Transición energética en la 4ta revolución industrial
Small-Signal Stability and Sensitivity Analysis for Grid Following Converters

Authors:
Simon Sepulveda Garcia
Alejandro Garces Ruiz

Institution:
Universidad Tecnologica de Pereira
Contents

I. Introduction

II. Theoretical aspects

III. Numerical results

IV. Conclusions

V. Questions
I. Introduction

Figure 1. Active distribution network

Figure 2. Schematic diagram of the hierarchical control in active distribution systems
II. Theoretical aspects

Figure 3. Voltage source converter (VSC) with vector-oriented control (VOC)
II. Theoretical aspects

\[x_a + x_b + x_c = 0 \]
\[
\begin{pmatrix}
 x_a \\
 x_b \\
 x_c
\end{pmatrix}
= k
\begin{pmatrix}
 1 & -\frac{1}{2} & -\frac{1}{2} \\
 0 & -\frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2}
\end{pmatrix}
\begin{pmatrix}
 x_a \\
 x_b \\
 x_c
\end{pmatrix}
\]

\[P_{\alpha\beta0} = [V_{\alpha/0}]^T[I_{\alpha/0}] \]

\[P_{\alpha\beta0} = [V_{abc}]^T[TC]^T[TC][I_{abc}] \]

\[P_{\alpha\beta0} = \frac{2}{3}[V_{abc}][I_{abc}] \]

\[P_{\alpha\beta0} = \frac{2}{3}P_{abc} \]

SEC. 1 Clark transformation

SEC. 2 Park transformation

\[
\begin{pmatrix}
 x_d \\
 x_q
\end{pmatrix}
= \begin{pmatrix}
 \cos(\theta') & \sin(\theta') \\
 -\sin(\theta') & \cos(\theta')
\end{pmatrix}
\begin{pmatrix}
 x_\alpha \\
 x_\beta
\end{pmatrix}
\]

SEC. 3 Active and reactive power in the dq frame

\[p = \frac{3}{2}(v_di_d + v_qi_q) \]
\[q = \frac{3}{2}(v_qi_d - v_di_q) \]

Note: SEC mean set of equations
II. Theoretical aspects

The current dynamics of the system on the AC side can be obtained by applying Kirchoff's second law

\[
(L_f + L_g) \frac{di_d}{dt} = -w(L_g + L_f)i_q - (R_g + R_f)i_d - V_g^d + V_d^s \\
(L_f + L_g) \frac{di_q}{dt} = w(L_f + L_g)i_d - (R_f + R_g)i_q - V_q^g + V_q^s
\]

it is also possible to obtain the voltage dynamics of the DC side of the converter through the power balance.

\[
C \frac{dV_{dc}}{dt} = I_{dc} - \frac{3V_d^s i_d}{2V_{dc}}
\]

SEC. 4 Dynamics of the grid
II. Theoretical aspects

Figure 3. Inner Loop
II. Theoretical aspects

The inner loop can be described mathematically by adding a couple of auxiliary variables $\gamma_{d/q}$

\[\frac{d\gamma_d}{dt} = \tilde{i}_d - i_d \]
\[\frac{d\gamma_q}{dt} = \tilde{i}_q - i_q \]

\[V_d^s = V_d^g + R_g i_d - R_f \frac{L_g}{L_f} i_d + \frac{L_f + L_g}{L_f} (w L_f i_q + k_{pi} (\tilde{i}_d - i_d) + k_{ii} \gamma_d) \]

\[V_q^s = V_q^g + R_g i_q - R_f \frac{L_g}{L_f} i_q + \frac{L_f + L_g}{L_f} (-w L_f i_d + k_{pi} (\tilde{i}_q - i_q) + k_{ii} \gamma_q) \]

SEC. 5 Mathematical description of the Inner loop
II. Theoretical aspects

Figure 4. Outer Loop
II. Theoretical aspects

The outer loop can be described mathematically by adding a couple of auxiliary variables $\gamma_{v/q}$.

\[
\frac{d\gamma_v}{dt} = \bar{V}_{dc} - V_{dc}
\]

\[
\bar{I}_d = k_{pv}(\bar{V}_{dc} - V_{dc}) + k_{iv}\gamma_v
\]

\[
\frac{d\gamma_q}{dt} = \bar{Q} - Q
\]

\[
\bar{I}_q = K_{pq}(\bar{Q} - Q) + K_{iQ}\gamma_Q
\]

SEC. 6 Mathematical description of the Inner loop
II. Theoretical aspects

Figure 4. Dynamic model of the VSC
II. Theoretical aspects

The state-space model of the converter can be rewritten as

\[
\dot{x} = f(x, y, u) \\
y = g(x, u)
\]

Where \(x\) represents the state variables, \(y\) represents the control variables and \(u\) represents the input variables.

\[
\Delta x = A\Delta x + B\Delta u
\]

