Analysis of Asset Management Models for a Transformer Fleet in the National Laboratory of Smart Grids (LAB+i)

Authors:
Kevin Morgado, Eng.
Javier Rosero, PhD.

Institution:
Electrical Machines & Drives – Research Group
Universidad Nacional de Colombia
Contents

I. Introduction

II. Classification Method

III. LAB+i

IV. AM Implementation

V. Results

VI. Bibliography

VII. Questions
I. Introduction

- Life cycle monitoring
- