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Modeling Dynamic Procurement Auctions of
Standardized Supply Contracts in Electricity

Markets including Bidders Adaptation
Henry C. Torres, and Luis E. Gallego,

Abstract—Descendant Clock Auctions have been increasingly
used in power markets. Traditional approaches are focused on
discovering the bidders’ best response but neglecting the bidders’
adaptation. This paper presents an algorithm based on decision
theory to estimate the bidders’ behavior along the auction. The
proposed model uses portfolio concepts and historical data of
spot market to estimate a long term contract supply curve. This
model was applied to evaluate the Colombia’s Organized Market
(MOR). Demand curve parameters and round size were varied
to evaluate their impact over auction outputs. Results show that
demand curve has a quite small impact over bidders’ decisions
and round size management is useful to avoid non-competitive
bidders’ behavior. In addition, it is shown that auction’s starting
prices strongly influence auction’s clearing prices. These results
are extremely helpful to design market structures in power
markets given that allows to model emerging behaviors along
the proposed auctions.

Index Terms—Dynamic Auction Model, Descending Clock
Auction, Electric Energy Regulation, Colombian Electric Energy
Market

I. THE PROBLEM

AUCTIONS are an important allocation mechanism, and it
has been employed to trade many goods since a long time

ago. Nowadays, auctions are employed in many fields as one of
the most important allocation mechanisms. This has increased
the researchers’ interest about enlarge auction’s understanding.
In fact, auction’s modeling has been deeply explored in many
areas of economics and engineering.

The first approach to auction modeling comes from eco-
nomic theory, using mathematical models to determine equilib-
rium strategies for different types of auctions[1]. These models
are useful to understand bidders’ behavior and some auction’s
features, however mathematical models have limitations be-
cause strong assumptions are necessary to obtain a model’s
equilibrium.

Nowadays, computational models allows to overcome some
of the mathematical model’s limitations. There are many
examples about computational agent-based models useful for
auction design, comparison and performance evaluation.

About design auction, in [4] an auction mechanism is settled
by using agent-based model. In [5] an agent-based model is
proposed not only for an auction but for a fully automated
negotiation system.
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About evaluation of auctions’ performance, many works
have been carried out based on agent-based models. Several
features has been studied, for example Shanshan Wang worked
on the advantages of combinatorial auctions [6], Kim on the
effect of auction repetition [7], Akkaya on the format of on-
line auctions [8] and Sow on the risk-prone evaluation by using
agent-based models [9].

Moreover, this computational models have been employed
to compare different auction formats. In [10] Discriminatory
and uniform price auctions are compared by using an exper-
imental analysis based on multi-agents model and in [11] a
similar comparison is done using learning agents.

In power markets, auctions are commonly used since dereg-
ulation became a trend. In the Colombian case, there is an
electricity market composed of two mechanisms: bilateral
financial contracts and spot market which is an uniform price
auction. A sealed bid auction, like an uniform price auction,
is the most common auction format in electricity markets and
has been widely modeled even with agent-based learning in
the colombian case [12][2][3].

Espinoza compared different formats of sealed bid auctions
by determining an equilibrium strategy for each format using
econometric models [13]. On the other hand, Gallego deter-
mined the bidders strategies by exploring the historical data
about Colombian wholesale market and employed a learning
algorithm. [14].

Recently, a new kind of auction has been included in
electricity markets: multi-round (dynamic) auctions. This kind
of auctions shows a distinctive feature when compared to
traditional auctions: Bidders adjust their bids along the auction
so the analytic solution problem is harder to solve than sealed
bid auctions. Nevertheless, it is possible to find examples about
modeling dynamic auctions using computational techniques,
as it is shown in [15], where a multi-round english auction is
modeled using genetic network programming.

On the other hand, some spot electricity markets have
used dynamic auction, but the principal purpose of dynamic
auctions is to trade Long Term Supply Contracts (LTSCs)
[16][17]. In LTSCs auctions, it is specially important to avoid
the so called winner’s curse, this happens in common value
auctions when the winner overpays because its estimate is
higher than the other bidders’ average estimate. Thus, dynamic
auctions are often used to trade LTSCs given that allow bidders
to fit their bids along the auction and thereby, to reduce a
possible overpayment [18].

Despite some LTSCs’ auctions uses a static format, like
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Chilean [19] and Peruvian [20] electricity markets, most of
LTSCs’ auctions are dynamic (New Jersey [21], Illinois [22]
and New England [23]), Brazil [19], Spain [24] and Colombia
[25]).

In addition, LTSCs’ auctions differs from sealed bid auc-
tions because bidders’ decision making involves additional
aspects such financial risk (due to spot prices’ volatility) and
generation uncertainty. Roubik [26] worked on generators’
strategic behavior in LTSCs auctions by using portfolio con-
cepts. Four variables were proposed to understand the gen-
erators behavior: 1) Mean spot price, 2) Spot price variance,
3) Contract price and 4) Risk aversion [26]. Other contract
procurement auctions’ models are the Moreno’s that studied
two static auctions format by using Bayesian equilibrium
concepts [27], Azevedo’s that also used Bayesian equilibrium
but to analyze bilateral contract auction carried out in Brazil
on 2003 [28] and Garcia-Gonzales’ that modeled the bidding
strategy of a wind power producer in a Descending Clock
Auction [29].

A Descending Clock Auction is a dynamic procurement
auction that has been recently introduced in several power
markets. In short, this auction works as follows. The auctioneer
calls bids in successive rounds. Each round has a maximum
and a minimum price. The round’s maximum price is equal
to previous round’s minimum price. Hence, the bid price is
always descending. In every round the auctioneer adds all bids
and announces the total aggregate supply. Auction ends when
aggregate supply is equal or less than total demand [30].

From an economic approach, Ausbel & Cramton [31] and
Milgrom [32] are the main references. They used a Lyapunov
Function to find an equilibrium strategy and their main con-
clusion is that sincere bidding by the bidders is an equilibrium
of the auction game and, starting from any price vector, the
outcome converges to the competitive equilibrium. However,
these models are based on strong assumptions about ratio-
nality, continuity, and others that allows to ease the analytic
solution. Moreover, Ausbel, Cramton and Milgrom say that
the most important feature of a dynamic auction is that the
winner’s curse is weakened given that bidders can fit their bids
along the auction[33], however the model used to demonstrate
the equilibrium strategy is static and the adjustment is not
evident.

From an engineering approach, models about descending
clock auction are pretty scarse. In [34], Barroso established
an optimization model for a price-taker hydrothermal GENCO
to devise bidding strategies in multi-item dynamic auctions of
long-term contracts.

In order to fill the absence of auction’s models from an en-
gineering perspective, this paper presents a methodology that
models the bidder’s decision making at every round in order
to maximize their revenues. For this purpose, a MATLAB
program based on decision theory [35] and microeconomic
theory [36] [37], was developed. This allows to simulate the
bidders behavior along the auction. The bidders model use
portfolio concepts [26] and historical information about their
preferences in the Spot Market.

This paper is organized as follows. In Section II the pro-
posed model is presented, first the bidder model and then the

scenarios faced by the bidders in the auction and the possible
rewards to a chosen strategy are presented. In Section III
the model is applied to Colombian Energy Market. Section
IV presents some results of model implementation. Finally,
Section V summarizes the main conclusions.

II. PROPOSED MODEL

In this section, the proposed descending clock auction model
is presented. This model fits an auction mechanism in the
Colombian power market known as MOR, including two main
parts:

• Bidders Model: This part focuses on representing the
bidder’s valuations about the product to be auctioned: A
long term energy supply contract (LTSC). Since historic
information about energy contracts is not available due
to confidentiality reasons, it was necessary to design a
methodology to set the valuations from the spot market’s
bids and financial portfolio concepts.

• Decision Making: In this part the decision making is
modeled based on a set of scenarios, a set of bidding
strategies and a set of rewards.

Below, both parts will be described.

A. Bidders Model

In a descending clock auction, the auctioneer asks bidders
about their bids at every round price, i.e. bidders disclose
supply curve point by point. In fact, bidders’ behavior is
based on this supply curve as a representation of their LTSC
valuations.

In order to calculate their LTSC’s valuations this paper
proposes a methodology that consists of three stages: 1)
Summarize the spot market information through an statistic
supply curve 2) Estimate the GENCO’s risk aversion and
finally 3) Calculate the LTSC’s valuation by using a utility
function that includes expected generation (obtained from spot
market information), risk aversion and variables about the
commitment period of LTSCs (expected spot price, variance
spot price).

On the other hand, the information about LTSC bids is not
available but the information about bids in the spot market
is plenty given that GENCOs daily offer a supply curve in
this market. This curve is formed from individual generation
plants’ bids that must be ordered by price in such a way that
the accumulated quantity is determined by adding every unit’s
offered quantity.

Based on every GENCO’s daily bid, an statistical supply
curve can be obtained by ordering every daily supply curves
as follows:

1) Steps in supply curves are represented by points in a
scatter plot (Figure 1).

2) Next, these points are clustered by price ranges. For
each cluster a set of statistical measures are calculated
(i.e. mean, max, min, quartiles) with the aim of build
different statistical supply curves.

3) Finally, clusters are combined in such a way that every
cluster’s mean is greater than the previous one in order
to ensure the supply curve‘s monotonicity (Figure 2).
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Fig. 1. Scatter Plot of Spot Market Bids
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Fig. 2. Statistic Supply Curve of Spot Market Bids

Now, the resulting expected values for each price can be un-
derstood as the expected supply curve or expected generation
function (G(P )). It is important to note that G(P ) represents
the total generation (MW) allocated in both markets, spot and
contracts rather than only the generation power allocated in
the spot market. The amount to be sold in the spot market is
calculated from substracting GENCO’s contract obligations.

On the other hand, an optimal hedge level for a given
contract price can be determined by using portfolio concepts
[26] as follows:

1) First, it is necessary to represent hedge preferences by
utility functions as it is commonly used in portfolio
evaluations. This utility function allows to balance two
objectives: the expected earnings maximization and fi-
nancial risk mitigation.
In general terms, GENCO’s revenue is calculated using
equation 1 where b is the contract price, G(b) is the
expected generation at contract price b, h is the hedge
level (contract sales), (1 − h) is the spot market sales
and p̄ is the mean spot price.

π̃(h, b) = G(b)((1− h)p̃+ b ∗ h) (1)

2) Now, the expected value for the GENCO‘s revenue and
its involved risk (understood as the revenue variance)
can be balanced by using a Linear Mean-Variance Utility

Function (LMVUF) having a risk aversion constant (γ)
(equation 2)

U = E [π̃[ + γV AR [π̃]

U = G(b)((1−h)p̄+b∗h)−γ(σp (G(b)(1− h))
2
) (2)

3) From the LMVUF’s derivative with respect to h, the
optimal hedge level can be found. This optimal hedge
level depends on the estimated average spot price, its
variance and the GENCO’s risk preferences (γ), as it is
stated in equation 3.

h(P ) = 1− p̄− P
2γσp

(3)

4) Next, it is possible to estimate a hedge curve by calcu-
lating the optimal hedge level for several prices using
equation 3.

Finally, a Contract Supply Curve (CSC) is calculated by
multiplying G(P ) and the obtained hedge curve as it was de-
scribed in step 4. However, some assumptions were necessary
to calculate this curve. First, the generators are able to make
good estimations about average and variance of spot price,
otherwise, it is a mistake to use the historical data to calculate
γ. Second, risk aversion does not present meaningful changes
between commitment periods. Last but not least, generators
plan their risk hedge using a LMVFU to represent their risk
preferences.

Formally, the Contract Supply Curve is calculated as fol-
lows:

1) Choose a period of time and get its spot market historical
information.

2) Determine contract sales, spot sales and weight them
using equation 4.

(1− h) =
SpotSales

SpotSales+ ContractSales
(4)

h =
ContractSales

SpotSales+ ContractSales

3) Calculate the spot price mean(p̄h), the spot price vari-
ance (σph) and assume a contract price (b)(i.e. the
average price of the contracts for the entire power
market).

4) Calculate risk aversion by clearing (γ) from equation 3
as it is stated in equation 5.

γ =
p̄h − b

2(1− h)σph
(5)

5) Predict the mean (p̄) and variance spot price (σp) for the
commitment period of contract.

6) Calculate the hedge curve (h(P )) as shown in equation
6:

h(P ) = 1−max
[
p̄− P
2γσp

, 0

]
(6)

7) Determine the expected generation as a function of price
(G(P )) for the commitment period of contract.

8) Calculate the Contract Supply Curve (CSC(P )) by
multiplying point by point curves h(P ) and G(P )

CSC(P ) = h(P )G(P ) (7)
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Fig. 3. Risk Aversion Effect on Contract Supply Curve

One of the most important contributions of the proposed
methodology is that once a Contract Supply Curve is esti-
mated, it is also possible to estimate the effect of the risk
aversion in the Contract Supply Curve. Figure 3 shows the risk
aversion effect on a contract supply curve. The three shown
Contract Supply Curves were estimated with the following pa-
rameters: p̄=200 $/kWh, σp = 1000 and γ = {0.04, 0.1, 0.31}.
This figure shows that the higher the risk aversion the larger
the amount of energy to be allocated in contracts for the same
price.

B. Decision Making: Scenarios, Strategies and Rewards

Unlike sealed bid auctions, in a descending clock auction
the allocations and payments not only depend on a single
bid, but on bids sent in previous rounds; consequently, find
an equilibrium strategy using game theory is more difficult in
this kind of auctions. Thus, decision making was based on an
alternative theoretical framework: Decision theory.

Decision theory is a set of criteria that allows to choose
among different strategies under several feasible scenarios.
When the scenarios’ probability are known, it is called De-
cision under risk and consequently, decision making is based
on the expected strategy revenue. The most common criterion
in this kind of decision making is the expected value criterion.
This criterion weights rewards by the scenario’s probability to
find the strategy’s expected value [35].

In every round at a descending clock auction, bidders face
two scenarios:

1) Next round in the auction will be the last one.
2) Next round in the auction won’t be the last one.

These two scenarios are enough to understand the decision
making. On one hand, if bidders have certainty that next round
is not the last one, they will strategically bid to improve their
position in the auction. On the other hand, if bidders has
certainty that next round is the last one, they will bid in order
to maximize their revenue.

In fact, bidders can choose among many possible bids, but
to limit the choices is important to balance the results accuracy
and the spent time to get them. Therefore, it is proposed

that the bidders’ choices can be grouped in three strategies
as follows:

1) Bidding a quantity of energy according their CSC
curves.

2) Bidding a larger quantity of energy than the one set by
their CSC curves.

3) Bidding an smaller quantity of energy than the one set
by their CSC curves.

Now, for each pair scenario-strategy there is an associated
reward, i.e. for an strategy i and an scenario j the associated
reward is Uij . When next round is the last one(Scenario 1), the
reward (Ui1) is calculated from the equation 2 with b equal to
the round price (Pa) given that payment is actually achieved
in the final round.

In scenario 2 (next round is not the last one), rewards are
not real revenues given that there is no payment. However,
bidders choose an optimal strategy to drive the auction toward
a convenient point where they can maximize their revenues
at auction’s ending. Therefore, the strategy’s reward is the
expected revenue derived from the current strategy.

In addition, if an auction have interdependent estimations,
bidders may be motivated to send bids that differ from their
real valuations. In other words, if each bidder’s estimate is
partially based on rivals’ information, one bidder offering
small quantities might induce his/her rivals to decrease their
valuations and consequently, they may leave the auction. On
the other hand, Bidders may also have incentives to hold their
bids. A Bidder inflates its valuations in the hopes of exhausting
the competitors’ limited budgets. Then, a bidder shifts to
bid its real valuation, now facing weakened competition for
these goods[30]. The chosen strategy depends on the expected
strategy’s impact on aggregate supply. This impact basically
depends on bidder’s market power.

Assuming that all bidders have historical information about
beside bidders, they can estimate the aggregate supply for
each price based on the aggregate supply for the previous
round price and the historical offers for the same price. Next,
based on a supply curve estimate and a demand curve, the
residual demand (DR) is calculated [36]. Once the bidder has
the auction situation summarized in the residual demand, it is
easy to estimate the expected revenues for a given strategy.

In order to estimate the expected revenue for a given
strategy, an algorithm was implemented in MATLAB. This
algorithm follows these steps:;

1) Calculate the probability that the current aggregate sup-
ply curve be greater than the historical aggregate supply
curve for the current round price.

2) Estimate the beside bidders’ aggregate supply (SO) for
the next round price based on historical data and the
probability found at step 1.

3) For the three possible strategies (si), calculate the ag-
gregate supply for next round price ASr+1|si by adding
SO and si.

4) Calculate the probability that ASr+1|si be greater than
the historical aggregate supply for next round price.

5) Estimate the beside bidders’ aggregate supply for the
future price rounds (SOf (Pf )). SOf (Pf ) based on two
limits: (SOf (Pf )max) and (SOf (Pf )min).
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TABLE I
BIDDER’S DECISION MATRIX IN A DYNAMIC AUCTION

Pa = Pclear Pa 6= Pclear

S1 = CSC(Pa) U11 U12

S2 = CSC(Pa) + ∆Q U21 U22

S3 = CSC(Pa)−∆Q U31 U32

• SOf (Pf )max is the maximum beside bidders’ ag-
gregate offer at a future round price (Pf ). For every
Pf value, SOf (Pf )max is such that the probability
of SOf (Pf )max being greater or equal than his-
torical beside bidders’ aggregate supply is equal to
Prb.

• SOf (Pf )min is the minimum beside bidders’ aggre-
gate offer at future round price (Pf ) and is estimated
by taking the minimum historical beside bidders’
aggregate supply at price Pf .

6) Estimate maximum (DRmax) and minimum (DRmin)
residual demand from SOf (Pf )min, SOf (Pf )max and
the demand curve (DC(Pf )) as follows:

DR(Pf )max = DC(Pf )− SOf (Pf )min (8)

DR(Pf )min = DC(Pf )− SOf (Pf )max (9)

7) Determine the set of possible clearing prices from
DR(Pf )min, DR(Pf )max and the range of possible
own bids.

8) Calculate the expected reward (Ui2) based on the ob-
tained set of possible clearing prices.

Based on expected rewards a decision matrix can be written
(table I). Once this matrix is established, it is necessary to
estimate the probability of each scenario in order to use the
expected value criterion to choose the most convenient strategy
under the feasible scenarios.

The probability of the scenario 1 (Probsc1)(next round
being the last), it is estimated based on the historical data about
the clearing price. The probability of scenario 2 is calculated
as 1-Probsc1.

III. MODEL APPLICATION

The proposed model was applied in the colombian power
market and specifically to a new market auction scheme
proposed in the last 5 years. The following sections describes
this application.

A. Colombian electricity wholesale market

The colombian power market (known as MEM) was created
in 1995, as a competitive environment for the generation and
energy retail activities. This market structure assures the exis-
tence of enough sellers and buyers avoiding a direct influence
of any agent over the final energy tariffs.[12]. In addition,
MEM allows to trade energy by means of an Spot Market or
Bilateral Contracts and both choices might be represented as
an energy portfolio to manage the suppliers’ revenue risk. In
this market, hiring 100% of power generation lets suppliers
know the expected annual revenues, implying lower levels of
risk. Nevertheless, the average spot price is usually higher than

the average contract price, so, hiring 0 % of Power Generation
maximizes the expected revenue. Consequently, an optimal
hedge level must be determined in order to maximize the
revenue at an acceptable risk level.

In addition, there are two kinds of final cutomers: regulated
and non-regulated customers. The regulated customers pay a
tariff that is fixed by the regulator. This tariff transfers the
purchase energy cost that was paid by its incumbent retailer.
On th eother hand, non-regulated customers buy energy trough
a competitive scheme.

B. Organized Market (MOR)

Since five years ago, a new scheme to trade energy for
the regulated customers has been designed: the Organized
Market (MOR). MOR is a Descending Clock Auction where
standard long term energy supply obligations will be traded.
In other words, the auction product is a standardized contract
with a fixed commitment period (one year). According to this
new market structure, Suppliers/Retailers who want/need to
sell/buy Energy to regulated customers must bid exclusively
trough this new market scheme (MOR).

Retailers have a passive role in MOR, the auctioneer ask
them for the energy needed and sets an Aggregate Demand
Curve by adding the retailers’ requests. Moreover, the auc-
tioneer fix two prices: PP1 and PP2. PP1 is the maximum
price that the auctioneer is willing to buy for the total energy
demand while PP2 is the maximum price that the auctioneer
is willing to buy only for any fraction of the demand.

Before the auction takes place, the available information is
limited. PP2 is known, PP1 is unknown, and a range of values
for the possible total demand is given instead of an accurate
total demand. Thereby, bidders don’t know the real Demand
Curve, instead they have an expectation that can be represented
by lower and upper limits.

During an auction, the auctioneer sets a range of prices
where the bidders are able to offer. This range sets a variable
called round size. For each round, auctioneer sets the round
size in order to balance auction’s transaction costs and the
available time to fit the bidders’ bids. Additionally, a suitable
handling of this round size allows to limit the chances of
exercising market power.

Finally, the auction ends when the aggregate supply meets
the total demand curve. Then, the auctioneer discloses the final
allocations.

