesto inicialmente cuando el grupo fue definido. Los resultados nos llevan a concluir que el grupo no es monofilético, aunque existen algunas relaciones que vale la pena explorar, pues se mantienen en los cladogramas definitivos obtenidos para ambas propuestas. Se sugiere que deben explorarse más estas relaciones en particular, y la del grupo en general, aumentando los caracteres y el número de taxones que pertenecen a P. unirtsigatus. Igualmente se deja como interrogante si en realidad vale la pena mantener estos grupos informales dentro de los géneros de anuros.

Palabras clave. Ranas neotropicales, Cordillera Oriental, músculos superficiales, Pristimantis.

INTRODUCTION

Frost et al. (2006) doubted the existence of the genus Eleutherodactylus Duméril and Bibron, 1841 as monophyletic, and suggested that it should be divided into many monophyletic genera. Heinicke et al. (2008) divided the former genus Eleutherodactylus plus the genus Brachycephalus Fitzinger, 1826 in three Clades: the South American Clade, the Caribbean Clade and the Middle American Clade. The Eleutherodactylus unistrigatus group was included in the South American Clade using the available name Pristimantis Jiménez de la Espada, 1870. This group is one of the richest Pristimantis groups, with members occurring in the Andes and the Amazonian basin, ranging from Bolivia to Colombia (Hedges et al. 2008, Padial et al. 2009).

In the literature related to the diagnosis of the unistrigatus group species of the Cordillera Oriental of Colombia, potential kinship and characteristics in common are referred (Duellman \& Simmons 1977, Lynch1973, 1978, 1981, 1983, 1984, 1994a, 1994b, 1998, 2003, Lynch \& Duellman1980, Lynch \& Duellman 1997, Lynch \& Suarez 2002, Pyburn \& Lynch1981). However, there have been no formal relationship hypotheses supported by cladograms.

It is perhaps for this Pristimantis group that were proposed the highest number of
hypotheses of relationships in Colombia, because it is the richest in species number in this country. From the perspective of phylogenetic systematics of the genus Pristimantis, the work that has a growing number of Colombian species for the unistrigatus group (sensu Lynch \& Duellman 1997) of the Cordillera Oriental of Colombia has been that of Galindo (2004), based on external characters. However, the papers of Duellman \& Simmons (1977), Lynch (1973, 1975a, 1975b, 1978, 1981, 1983, 1984, 1994a, 1994b, 1998, 2003), Lynch \& Duellman (1980), Lynch \& Suárez (2002) and Pyburn \& Lynch (1981) have revealed potential relationships for species of the unistrigatus group, some with formal cladograms, but the majority without them. Lynch (1984) proposed a hypothesis of relationship for the unsitrigatus group without including any of the species used here, but some belonging to the "assemblages" pyrrhomerus and myersi, suggesting these should be combined by a series of synapomorphies found in external characters. Finally, recently Padial et al. (2009) considered that the Pristimantis unistrigatus group is not monophyletic.

Other groups, which have launched hypotheses of relationship, either with or without explicit cladograms are: discoidalis (Lynch 1989) (with explicit cladogram), using external and cranial characters, and sulcatus (Lynch 1997) (with explicit cladogram), finding for
these relationships nine characters from the skull. As this paper aims to use morphology as a fundamental element to establish kinship hypothesis, the discussion will not be based on specific morphological differences between what we found and what other authors have found, but between the relationships proposed here based on potential synapomorphies, and other hypotheses and characters used to construct them.

From morphology's point of view, the contributions are all innovative in the sense that no previous research has been dedicated solely to the study of muscles of hands and feet for the phylogenetic analysis of the Pristimantis genus. Similarly, although there are some previous descriptions about hand muscles of some species of the genus (e.g.Burton 1998a, Dunlap 1960), these were mainly for comparative purposes (Dunlap 1960, Salgar et al. 2009), or with the aim to find characters to establish hypotheses of relationships (Burton 1998a) but there was not a genus-specific analysis performed.

Previous studies in the literature, using both muscles of hands and forearms and feet to propose phylogenetic relationships in frogs are very rare; in fact, there is only one (Faivovich 2002), but in the genus Scinax (Hylidae). The most comprehensive descriptive work in this regard have been those of Gaup (1886), Dunlap (1960), Andersen (1978) and, more recently, Burton (1996,1998a,b, 2001, 2004). Most of them propose (tacitly or explicitly) some assumptions about the potential systematic value of characters taken from hands and feet in anuran amphibians, without reaching cladistic analysis themselves. Only in one of his most recent work, Burton (2004) developed a cladistic analysis using only the muscles of the feet in the family Hylidae. The only existing descriptions of this musculature in Colombian species of frogs has been conducted by Salgar (2003) and Salgar et al. (2009). Although these last two
analyses are brief, for the first time, possible synapomorphies for the genus Pristimantis (intrageneric relationships) based on the muscles of hands and feet were revealed. Lynch (1984) proposed some characteres but for relationships between species groups, based on osteological characters and some of the muscles (but not hands and feet).

Hedges et al. (2008) redefined the Pristimantis unistrigatus group changing the species included to it, assigning 193 species to this group, changing some of the species previously identified into the group by Lynch (1976a, Lynch \& Duellman 1997, Duellman \& Pramuk 1999), and by Lynch \& Duellman (1997) and Acosta (2000) for Colombia.

Taking into account that there are two different classifications for the Pristimantis unistrigatus group, our aim is to compare our results in using morphological characters from hand and foot muscles in both proposals, because there are not enough consensus about which is the best classification. It is for this reason that both the number of species and characters in both analyses differs (see results). The only classification that include all species of our study is that by Lynch \& Duellman (1997). The number of species in classification by Hedges et al. (2008) is lower, because they do not consider some of the species by Lynch \& Duellman (1997) as belonging to the P. unistrigatus group. Owing to this account, the number of characters also changed. In comparing our results with those by Heinicke et al. (2008), and Hedges et al. (2008), we can conclude that they agree that P. unistrigatus group is not monophyletic.

MATERIALS AND METHODS

A total of 42 adult specimens (Table 1) representing 17 species of Pristimantis of the Cordillera Oriental of Colombia and one of Craugastor were dissected. Specimens belong to the Museo de Historia

Natural (MUJ) of the Pontificia Universidad Javeriana in Bogotá, Colombia, and to the Instituto de Ciencias Naturales (ICN) of the Universidad Nacional de Colombia in Bogotá. Taking into account the species belonging to the unistrigatus group sensu Hedges et al. (2008), we decided to compare results considering the former classification made by Lynch \& Duellman (1997). We chose the following two ingroups: sensu Lynch \& Duellman (1997) (LD): Pristimantis anolirex (Lynch, 1983): ICN 33522, 15444; P. bacchus (Lynch, 1984): ICN 33164, 33170, 34232; P. bicolor (Rueda-Almonacid and Lynch, 1983): ICN 14474, 26321; P. bogotensis (Peters, 1863): MUJ 052, 465, 481, 687; P. elegans (Peters, 1863): MUJ 036; P. frater (Werner, 1899): ICN 40579, 49911; P. jorgevelosai (Lynch, 1994): ICN 15299, 15318; P. lynchi (Duellman and Simmons, 1977): MUJ 1480, 1538, 1507, 2036; ICN 01932, 01937; P. merostictus (Lynch, 1984): ICN 34233, 34235; P. miyatai (Lynch, 1984): ICN 50062, 50065, 50069; P. nervicus (Lynch, 1994): MUJ 023,1176; P. nicefori (Cochran and Goin, 1970): ICN 20994, 21119; P. prolixodiscus (Lynch, 1978): ICN 10104, 10107; P. pugnax (Lynch, 1973): ICN 22981, 23187; P. spilogaster (Lynch, 1984): ICN 12445, 12446; P. taeniatus (Boulenger, 1912): MUJ 2452, 2420; P. tamsitti (Cochran and Goin, 1970): ICN 22949, 22951, 23638; Sensu Hedges et al. (2008) (HEA): P. anolirex (Lynch, 1983), P. bacchus (Lynch, 1984), P. bogotensis (Peters, 1863), P. elegans (Peters, 1863), P. lynchi (Duellman and Simmons, 1977), P. merostictus (Lynch, 1984), P. nervicus (Lynch, 1994), P. nicefori (Cochran and Goin, 1970), P. pugnax (Lynch, 1973), P. spilogaster (Lynch, 1984), P. taeniatus (Boulenger, 1912), P. tamsitti (Cochran and Goin, 1970) .

Outgroups: Craugastor raniformis: MUJ 2871, 2689 for the LD matrix, and P. frater for the HEA matrix (Tables 2 and 3).

Table 1. List of species. M: Male. F: Female.

Specimen	Sex	Species
MUJ 36	M	P. elegans
MUJ 052	F	P. bogotensis
MUJ 465	M	P. bogotensis
MUJ 481	M	P. bogotensis
MUJ 687	F	P. bogotensis
MUJ 23	F	P. nervicus
MUJ 1176	F	P. nervicus
MUJ 1507	F	P. lynchi
MUJ 2036	F	P. lynchi
MUJ 2420	M	P. taeniatus
MUJ 2452	F	P. taeniatus
MUJ 1480	F	P. lynchi
MUJ 1538	M	P. lynchi
ICN 33522	F	P. anolirex
ICN 15444	F	P. anolirex
ICN 26321	M	P. bicolor
ICN 50062	F	P. miyatai
ICN 50065	M	P. miyatai
ICN 50069	F	P. miyatai
ICN 33170	F	P. bacchus
ICN 34232	M	P. bacchus
ICN 33164	M	P. bacchus
ICN 12445	M	P. spilogaster
ICN 12446	F	P. spilogaster
ICN 1932	F	P. lynchi
ICN 1937	F	P. lynchi
ICN 14474	F	P. bicolor
ICN 40579	M	P. frater
ICN 49911	M	P. frater
ICN 15299	M	P. jorgevelosai
ICN 15318	M	P. jorgevelosai
ICN 10107	M	P. prolixodiscus
ICN 10104	F	P. prolixodiscus
ICN 22981	F	P. pugnax
ICN 23187	F	P. pugnax
ICN 21119	M	P. nicefori
ICN 34235	F	P. merostictus
ICN 229949	F	P. nicefori
ICN 22951	F	P. tamsiti
ICN 23638	F	P. tamsiti
ICN	P. tamsiti	
F	P	Prer

The new classification proposed by Hedges et al. (2008) for some of the species formerly assigned to unistigatus group is as follows: P. frater: frater group; P. bicolor: species series P. (Hypodiction) ridens; P.miyatai: P. frater group; P. jorgevelosai: species series P. (Hypodiction) ridens; and P. prolixodiscus: lacrimosus group.

Muscles

We observed about 90 small hand and feet muscles, both superficial and deep, of which about 50 superficial were chosen. For choosing the characters and states, we did comparisons between muscles from ten species of Pristimantis used for the study with respect to different aspects that are related below. Dissections were done in hands, feet, and legs and forearms in order to examine those muscles associated morphologically with the hands and feet. We used a dissecting microscope and a reversible Weigert's iodine solution that stains muscles (Bock \& Shear1972) to see the direction of the fibers, obtaining a clear differentiation of muscles and tendons, including the origins and insertions. For all specimens both right and left hands and feet superficial muscles were dissected and examined, following the protocols proposed by Raikow et al. (1990). For each muscle we identified: a. origin; b. insertion; c. spatial arrangement with respect to the hand and foot, and d. spatial relationship with adjacent muscles. Although we explored mainly superficial musculature, we also dissected some deep muscles considering that we took into account characters proposed by Burton (1998a, 2004). The nomenclature was taken from that proposed by Dunlap (1960), Andersen (1978), Burton (1998a, 2004), and Salgar et al. (2009). We used for most cases, at least one male and one female of each species to the extent that the number of specimens of the collection allowed it, to determine the existence of sexual dimorphism. Finally, we drew pictures of characters considered as potential synapomorphies using photographs and the Adobe Illustrator software. For the accuracy of the origin and insertion of muscles, we made use of clearing and staining skeletons of P. bogotensis.

External characters

These were taken from taxonomic descriptions after Cochran \& Goin (1970), Lynch (1983), Lynch (1984), Rueda \& Lynch (1983), Dunn (1944), Hoyos (1991), Pyburn \& Lynch (1991), Lynch (1994), Duellman \& Simmons (1997), Lynch (1998), Lynch (1978), and Lynch \& Duellman (1980), and after our own observations.

Phylogenetic analysis

For the phylogenetic analysis, we compared each result taking into account two matrices (see below). We did heuristic searches in TNT, performing TBR branch swapping on 100 addition replicates. Matrices were running considering characters with the same weight. We did not find many intraspecific (polymorphic) variations or many multistate characters, however we use all of those we found for the phylogenetic analyses. Polymorphic characters were coded according to Faivovich (2002) as follows: $\mathrm{A}=0 / 1 ; \mathrm{B}=0 / 2$, and $\mathrm{C}=1 / 2$, and multistate characters were all considered nonadditive and unordered. We did not get whether retention (RI) or consistency indices (CI), given that we are comparing groups of different sizes (e.g. Conrad 2008), so the value for the CI will be greater in the HEA (Sensu Hedges et al., 2008) group than in the LD (sensu Lynch \& Duellman, 1997) group because we considered less species in the first group than in the second one, and the RI will be less in the HEA for the same reason.

We choose one outgroup species for each analysis, following recommendation by Nixon \& Carpenter (1993: 419) about the fact that "...a third pervasive myth, the notion that more than one outgroup is somehow required for correct polarity determination", and taking into account that "Outgroups and polarity are the same problem" (Nixon Nixon \& Carpenter 1993: 420). We only show the unambiguous synapomorphies.
10101100111110110100111100011101010000 00011100100100011020110101000000000100 A 2010 A 0120010101 A 000110100111001001001 00010001200001011000110110111000010000 00010001000000010020110100010000000100 10010101000001010010110102010000000100 00 I 0000000 I 0 I 000 I I 0 I 00 I 0 I 0 I 00 II 0 I 0 I I 0 I $\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 1 & = \\ 1 & 0 \\ 0 & 0 \\ 4 & = \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 1 & 0 \\ 4 & 1 \\ 0 & 0 \\ 4 & 1\end{array}$ $\begin{array}{ll}0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & = \\ 0 & = \\ 1 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ = & 1 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ = & 0 \\ 0 & 0 \\ 1 & 1 \\ -1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 1 & 2 \\ 0 & 0 \\ - & 4 \\ 0 & 0 \\ 0 & = \\ 0 & 0\end{array}$
 0 OI 000000 I I 0 I OI 0 I I 0 て 0 I I 000000 てI 0 I 0 I 000 10 A111000000001011020000001210000110100 I 00000 I 000 I 000 I 0 I I 000000000 I 00 I 0 I I I I 00
 0001110010010001 A 021110101010000011000

$\begin{array}{lllll}0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & C & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & A \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0\end{array}$
Table 3. Data matrix employed in the cladistic analysis of the HEA P. unistrigatus species group. 1A1110100010100000001000001100010101200001120010101100000100
 0000001001000100001010 A1011100010001200101100011011100010000 010100100000000000100000011011010111201101000110101000110100 000100101001010000000000010010010101000101010010201000000100 010111101001011011010000011110110101201101010000101000000100 101 A 10 B 0101000000000000111110110 A 01201101020000001011110110
 100000100000010001000000011100011101100111021010011000100001
 100000101000010001010000011100011100101001 A 21010101000011000

Results

We scored 81 characters, from which 64 are muscle characters (44 from the manus and 20 from the pes), and 17 external characters. Four manus characters were taken from Burton (1998a), and five pes characters from Burton (2004). Based on this matrix, we eliminated those characters according to changes in the taxa for each matrix as we describe below.

Phylogenetic analysis

LD P. unistrigatus group

By eliminating those characters with only one character state present in the outgroup and ingroup, we took 70 from the 81 characters (Appendix 1). The cladistic analysis resulted in one fully resolved most-parismonious tree (Fig. 1) with a length of 202 . We found character states 62(0) (First finger shorter than second) and 23(1) (The origin of the m. adductor policis is not covered by the aponeurosis palmaris) (Fig. 2) as the only two unambiguous putative synapomorphies. The first one included almost all species
leaving away P. nicefori, and the second one is a character shared by P. prolixodiscus and P. bicolor.

HEA P. unistrigatus group (Appendix 2)
We took 60 characters for the analysis (Appendix 2). The cladistic analysis resulted in 20 most-parismonious trees of 139 steps. The strict consensus tree (Fig. 3) shows a node 14 not resolved, consisting of taxa P. lynchi, P. nervicus, P. elegans, P. bogotensis, P. nicefori, P. anolirex, P. bacchus, and P. taeniatus. The only unambiguous putative synapomorphy (found in all trees) is the character state 44(1) (Origin of the tendo superficialis hallucis from the aponeurosis plantaris including some fibers of the m. lumbricalis brevis hallucis) (Fig. 4) relating P. spilogaster and P. merostictus.

DISCUSSION

As shown in the cladograms obtained for both unistrigatus groups, the LD (Fig. 1) group is more resolved than the strict consensus of the HEA(Fig. 3), but there are no synapomorphies

Figure 1. The only most-parsimonious cladogram of LD P. unistrigatus group. a. Tree without showing nodes numbers, and showing the character states 23 (1) and $62(0)$ as unambiguous synapomorphies. b. Tree showing nodes numbers.

[^0]that support it, except partially for nodes 21 and 32 in LD, and exclusively for node 16 in HEA, this means that all topologies are weakly supported by synapomorphies. In node 22 of DL no synapomorphies were found, whereas for the other nodes, potential synapomorphies are actually reversals or convergences.

Taking into account the results and species considered by HEA and LD, we could say that the assigned HEA unistrigatus group is weaker because the relationships are less resolved, even if the number of steps is smaller (it has a smaller number of taxa). On the other hand, even with a larger number of species involved,

Figure 2. a. Ventral view of the manus showing the two conditions of the character 23 in the LD matrix: a. origin of the m. adductor policis is not covered by the aponeurosis palmaris (23-1). P. bicolor (ICN 26321. b. Origin of the m. adductor policis is covered by the aponeurosis palmaris. C. raniformis (23-0). MUJ 2871
the proposed LD unistrigatus group can be considered stronger if we take the fact that we have got a single tree completely resolved;

b

Figure 3. Strict consensus of the 20 mostparsimonious cladograms of HEA P. unistrigatus group. a. Tree without showing nodes numbers, and showing the character state 44 (1) as an unambiguous synapomorphy b. Tree showing nodes numbers.

Abreviations: Cran: Craugastor raniformis, Pano: Pristimantis anolirex, Pbac: P. bachus, Pbic: P. bicolor, Pbog: P. bogotensis, Pele: P. elegans, Pfra: P. frater, Pjor: P. jorgevelosai, Plyn: P. lynchi, Pmer: P. merostictus, Pmiy: P. miyatai, Pner: P. nervicus, Pnic: P. nicefori, Ppro: P. prolixodiscus, Ppug: P. pugnax, Pspi: P. spilogaster, Ptae: P. taeniatus, Ptam: P. tamsitii.
this does not mean that we are clear about the putative synapomorphies involved, as we saw above. It is remarkable that the relationships between P. pugnax and P. tamsitti, and between P. spilogaster and P. merostictus are retained in both cladograms, meaning that these species maybe considered sisters, but without finding putative synapomorphies to support the relationship between P. pugnax and P. tamsitti.

Limb muscles and phylogeny

All characters and character states obtained were chosen bearing in mind character distribution and conditions deemed to be worth for the analysis. Burton's (1998a, 2004) characters and character states were used just as he defined them, but in some cases we believed that some had to be redefined due to the fact that they were not clearly named. Then, we think that most of these characters are new and very useful for future analyses in frog morphology and phylogeny studies. It is fascinating how many characters have found on the hands and feet, although only the superficial muscles have been observed. More characters were found in the hands

Figure 4. Ventral view of the pes showing the apomorphic state of the character state 44 (1). Origin of the tendo superficialis hallucis from the aponeurosis plantaris including some fibers of the m. lumbricalis brevis hallucis. P. mersotictus. ICN 34235
(44 , including four of Burton) than in the feet (21, including six of Burton). Similarly, after making a clearance based on external descriptions and original observations, we obtained 26 characters. Faivovich (2002) used 14 characters from the manus and seven from the pes, from which he found two synapomorphies for Scinax Wagler, 1830, both from the manus. However, although we did not find any useful characters taken from hand and foot musculature, this does not mean that these characters should be dismissed from phylogenetic studies in frogs. Burton (1998a) found some hand muscle character conditions useful to support intrafamiliar relationships in Leptodactylids. Likewise, Burton (1998b) found a hand muscle character condition within Ranidae Rafinesque, 1814, stressing that superficial muscles can vary more than deep ones, but that these muscle can contribute to get frog relationships. It is apparently historically clear that superficial hand muscles may play a role more important to resolve frog relationships than superficial feet muscles, although we found muscles of both that could be putative synapomorphies.

External characters

Phylogenetic analysis including external characters is rare in frogs, although identification of most of the species groups and all species have been based on these characters. The results show that characteristics of the fingers are still important, and can be used in establishing kinship, but were obviously not essential to support the monophyly of the unistrigatus group. Apparently, the other external characters are not useful because, in any case, it was established that they could participate as potential synapomorphies. Maybe we should pay attention to the condition of tympanic annulus and to the dorsal view of the snout because for the two analyses that show that these characters appear as potential synapomorphies (nodes 21 and 23 respectively in LD group, and node

15 in HEA group), although actually they are homoplasies.

To compare our results with those by Heinicke et al. (2008) and Hedges et al. (2008) is difficult, because most of the species included in our work were not used by these authors. However, our results agree in identifying the unistrigatus group as non monophyletic. Heinicke et al. (2008) only included six spececies belonging to the former P. unistrigatus group (Lynch, 1976; Lynch et al., 1997). Taking into account this classification, their results showed that this group is monophyletic. However, based on Hedges et al. (2008) classification P. ockendeni, in the P. unistrigatus group by Heinicke et al. (2008), belongs to the P. frater group; in this sense, the group would become not monophyletic.

CONCLUSIONS

Although the muscles of hands and feet and external characters useful in taxonomy failed to identify the Pristimantis unistrigatus as monophyletic, this does not mean they are not useful for establishing relationships within the genus. It is possible that including more unistrigatus group species in the study, the situation changes, however, it seems also essential to include the deep muscles of the hands and feet and external characters as well. It is possible that other characters facilitate to define relationships among species within the genus. However, it is necessary to explore deeper the relationship P. spilogaster-P. merostictus, and P. pugnaxP. tamsitti, because we need whether to confirm or falsify if these clades actually are monophyletic. By detecting the difficulties that several researchers (e,g, Hedges et al. 2008; Padial et al. 2009) and our own study have found to discover the monophyly of the P. unistrigatus group and other ones in frogs, the question we pose is: Is it worthwhile to keep this informal taxonomic hierarchy called group in systematics of frogs?

LITERATURE CITED

Acosta, A. R. 2000. Ranas, Salamandras y Caecilias (Tetrapoda: Amphibia) de Colombia. Biota Colombiana 1 (3): 289319.

Andersen, M. 1978. The comparative myology and osteology of the carpus and tarsus of selected anurans. Volumes I and II. Ph.D. Dissertation.University of Kansas, Department of Systematics and Ecology. Kansas, USA. 310pp.
Bernal, X. \& F. Guzmán. 1999. The advertisement calls of three Eleutherodactylus species (Anura: Leptodactylidae) in Colombian highland community. Revista Academia Colombiana de Ciencias Exactas Físicas y Naturales 23(suplemento especial): 261-264.
Воск, W. \& O.R. Shear. 1972. A staining method for gross dissection of vertebrate muscles. Anatomischer Anzeiger 130: 222-227.
Burton, T.C. 1996. Adaptation and evolution in the hand muscles of Australo-Papuan Hylid Frogs (Anura: Hylidae: Pelodryadinae). Australian Journal of Zoology 44: 611623.

Burton, T.C. 1998a. Variation in the hand and superficial throat musculature of neotropical Leptodactylidae frogs. Herpetologica 54: 53-72.
Burton, T.C. 1998b. Pointing the way: the distribution and evolution of some characters of the finger muscles of frogs. American Museum Novitates 3229: 1-13.
Burton, T.C. 2001. Variation in the foot muscles of frogs of the family Myobatrachidae. Australian Journal of Zoology 49: 539559.

Burton, T.C. 2004. Muscles of the pes of Hylid frogs. Journal of Morphology 260: 209-233.
Cochran D.M. \& C.J. Goin 1970. Frogs of Colombia. United States National Museum Bulletin 288, Smithsonian Institution Press, Washington D.C. 655 pp .

Conrad, J.L. 2008. Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bulletin of the American Museum of Natural History 310: 1-182.
Duellman, W.D. \& J.B. Pramuk. 1999. Frogs of the Genus Eleutherodactylus: Anura: Leptodactylidae) in the Andes of Northern Peru. Scientific Papers, Natural History Museum, The University of Kansas (13):1-78.

Duellman, W.D. \& J.E. Simmons. 1977. A new species of Eleutherodactylus: Anura: Leptodactylidae) from the Cordillera Oriental of Colombia. Proceedings of the Biological Society of Washington 90: 60-65.
Dunlap, D. 1960. The comparative miology of the pelvic appendage in Salientia. Journal of Morphology 160: 1-76.
Dunn, E. R. 1944. Herpetology of Bogotá Area. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 6: 68-81.
Egan, D. 1995. The comparative osteology and miology of the carpus of the Australian Leptodactylidae. Honors Dissertation. University of Adelaide. Adelaide, Australia. 58pp.
Faivovich, J. 2002. A cladistic analysis of Scinax (Hylidae). Cladistics 18: 367-393.
Frost, D., T. Grant, J. Faivovich, R. Bai, A. Haas, C. Haddad, R. De Sá, A. Channing, M. Wilkinson, S. Donnellan, C. Raxworthy, J. Campbell, B. Blotto, P. Moler, R. Drewes, R. Nussbaum, J. Lynch, D. Green \& W. Wheeler 2006. Tree of life. The amphibian tree of life. Bulletin of the American Museum of Natural History 297: 1-370.
Galindo, D. 2004. Filogenia de especies del grupo unistrigatus (sensu Lynch), del género Eleutherodactylus (Amphibia: Anura: Leptodactylidae) de la cordillera Oriental de Colombia. Trabajo de Grado de Pregrado. Pontificia Universidad Javeriana, Bogotá, Colombia. 190 pp.
Gaupp, E.1896.A. Ecker's und R. Wiedersheim's Anatomie des Frosches. Friedrich View und Sohn, Braunschweig.

Glaw, F.M., M. Vences, F. Andreone \& D. Vallan. 2001. Revision of the Boophis majori group (Amphibia : Mantellidae) from Madagascar, with the description of five new species. Zoological Journal of the Linnean Society 133: 495-529.
Hedges, S.B., W.E. Duellman \& M.P. Heinicke. 2008. New World directdeveloping frogs (Anura: Terrarana): Molecular phylogeny, classification, biogeography, and conservation. Zootaxa 1737: 1-182 pp
Heinicke, M.P., W.E. Duellman \& S. B. Hedges. 2007. Major Caribbean and Central American frog faunas originated by ancient oceanic dispersal. Proceedings of the National Academy of Sciences of United States of America 104 (24): 1092-1097.
Hoyos, J.M. 1991. Aspectos taxonómicos y patrones de diseño de Eleutherodactylus bogotensis del Parque Nacional Natural Chingaza. Cuadernos Divulgativos 18 : 1-12
Kwet, A. \& J. FAIVOVICH. 2001. Protoceratophrys bigibbosa species group (Anura: Leptodactylidae), with description of new species. Copeia 2001: 203-215.
Lynch, J.D. 1973. A new species of Eleutherodactylus (Amphibia, Leptodactylidae) from Andean Ecuador. Bulletin of the Southern California Academy of Sciences 72: 107-109.
Lynch, J.D. 1975a. A review of the broadheaded eleutherodactyline frogs of South America (Leptodactylidae). Occasional Papers of the Museum of Natural History University of Kansas 38: 1-46.
Lynch, J.D. 1975b. The identity of the frog Eleutherodactylus conspicillatus (Günther) with description of two related species from Northwestern Soth America (Amphibia, Leptodactylidae). Natural History Museum of Los Angeles Contributions in Science 272: 1-19.
Lynch, J.D. 1976.The species groups of the South American frogs of the genus Eleutherodactylus (Leptodactylidae).

Occasional papers of the Museum of Natural History 61: 1-24.
Lynch, J.D. 1978. A new Eleutherodactyline frog from the Andes of Northern Colombia (Leptodactylidae). Copeia 1978: 17-21.
Lynch, J.D. 1981. Two new species of Eleutherodactylus from Western Colombia (Amphibia, Anura, Leptodactylidae). Occasional Papers of the Museum of Zoology, University of Michigan 697: 1-12.
Lynch, J.D. 1983. A new Leptodactylid frog from the Cordillera Oriental of Colombia. In: Rhodin, A. G. J. \& Williams, E. E. Advances in Herpetology and evolutionary biology: 52-57. Museum of Comparative Zoology, Cambridge, Massachussetts.
Lynch, J.D. 1984. A new species of Eleutherodactylus (Amphibia, Anura: Leptodactylidae) from Southern Andean Colombia. Herpetologica 40: 234-237.
Lynch, J.D. 1989. Intrageneric Relationships of Mainland Eleutherodactylus (Leptodactylidae) I. A Review of the Frogs Assigned to the Eleutherodactylus discoidalis species group.Contributions in Biology and Geology, Milwaukee Public Museum 79: 1-25.
Lynch, J.D. 1994a. A new species of High-altitude frog (Eleutherodactylus Leptodactylidae) from the Cordillera Oriental of Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 19: 195-203.
Lynch, J.D. 1994b. A new species of frog (Genus Eleutherodactylus: Leptodactylidae) from the cloud forest in Departamento de Santander, Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 19: 205-20.
Lynch, J.D. 1997. Intrageneric relationships of mainland Eleutherodactylus II. A review of the Eleutherodactylus sulcatus group. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 21: 353-372.
Lynch, J.D. 1998. A new frog (Genus Eleutherodactylus) from cloud forests of
southern Boyacá. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 22: 429-432.
Lynch, J.D. 2001. Four osteological synapomorphies within Eleutherodactylus (Amphibia: Leptodactylidae) and their bearing on subgeneric classifications. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 25: 127-136.
Lynch, J.D. 2003. New species of frogs (Eleutherodactylus: Leptodactylidae) from the Cordillera Oriental of Norte de Santander and Santander, Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 27: 449-460.
Lynch, J.D. \& M.C. Ardila-Robayo. 1999. The Eleutherodactylus of the taeniatus complex in Western Colombia: taxonomy and distribution. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 23(89): 615-624.
Lynch, J.D. \& W. Duellman. 1980. The Eleutherodactylus of the Amazonian slopes of the Ecuadorian Andes (Anura, Leptodactylidae). The University of Kansas, Lawrence, Kansas 69: 1-86.
Lynch, J.D. \& W. Duellman. 1997. Frogs of the genus Eleutherodactylus in Western Ecuador. Special publication, No. 23, Natural History Museum, The University of Kansas, Lawrence, Kansas.
Lynch, J.D. \& B. Myers. 1983. Frogs of the fitzingeri group of Eleutherodactylus in Eastern Panama and Chocoan South America (Leptodactylidae). Bulletin of the American Museum of Natural History 175: 484-568.
Lynch, J.D. \& A.M. Súárez. 2002. A new frog (Eleutherodactylus: Leptodactylidae) from the Southern part of the Cordillera Oriental de Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 24: 289-293.
Nixon, K. \& J.M. Carpenter. 1993. On outgroups. Cladistics 9: 413-426.