Where:

\[
A = J(X_0) = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial g} \frac{\partial g}{\partial x}\bigg|_{x=x_0}
\]

\[
B = \frac{\partial f}{\partial u} + \frac{\partial f}{\partial g} \frac{\partial g}{\partial u}\bigg|_{u=u_0}
\]
II. Theoretical aspects

The state, control and input variables of the VSC are respectively:

\[x = [i_d, i_q, V_{dc}, \gamma_d, \gamma_q, \gamma_v]^T \quad u = [V_d^g, V_{dc}, I_{dc}, i_q^*]^T \quad y = [V_d^s, V_q^s]^T \]

Taking this into account, it is possible to obtain the operating point (or initial condition) of the system assuming that it is operating at steady state.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Initial condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i_{do})</td>
<td>(i_{q} = 0)</td>
</tr>
<tr>
<td>(i_{qo})</td>
<td>(i_q = 0)</td>
</tr>
<tr>
<td>(v_{dco})</td>
<td>(V_{dc})</td>
</tr>
<tr>
<td>(\gamma_{do})</td>
<td>(\frac{i_{d0}R_f}{k_{tu}})</td>
</tr>
<tr>
<td>(\gamma_{qo})</td>
<td>(0)</td>
</tr>
<tr>
<td>(\gamma_{vo})</td>
<td>(\frac{i_{d0}}{k_{fv}})</td>
</tr>
</tbody>
</table>

Table 1. Initial conditions
II. Theoretical aspects

Where the state matrix is described in

\[
A = \begin{pmatrix}
\frac{-R_s-k_{pi}}{L_f} & 0 & k_{pi}k_{pv} & k_{ii} & 0 & -k_{pi}k_{iv} \\
0 & \frac{-R_s-k_{pi}}{L_f} & 0 & k_{ii} & 0 & 0 \\
J_{31} & J_{32} & J_{33} & J_{34} & J_{36} \\
-1 & 0 & k_{pv} & 0 & 0 & -k_{iv} \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0
\end{pmatrix}
\]

\[
J_{31} = \frac{3(V_{d}^2 + (R_f + R_g)i_{do})}{2CV_{dc}} - \frac{R_fL_f}{L_f}i_{do} - \frac{L_f}{L_f}k_{pi}i_{do} \\
J_{32} = \frac{-3(i_{do}w_{e}L_f)}{2CV_{dc}} \\
J_{33} = \frac{3i_{do}(V_{d}^2 + R_fi_{do}^2 - \frac{L_f}{L_f}k_{pi}k_{pv}V_{dc})}{2CV_{dc}^2} \\
J_{34} = \frac{3i_{do}k_{ii}}{2CV_{dc}} \\
J_{36} = \frac{3i_{do}k_{pi}k_{iv}}{2CV_{dc}^2}
\]

SEC. 7 State matrix of the VSC.
II. Theoretical aspects

The sensitive analysis aims to determine the influence of each element of the state matrix in the system’s eigenvalues

\[p_{ikm} = \frac{\partial \lambda_i}{\partial a_{km}} = \varphi_i^k \phi_i^m \]

It is difficult to visualize the results in a tensor, therefore, it is more useful to analyze the influence of a specific parameter of the system in the position of the eigenvalues. Thus, by applying chain of rule to the above equation

\[p_i^x = \sum_{k=1}^{n} \sum_{m=1}^{n} \frac{\partial \lambda_i}{\partial a_{km}} \frac{\partial a_{km}}{\partial x} \]
III. Numerical results

From the state matrix it is possible to obtain the eigenvalues of the system, which are as follows.

\[
\lambda = \begin{pmatrix}
-112.179 + 436.585j & -112.179 - 436.585j \\
-195.482 + 135.993j & -195.482 - 135.993j \\
-267.000 + 266.120j & -267.000 - 266.120j
\end{pmatrix}
\]

from the same state matrix, it is possible to obtain the real part of the participation factors, as illustrated in the following table

<table>
<thead>
<tr>
<th>Participation factor</th>
<th>L_f</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1</td>
<td>3796.68</td>
<td>-4171.90</td>
</tr>
<tr>
<td>p_2</td>
<td>3796.68</td>
<td>-4171.90</td>
</tr>
<tr>
<td>p_3</td>
<td>1057.86</td>
<td>2245.72</td>
</tr>
<tr>
<td>p_4</td>
<td>1057.86</td>
<td>2245.72</td>
</tr>
<tr>
<td>p_5</td>
<td>4854.54</td>
<td>-1.14×10^{-27}</td>
</tr>
<tr>
<td>p_6</td>
<td>4854.54</td>
<td>-1.14×10^{-27}</td>
</tr>
</tbody>
</table>

Table 2. Participation factors (real part) system parameters.
III. Numerical results

However, it is important to know the influence on the imaginary part, because it directly influences the damping factors.

\[r_D = -\frac{\alpha}{\sqrt{\alpha^2 + \beta^2}} \times 100\% \]