C. Simulation Parameters

The proposed model was applied to MOR in order to
evaluate the impact of varying its parameters: PP2, PP1 and
round size.

Six generators were modeled and their main features are
presented in table II. These agents choose one of the following
three strategies every round:

1) Bid according to their CSC at round price
2) Bid according 25th percentile of their historical bids at

round price
3) Bid according 75th percentile of their historical bids at

round price
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TABLE II
CHOSEN GENERATORS TO MODEL MOR

Plants Risk Aversion
GENCO A 5 0.04
GENCO B 5 0.31
GENCO C 6 0.002
GENCO D 1 0.19
GENCO E 10 0.104
GENCO F 4 0.025

—

TABLE III
DIFFERENT AUCTIONS TO BE SIMULATED

Parameter Lower limit Upper limit Step
PP2 100 210 10

PP1min 50 PP2 10
PP1max PP1min PP2 10

nr 30 130 20
∆TD 0% ±20% ±5%

The simulation was set with the following values: average spot
price (87 $/kWh), spot price variance (1000 ($/kWh)2), PP2
was varied between 100 and 210 $/kWh and PP1 between
50 and 210 $/kWh. All these values were chosen from the
historical data about Colombia’s Spot Market.

In order to vary the round size, an additional parameter
was introduced: maximum number of rounds (nr). Thus, round
size is calculated by dividing the difference between auction’s
starting price and minimum price over nr. Thereby, the higher
the maximum number of rounds, the smaller the size of the
rounds.

The simulation scenarios are composed of 5 variables:
Price PP2, maximum number of rounds (nr), total demand
uncertainty (∆TD) and the two PP1’s limits: PP1max and
PP1min.

Table III shows the parameters for the simulated auctions
using the MATLAB algorithm described above. In all the
auctions, more than 15.000 scenarios were simulated.

IV. RESULTS AND DISCUSSION

The main model’s output is the auction’s clearing price (Pc).
However, Pc is impacted by the demand curve shape as it is
shown in figure 4. To avoid this possible bias in the analysis,
a Modified Clearing Price (Pcm) was introduced to filter
this effect and accordingly, to identify the direct parameters’
impact over bidders’ decision along the auction.

Then the parameters’ impact over Pc and Pcm is evaluated
by applying the Pearson’s coefficient to the simulation’s out-
puts. Table IV summarizes the results.

From table IV, some conclusions can be inferred:

TABLE IV
PEARSON’S COEFFICIENT BETWEEN PARAMETERS AND Pc OR Pcm

Parmeter r with Pc r with Pcm

PP2 0.89 0.95
PP1min 0.54 0.29
PP1max 0.74 0.51

nr 0.088 0.034
∆TD 0.028 0.0267
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Fig. 4. Clearing Price (Pc) and Modified Clearing Price (Pcm)
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Fig. 5. Clearing Price (Pc) and Modified Clearing Price (Pcm) against PP1
price

1) PP2 has the greatest impact over Pc and Pcm. Thus, PP2
price influences the clearing price and also it directly
influences bidders’ decision making processes.

2) PP1 has an impact over Pc but not over Pcm. Thus,
despite PP1 has an impact over the clearing price it
doesn’t have an impact over bidders’ decisions.

3) The remaining parameters don’t have a strong influence
over the auction’s outputs.

Figure 5 shows a sensitivity analysis of auction outputs
against PP1 with different PP2 values. This figure supports the
conclusion about the greater impact that PP2 has over clearing
prices and hence, over bidder’s decisions. As well, figure 5 is
helpful to understand that PP1 impact is limited; PP1 only
impacts the auction output given that PP1 defines the demand
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curve shape and hence only Pc has a direct relation with PP1.
Finally, an additional conclusion can be settled: PP1 doesn’t
influence bidder’s decisions along the auction. Figure 6 shows
this fact.

V. CONTRIBUTIONS AND CONCLUSIONS

Three paper’s contributions must be highlighted as follows:
• First, this paper proposes a methodology to obtain a

GENCO’s contract supply curve from historical data
about spot prices. Barroso [34] presented a similar
methodology, however the proposed methodology in this
paper summarize the GENCOs’ risk preference in one
constant (γ) instead of a piecewise function.

• Second, Roubik’s work [26] proposed a methodology to
establish the hiring level based on the GENCOs’ risk
preference, however this paper contributes to Roubik’s
work to the extend that proposes a methodology to cal-
culate the expected generation from spot market historical
data and so, GENCO’s hiring profile is calculated from
spot market information.