Padial, J. M., S. Castroviejo-Fisher, J. Köhler, C. Vilá, J. C. Chaparro \& I. de la Riva. 2009. Deciphering the products of evolution at the species level: the need for an integrative taxonomy. Zoologica Scripta 38: 431-447.
Pyburn, W.F. \& J.D. Lynch. 1981. Two little-known species of Eleutherodactylus (Amphibia, Leptodactylidae) from the Sierra de la Macarena, Colombia. Proceedings of the Biological Society of Washington 94: 404-412.
Raikow, R., A. Bledsoe, B. Myers \& C. Welsh. 1990. Individual variation in avian muscles and its significance for the reconstruction of phylogeny. Systematic Zoology 39: 362-370.
Reichle, S., S. Lötters \& I. de la Riva. 2001. A new species of the discoidalis group of Eleutherodactylus (Anura, Leptodactylidae) fron Inner-Andean Dry Valley of Bolivia. Journal of Herpetology 35: 21-26.

Rueda, J.V. \& J.D. Lynch. 1983. Una nueva especie de Eleutherodactylus (Amphibia: Leptodactylidae) para la Cordillera Oriental de Colombia. Lozania 42: 1-6.
Salgar, L. 2003. Miología de manos y pies de Hyla labialis (Peters, 1883) y de Eleutherodactylus bogotensis (Peters, 1883). Trabajo de Grado, Departamento de Biología, Pontificia Universidad Javeriana Bogotá D.C. 258 pp.
Salgar, L., J.M. Hoyos \& A. Acosta. 2009. New conditions and intraspecific variations in hand and foot muscles in Pristimantis bogotensis (Peters, 1863) (Amphibia:Anura: Strabomantidae). Zootaxa 2025: 56-68.

Appendix 1. List of characters and character states for the LD matrix.

Manus

1. Number of insertions of the m. extensor digitorum communis longus
0 Four
1 Three
2 Two
2. Number of origins of the m. epicondylocubitalis 0 Two, one slip in common with the m. extensor carpi ulnaris and the other slip free.
1 One slip, not in common with the m. extensor carpi ulnaris
3. Relationship between the m. epicondylocubitalis and the m. epitrochleocubitalis 0 Bipennated 1 Parallel
4. Type of origin of the m. epitrochleocubitalis 0 Double
1 Single
5. Insertion of the m. epitrochleocubitalis 0 Not covered by the m. palmaris brevis 1 Covered by the m. palmaris brevis
6. Insertion of the m. epicondylocubitalis in relation with the m. palmaris brevis 0 It does not cover the m. palmaris brevis 1 It covers the m. palmaris brevis
7. Relationship between the m. epitrochleocubitalis and the external slip of the m. palmaris longus

0 The m. palmaris longus is partially covered by the m. palmaris longus
1 The m. palmaris longus is not covered by the m. palmaris longus
8. Relationship between the m. epitrochleocubitalis and the m. epicondylocubitalis
0 The fibers fuse partially on the external surface
of the radioulna
1 The fibers completely fuse on the external surface of the radioulna
9. Relationship between the internal slip of the m. extensor digitorum communis longus and the m. extensor carpi radialis
0 Proximally partially fused
1 Completely fused
2 Not fused
10. Relationship betweem the m. extensor brevis superficialis Digiti V and the m. abductor brevis Digiti V
0 They are partially fused
1 They are not fused
11. Number of insertion of the m. extensor brevis
superficialis Digiti V
0 One
1 Two
12. Origin of the m. abductor brevis Digiti V

0 From the distal carpal 5-4-3

1 From the ulnare
13. Presence of the m. abductor ulnocarpalis 0 Present
1 Absent
14. Origin of the m. palmaris longus

0 By two slips
1 By one slip
15. Insertion of the m. palmaris longus

0 Simple
1 Double
16. Connection between the tendons of the m. palmaris longus and the flexor tendons
0 Single tendon that divides to become tendones superficiales(TS) IV and V
1 Two tendons that cross over before becoming TS IV and V
17. Relationship between the fibers of the m. palmaris brevis and the m. palmaris longus
0 The fibers of the m. palmaris brevis are dorsal with respect to the tendons of insertion of the m. palmaris longus
1 The m. palmaris brevis is between the two tendons of insertion of the m. palmaris longus
18. Relationship between the insertion of the m. palmaris brevis and the tendons of insertion of the m. palmaris longus

0 m . palmaris brevis articulates with the tendons of insertion of the m. palmaris longus
1 The m. palmaris brevis does not articulate with the m. palmaris longus
19. Relationship between the m. palmaris longus and the m. flexor carpi ulnaris 0 They are partially fused 1 They are not fused
20. Origin of the m. adductor pollicis 0 From the ventral surface of the carpal 5-4-3 1 From the internal surface of the distal carpal 5-4-3
21. Insertion of the m. adductor pollicis on the prepollex
0 Adjacent to the insertion of the m. abductor pollicis
1 Covers the insertion of the m. abductor pollicis
22. Relationship between the m. adductor pollicis and the m. abductor pollicis
0 Both muscles are independent
1 They are fused
23. Relationship between the origin of the m. adductor pollicis and the aponeurosis palmaris
0 The origin is covered by the aponeurosis palmaris
1 The origin is not covered by the aponeurosis palmaris
24. Condition of the proximal end of the m. lumbricalis brevis indicis
0 Dorsal to the m. adductor pollicis
1 Contiguous to the m. adductor pollicis
25. Nature of the origin of the tendon of the m. lumbricalis brevis Digiti III

0 Short and wide with respect to the muscle 1 Long and thin with respect to the muscle
26. Origin of the m. lumbricalis brevis Digiti III in relation with the tendo superficialis \& caput. profundum Digiti III
0 Dorsal
1 Laterodorsal
27. Presence of fibers of the tendo superficialis \& caput. profundum Digiti III
0 Only on the external surface of the tendon 1 On the external and internal surface of the tendon
2 Only on the internal surface of the tendon
28. Nature of the m. lumbricalis brevis Digiti IV

0 Two slips
1 Only one slip
29. Position of the insertion tendons of the m. lumbricalis longus Digiti IV with respect to the tendo superficialis aponeurosis palmaris prodigiti IV
0 Lateral to the tendo superficialis aponeurosis palmaris prodigiti IV
1 The insertion is via the tendo superficialis aponeurosis palmaris prodigiti IV
30. Origin of the m. lumbricalis longus Digiti V