<table>
<thead>
<tr>
<th>Participation factor</th>
<th>(L_f)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_1)</td>
<td>-690.37</td>
<td>-96230.6</td>
</tr>
<tr>
<td>(p_2)</td>
<td>690.37</td>
<td>96230.6</td>
</tr>
<tr>
<td>(p_3)</td>
<td>-777.58</td>
<td>22583.16</td>
</tr>
<tr>
<td>(p_4)</td>
<td>777.58</td>
<td>-22583.16</td>
</tr>
<tr>
<td>(p_5)</td>
<td>16.01</td>
<td>3.44 \times 10^{-27}</td>
</tr>
<tr>
<td>(p_6)</td>
<td>-16.01</td>
<td>-3.44 \times 10^{-27}</td>
</tr>
</tbody>
</table>

Table 3. Participation factors (imaginary part) system parameters.

<table>
<thead>
<tr>
<th>Factor</th>
<th>(L_f)</th>
<th>(L_g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_{1.2})</td>
<td>3947.41 ± 288.29</td>
<td>475.8 ± 55.07</td>
</tr>
<tr>
<td>(p_{3.4})</td>
<td>1180.67 ± 686.03</td>
<td>161.97 ± 84.83</td>
</tr>
<tr>
<td>(p_{5.6})</td>
<td>4856.19 ± 509.26</td>
<td>-3.270 \times 10^{-30} ± 6.66 \times 10^{-31}</td>
</tr>
</tbody>
</table>

Table 4. Participation factors of the non ideal grid.
III. Numerical results

The corresponding participation factors of the parameters of the PI type controllers are as follows

<table>
<thead>
<tr>
<th>Participation factor</th>
<th>k_{pi}</th>
<th>k_{pv}</th>
<th>k_{ii}</th>
<th>k_{iv}</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1</td>
<td>-6.83</td>
<td>-91.424</td>
<td>-0.0035</td>
<td>0.371</td>
</tr>
<tr>
<td>p_2</td>
<td>-6.83</td>
<td>-91.424</td>
<td>-0.0035</td>
<td>0.371</td>
</tr>
<tr>
<td>p_3</td>
<td>3.65</td>
<td>56.75</td>
<td>0.0035</td>
<td>-0.37</td>
</tr>
<tr>
<td>p_4</td>
<td>3.65</td>
<td>56.75</td>
<td>0.0035</td>
<td>-0.37</td>
</tr>
<tr>
<td>p_5</td>
<td>-9.09</td>
<td>3.92×10^{-30}</td>
<td>-1.911×10^{-19}</td>
<td>-3.49×10^{-32}</td>
</tr>
<tr>
<td>p_6</td>
<td>-9.09</td>
<td>3.92×10^{-30}</td>
<td>-1.911×10^{-19}</td>
<td>-3.49×10^{-32}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factor</th>
<th>k_{pi}</th>
<th>k_{pv}</th>
<th>k_{ii}</th>
<th>k_{iv}</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1</td>
<td>0.26</td>
<td>149.7</td>
<td>0.018</td>
<td>0.115</td>
</tr>
<tr>
<td>p_2</td>
<td>-0.26</td>
<td>-149.7</td>
<td>-0.018</td>
<td>-0.115</td>
</tr>
<tr>
<td>p_3</td>
<td>-3.14</td>
<td>-72.74</td>
<td>0.013</td>
<td>0.113</td>
</tr>
<tr>
<td>p_4</td>
<td>3.14</td>
<td>72.74</td>
<td>-0.013</td>
<td>-0.113</td>
</tr>
<tr>
<td>p_5</td>
<td>-8.92</td>
<td>3.86×10^{-30}</td>
<td>0.033</td>
<td>-2.20×10^{-32}</td>
</tr>
<tr>
<td>p_6</td>
<td>8.92</td>
<td>-3.86×10^{-30}</td>
<td>-0.033</td>
<td>2.20×10^{-32}</td>
</tr>
</tbody>
</table>

Table 5 and 6. Participation factors of the control parameters.
III. Numerical results

Figure 5. Bifurcation of the system for $L \ [50 - 150]\text{mH}$

Figure 5. Bifurcation of the system for $k_{ii} \ [5 - 100] \times 10^3$
IV. CONCLUSIONS

- In this paper, a sensitivity analysis is used to determine numerically how system parameters and controller constants influence the stability of a VSC operating as a grid feeder, demonstrating its usefulness in determining variables that can cause instability and those that are desirable to control in order to improve it.
- An increase in the proportional action increases the stability margins of all the eigenvalues, which is useful since it can be coordinated with a high inductance (or capacitance) value for filtering, which decreases these margins.
- A high value for the integral action is desired to ensure zero steady state error, however, as can be seen from the analysis, a high value results in a significant decrease in the damping ratios.
- The non-ideal network is a parameter that depends on the connection point; therefore, its impedance varies. It must be taken into account because, as demonstrated, it affects the stability margins and also worsens the sensitivity of the system.