• Third, this paper proposes a methodology to summarize
the spot market historical data in a statistic supply curve,
this allows to get statistic information about GENCO’s
bidding profile.

• Finally, the modeling of GENCO’s strategic behavior
along a dynamic auction is an important contribution
of this paper. Models like Barroso’s obtain the GEN-
COs’ best response to the auction but this response is
independent of the auction’s development. Instead, this
paper presents a methodology to get the GENCOs’ best
response for the next round that allows understanding the
bidders adaptation along the auction. This modeling fea-
ture is extremely helpful to understand bidding behaviors
for the purpose of future power market designs.

Regarding the colombian power market (MOR) some con-
clusions arised from the application of the proposed model.
This model allows to evaluate the auction sensitivity of several
demand curve parameters and round size. This sensitivity
analysis allows to state the following conclusions:

• The auction’s starting price PP2 has the strongest impact
on the auction’s clearing price.

• Under MOR’s rules, PP1 price does not influence bidders’
decisions. However, PP1 has an important effect on
clearing prices because PP1 modifies the demand curve
and consequently, the equilibrium price.

• The round size strongly influences bidders’ decisions
along the auction. Hence, suitable round size management
is helpful to prevent anticompetitive behaviors among
bidders. However, the round size impact over auction’s
clearing price is low due to the strong relation between
staring price and clearing price.

These conclusions are extremely helpful to design market
structures in power markets given that allows to model emerg-
ing behaviors along the proposed auctions.
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1-60, Bogotá, Colombia: Ediciones Uniandes, Feb 2009

[14] L. Gallego and O. Duarte, “Modeling of bidding prices using soft
Computing Techniques”, presented at Transmission and Distribution
Conference and Exposition: Latin America, 2008 IEEE/PES, 13-15 Aug
2008.[Online]. Available http://ieeexplore.ieee.org/



Noviembre 2 ,7 28 29y
Medel l ín ColombiaMedel l ín Colombia

VI
IS

im
po

si
o

In
te

rn
ac

io
na

ls
ob

re
VI

I
20

138

[15] Chuan Yue; Mabu, S.; Yan Chen; Yu Wang; Hirasawa, K., Agent bidding
strategy of multiple round English Auction based on genetic network
programming, ICCAS-SICE, 2009, 2009.

[16] C. Batlle, P. Rodilla (2009). “Policy and regulatory design on security of
electricity generation supply in a market-oriented environment. Problem
fundamentals and analysis of regulatory mechanisms”. IIT Working
Paper IIT-09-057A, July 2009.

[17] R. Moreno, B. Bezerra, S. Mocarquer, L.A. Barroso, H. Rudnick, (2009)
“Auctioning Adequacy in South America through Long-Term Contracts
and Options: From Classic Payas- Bid to Multi-Item Dynamic Auc-
tions”, Proceedings of the 2009 IEEE PES General Meeting, Calgary,
Canada.

[18] Peter Cramton, Pacharasut Sujarittanonta, Pricing Rule in a Clock
Auction, Decision Analysis, 2010.

[19] S. Mocarquer; L.A. Barroso, H. Rudnick, B.Bezerra, M.V. Pereira,
(2009), ¿Energy policy in Latin America: the need for a balanced
approach?, IEEE Power and Energy Magazine, Vol.7, Issue 4 , Page(s):
26 - 34

[20] D. Camac, V. Ormeño, L. Espinoza, L. (2006) “Assuring the efficient
development of electricity generation in Peru”, Proceedings of IEEE
General Meeting 2006, Montreal.

[21] C. LaCasse, and T. Wininger, “Maryland versus New Jersey: Is There a
“Best” Competitive Bid Process?”, The Electricity Journal, vol. 20, no.
3, pp. 46-59, April 2007

[22] L. de Castro, M. Negrete-Pincetic, G. Gross, (2008) “Product Definition
for Future Electricity Supply Auctions: The 2006 Illinois Experience”,
The Electricity Journal, Volume 21, Issue 7, Pages 50-62.

[23] P. Cramton, S. Stoft, “A Capacity Market that Makes Sens”, The
Electricity Journal, Vol.18, Issue 7, 2005.

[24] A. GENER, “Modelo de gestión del riesgo del Suministro de Último Re-
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