0 From the aponeurosis palmaris and the TS V
1 Only from the TS V
31. Number of insertions of m. lumbricalis longus Digiti V
0 One
1 Two
32. Number of slips that compose the m. lumbricalis brevis Digiti V
0 One
1 Two
Pes
33. Type of insertion of the m. extensor digitorum communis longus
0 Single
1 Multiple
34. Number of insertions of the m. extensor brevis superficialis hallucis
0 Two
1 Three
2 Single
35. Number of insertions of the m. extensor brevis superficialis Digiti II
0 One
1 Two
36. Relationship between the insertions of the m. extensor brevis superficialis Digiti II and the m. extensor digitorum communis longus
0 Common insertion between m. extensor brevis superficialis Digiti II and the internal slip of m. extensor digitorum communis longus
1 Inependent insertions
37. Presence of the m. extensor brevis medius hallucis

0 Absent
 1 Present

38. Presence of the m. extensor brevis medius Digiti II 0 Absent
1 Present
39. Number of insertion slips of the m. extensor brevis superficialis Digiti III
0 One
1 Two
40. Relationship between the insertions of the m. extensor brevis superficialis Digiti III and the m. extensor digitorum communis longus 0 Common insertion between m. extensor brevis superficialis Digiti III and any slip of m. extensor digitorum communis longus
1 Independent insertions
41. Origin of the m. extensor brevis superficialis Digiti IV
0 By two independent slips
1 By two proximally fused slips
2 By one slip
42. Presence of the m. extensor brevis superficialis Digiti V
0 Absent
1 Present
43. Origin of the m. abductor prehallucis

0 From the internal surface of the aponeurosis plantaris
1 From the distal internal surface of the tarsus
44. Presence of the m. abductor brevis plantaris hallucis
0 Absent
1 Present
45. Origin of the m. lumbricalis brevis Digiti II

0 From the aponeurosis plantaris
1 From the proximal end of the tendo superficialis hallucis
46. Type of origin of the m. lumbricalis brevis Digiti III 0 Tendinous
1 Fleshy
47. Relationship between the external slip of the m. lumbricalis brevis Digiti IV and the internal slip of m. lumbricalis brevis Digiti V

0 Fused only in the origin
1 Fused beyond its origin
Burton characters
Manus
48. Presence of the internal slip of the m. lumbricalis brevis Digiti III 0 Absent 1 Present
49. Number of slips of the m. lumbricalis longus Digiti IV 0 Two
1 Only one, the internal slip
50. Origin of the m. extensor brevis superficialis Digiti V

0 From both, the ulnare and distal carpals 5-4-3
1 From the ulnare

Pes

51. Origin of the tendo superficialis hallucis 0 From the aponeurosis plantaris 1 From the aponeurosis plantaris including some fibers of the m. lumbricalis brevis hallucis 2 From a muscle that originates from the distal tarsal 2-3
52. Origin of the tendo superficialis Digiti II 0 From the aponeurosis plantaris 1 It serves as the insertion tendon of the m. transversus plantae distalis
53. Origin of the tendo superficialis Digiti III

0 From the m. flexor digiti brevis superficialis only 1 From the aponeurosis plantaris
2 From a superficial tendon that emerges centrally on the plantar surface of the aponeurosis plantaris
54. Number of insertion tendons of the m. lumbricalis logissimus Digiti IV
0 Two
1 One
External characters
55. Skin on venter

0 Areolate
1 Smooth
56. Presence of dorsolateral folds

0 Present
1 Absent
57. Nature of tympannic anulus

0 Complete
1 Incomplete
58. Dorsal view of snout

0 Rounded
1 Subacuminate
2 Acuminate
59. Shape of snout in profile

0 Rounded
1 Truncated
2 Acute
60. Presence of cranial crests

0 Present
1 Absent
61. Width of the upper eyelid in relation with the interorbital distance
0 Narrower than the inter-orbital distance
1 As wide as the inter-orbital distance
62. Length of fingers I and II

0 First finger shorter than second
1 First and second finger equally or almost equally
long
2 First finger longer than second
63. Presence of finger pads or discs

0 Present
1 Absent
64. Presence of skin variations on the ulnar region

Phylogenetic analysis whithin the Pristimantis unistrigatus

0 Present

1 Absent
65. Presence of skin variations on the tarsals 0 Present
1 Absent
66. Presence of skin variations on the heel 0 Present
1 Absent
67. Presence of supernumerary plantar tubercles 0 Present

1 Absent
68. Presence of webbed toes

0 Present
1 Absent
69. Presence of toe pads or discs

0 Present
1 Absent
70. Presence of lateral fringes on toes

0 Present
1 Absent

Appendix 2. List of characters and character states for the HEA matrix.

Manus

1. Number of insertions of the m. extensor digitorum communis longus
0 Three
1 Two
2. Relationship between the m. epicondylocubitalis and the m. epitrochleocubitalis
0 Bipennated
1 Parallel
3. Type of origin of the m. epitrochleocubitalis 0 Double 1 Single
4. Insertion of the m. epitrochleocubitalis 0 Not covered by the m. palmaris brevis 1 Covered by the m. palmaris brevis
5. Insertion of the m. epicondylocubitalis in relation with the m. palmaris brevis 0 It does not cover the m. palmaris brevis 1 It covers the m. palmaris brevis.
6. Relationship between the m. epitrochleocubitalis and the external slip of the m. palmaris longus 0 The m. epitrochleocubitalis is partially covered by the m. palmaris longus
1 The m. epitrochleocubitalis is not covered by the m. palmaris longus.
7. Relationship between the m. epitrochleocubitalis and the m. apicondylocubitalis
0 The fibers fuse partially on the external surface of the radioulna
1 The fibers completely fuse on the external surface of the radioulna
8. Relationship between the internl slip of the m. extensor digitorum communis longus. and the m. extensor carpi radialis
0 Proximally partially fused
1 Completely fused
2 Not fused
9. Relationship between the m. extensor brevis superficialis Digiti V and the m. abductor brevis Digiti V
0 They are partially fused
1 They are not fused
10. Number of insertion of the m. extensor brevis superficialis Digiti V
0 One
1 Two
11. Origin of the m. abductor brevis Digiti V

