Characteristics of the Initial Breakdown Pulses in Negative Cloud-to-Ground Flashes Occurred in the Central Region of Colombia

Camilo A. Granados¹, Herbert E. Rojas² and Francisco J. Román¹
Contents

I. Introduction

II. Theoretical aspects

III. Proposed methodology

IV. Results

V. Conclusions

VI. References
I. Introduction

- A lightning flash is a transient discharge of high intensity with an extension measured in kilometers.

- This meteorological phenomenon usually is produced by electric charge centers separated in thunderclouds.

- Lightning flashes are usually categorized as:
 1. Intra cloud (IC)
 2. Cloud to cloud (CC)
 3. Cloud to ground (CG)
 4. Cloud to air and cloud to ionosphere
I. Introduction

- Intra cloud (IC) & cloud-to-cloud (CC)
- Cloud to ground (CG)
- Cloud to air (CA)
I. Introduction

Stages of a CG Lightning flash

1. Preliminary Breakdown Pulses - PBP
2. Stepped leader - SL
3. Attachment process - AP
4. Return stroke - RS
5. Dart leader - DL
6. Subsequent return stroke- SRS
II. Theoretical aspects

Electric field antenna:
- Diameter of the plates: 0.45 m
- Separation between plates: 0.03 m
- Antenna bandwidth: 30 MHz
- Metallic support mast: 1.5 m

Electronic circuit:
- BUF602 buffer amplifier
- Bandwidth: 1000 MHz
- Growth-rate: 8 kV/µs

Oscilloscope:
- Agilent DSO6104A
- Bandwidth: 1 GHz
- Maximum sampling: 4GSa/s

Long coaxial cable:
- Reference: RG 58/U
- Characteristic impedance: 50 Ω
- Length: 12 m
- Simple shielding plus metal shell

Short coaxial cable:
- Reference: RG 58/U
- Characteristic impedance: 50 Ω
- Length: 50 cm
- Simple shielding

Desktop computer:
- 4-core processor at 2.3 MHz
- 4 GB RAM memory
- 320 GB Hard Drive
- LAN and WI-FI connection
III. Proposed methodology

a) Only pulses with amplitude larger than twice the average noise level were included
b) The individual pulses considered inside a PBP train where those separated by less than 2 ms between them
c) Only pulse trains with at least three individual pulses were analyzed

(a) The time between the first and the last detectable pulse (T_{PBP})
(b) The time interval between the largest peak of the PBP train and the maximum value of the FRS ($PBP – FRS$ interval)
(c) The ratio between the peak value of the PBP train and its FRS (PBP_{max}/FRS ratio)
(d) Number of pulses contained in the train (No. pulses)
III. Proposed methodology
III. Proposed methodology

<table>
<thead>
<tr>
<th>Number of samples (N)</th>
<th>Minimum Value (Min)</th>
<th>Geometric Mean (GM)</th>
<th>Maximum Value (Max)</th>
<th>Geometric Mean (GM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>N°</td>
<td>Min</td>
<td>Max</td>
<td>AM</td>
</tr>
<tr>
<td>TPBP (ms)</td>
<td>69</td>
<td>0.5</td>
<td>5.2</td>
<td>1.74</td>
</tr>
<tr>
<td>PBP-FRS (ms)</td>
<td>69</td>
<td>0.7</td>
<td>298.6</td>
<td>35.67</td>
</tr>
<tr>
<td>PBPmax/FRS</td>
<td>69</td>
<td>0.2</td>
<td>3.5</td>
<td>0.70</td>
</tr>
<tr>
<td>Pulses per train</td>
<td>1019</td>
<td>3</td>
<td>44</td>
<td>14.77</td>
</tr>
<tr>
<td>IPT (µs)</td>
<td>950</td>
<td>2.3</td>
<td>1950</td>
<td>125.68</td>
</tr>
<tr>
<td>TPULSE (µs)</td>
<td>1019</td>
<td>1</td>
<td>83.8</td>
<td>17.19</td>
</tr>
</tbody>
</table>

STATISTICAL RESULTS OF PBP TRAINS
IV. Results

Distribution of the PBP train duration

GM = 1.46 ms
AM = 1.74 ms
Máx = 5.2 ms
Mín = 0.5 ms

Distribution of the PBP–FRS separation

GM = 10.24 ms
AM = 35.87 ms
Máx = 298.6 ms
Mín = 0.7 ms

Distribution of the PBP/FRS ratio

GM = 0.56
AM = 0.7
Máx = 3.5
Mín = 0.2

Distribution of individual pulses per train

GM = 11.85
AM = 14.77
Máx = 44
Mín = 3
IV. Results

1. Distribution of time interpulse (IPT)

Distribution of individual pulse duration
V. Conclusions

The analysis and characterization of 69 electric field signatures produced by PBP trains preceding the FRS in negative CG lightning flashes was performed. The waveform of 1019 pulses were analyzed and the following characteristics were found:

(a) bipolar pulses at the beginning and in the middle of the train
(b) unipolar pulses at the end of the signatures
(c) the PBP train starts with small pulses, continues with pulses of greater amplitude, and ends with pulses of lower magnitude
(d) the initial polarity (bipolar pulses) of the pulses is similar than the FRS

The statistic results show that the duration of the pulse trains has an arithmetic mean of about 1.7 ms, with individual values from 0.5 up to 5.2 ms (maximum and minimum values). On the other hand, the temporal parameter PBP-FRS presents an AM of 35.87 ms, with maximum and minimum values of 0.7 and 298.6 ms, respectively.
V. Conclusions

The time interpulse and the individual pulse duration showed an AM of 125.68 μs and 17.19 μs, whit geometric mean of 74.3 μs and 11.9 μs, respectively. The magnitude ratio PBPMAX/FRSM has a GM of 0.56 and individual values from 0.2 up to 3.5. Finally, the number of pulses per train presents an AM and GM of 14.7 and 11.8 respectively, with maximum and minimum values of 3 to 44 pulses per PBP train.

Future works should be oriented to compare these results with those obtained in other regions (tropical, subtropical and temperate locations)
VI. References

VI. References

Thanks !!! ¿Questions?

Contact:
cagradosv@unal.edu.co
herojasc@udistrital.edu.co
fjromanc@unal.edu.co