0 From the distal carpal 5-4-3
1 From the ulnare
12. Presence of the m. abductor ulnocarpalis

0 Present
1 Absent
13. Origin of the m. palmaris longus

0 By two slips
1 By one slip
14. Insertion of the m. palmaris longus

0 Simple
1 Double
15. Connection between the tendons of the m. palmaris longus and the flexor tendons
0 Single tendon that divides to become tendones superficiales(TS) IV and V
1 Two tendons that cross over before becoming TS IV and V
16. Relationship between the fibers of the m. palmaris brevis and the m. palmaris longus
0 The fibers of the m. palmaris brevis are dorsal with respect to the tendons of insertion of the m. palmaris longus
1 The m. palmaris brevis is between the two tendons of insertion of the m. palmaris longus
17. Relationship between the m. palmaris longus. and the m. flexor carpi ulnaris
0 They are partially fused
1 They are not fused
18. Origin of the m. adductor pollicis

0 From the ventral surface of the carpal 5-4-3
1 From the internal surface of the distal carpal 5-43
19. Insertion of the m. adductor pollicis. on the prepollex
0 Adjacent to the insertion of the m. abductor pollicis
1 Covers the insertion of the m. abductor pollicis
20. Relationship between the m. adductor pollicis and the m. abductor pollicis
0 Both muscles are independent 1 They are fused
21. Condition of the proximal end of m. lumbricalis brevis indicis
0 Dorsal to the m. adductor pollicis
1 Contiguous to the m. adductor pollicis
22. Origin of the m. lumbricalis brevis Digiti III in relation with the m. tendo superficialis \& caput profundum Digiti III
0 Dorsal
1 Laterodorsal
23. Presence of fibers of the tendo superficialis \& caput. profundum Digiti III
0 On the external and internal surface of the tendon
1 Only on the internal surface of the tendon
24. Nature of the m. lumbricalis brevis Digiti IV 0 Two slips
1 Only one slip
25. Position of the insertion tendons of the m. lumbricalis longus Digiti IV with respect to the tendo superficialis aponeurosis palmaris prodigiti IV
0 Lateral to the tendo superficialis aponeurosis palmaris prodigiti IV
1 The insertion is via the tendo superficialis aponeurosis palmaris prodigiti IV
26. Origin of the m. lumbricalis longus Digiti V 0 From the aponeurosis palmaris. and TS V 1 Only from TS V
27. Number of insertions of m. lumbricalis longus Digiti V 0 One 1 Two
28. Number of slips that compose the m. lumbricalis brevis Digiti V
0 One
1 Two
Foot
29. Type of insertion of the m. extensor digitorum communis longus 0 Single 1 Multiple
30. Number of insertions of the m. extensor brevis superficialis hallucis
0 Two
1 Three
2 Single
31. Number of insertions of the m. extensor brevis superficialis Digiti II 0 One 1 Two
32. Relationship between the insertions of the m. extensor brevis superficialis Digiti II and the m. extensor digitorum communis longus.
0 Common insertion between m. extensor brevis superficialis Digiti II and the internal slip of the m. extensor digitorum communis longus 1 Inependent insertions
33. Presence of the m. extensor brevis medius hallucis 0 Absent
1 Present
34. Presence of the m. extensor brevis medius Digiti II

0 Absent
1 Present
35. Number of insertion slips of the m. extensor brevis superficialis Digiti III
0 One
1 Two
36. Relationship between the insertions of the mm . extensor brevis superficialis Digiti III and the m. extensor digitorum communis longus.
0 Common insertion between mm . extensor brevis superficialis Digiti III and any slip of m. extensor digitorum communis longus
1 Independent insertions
37. Origin of the m. extensor brevis superficialis Digiti IV
0 By two independent slips
1 By two proximally fused slips
2 By one slip
38. Origin of the m. abductor prehallucis

0 From the internal surface of the aponeurosis plantaris
1 From the distal internal surface of the tarsus
39. Presence of the m. abductor brevis plantaris hallucis
0 Absent
1 Present
40. Type of origin of the m. lumbricalis brevis Digiti III 0 Tendinous
1 Fleshy
41. Relationship between the external slip of m.
lumbricalis brevis Digiti III and the internal slip of
m. lumbricalis brevis Digiti V

0 Fused only in the origin
1 Fused beyond its origin
Burton characters

Manus

42. Presence of the internal slip of m. lumbricalis
brevis Digiti III
0 Absent
1 Present
43. Number of slips of the m. lumbricalis brevis Digiti IV
0 Two
1 Only one, the internal slip

Pes
44. Origin of the tendo superficialis hallucis

0 From the aponeurosis plantaris
1 From the aponeurosis plantaris including some fibers of the m. lumbricalis brevis hallucis 2 From a muscle that originates from the distal tarsal 2-3
45. Origin of the tendo superficialis Digiti II

0 From the aponeurosis plantaris
1 It serves as the insertion tendon of the m. transversus plantae distalis

Phylogenetic analysis whithin the Pristimantis unistrigatus

External characters
46. Skin on venter

0 Areolate
1 Smooth
47. Presence of dorsolateral folds

0 Present
1 Absent
48. Nature of tympannic anulus

0 Complete
1 Incomplete
49. Dorsal view of snout

0 Rounded
1 Subacuminate
2 Acuminate
50. Shape of snout in profile 0 Rounded
1 Truncated
2 Acute
51. Presence of cranial crests

0 Present
1 Absent
52. Width of the upper eyelid in relation with the interorbital distance
0 Narrower than the inter-orbital distance
1 As wide as the inter-orbital distance
53. Length of fingers I and II 0 First finger shorter than second
1 First and second finger equally or almost equally long
2 First finger longer than second
54. Presence of finger pads or discs

0 Present
1 Absent
55. Presence of skin variations on the ulnar region 0 Present
1 Absent
56. Presence of skin variations on the heel

0 Present
1 Absent
57. Presence of supernumerary plantar tubercles 0 Present
1 Absent
58. Presence of webbed toes

0 Present
1 Absent
59. Presence of toe pads or discs

0 Present
1 Absent
60. Presence of lateral fringes on toes 0 Present
1 Absent

[^0]: Abreviations: Cran: Craugastor raniformis, Pano: Pristimantis anolirex, Pbac: P. bachus, Pbic: P. bicolor, Pbog: P. bogotensis, Pele: P. elegans, Pfra: P. frater, Pjor: P. jorgevelosai, Plyn: P. lynchi, Pmer: P. merostictus, Pmiy: P. miyatai, Pner: P. nervicus, Pnic: P. nicefori, Ppro: P. prolixodiscus, Ppug: P. pugnax, Pspi: P. spilogaster, Ptae: P. taeniatus, Ptam: P. tamsitii.

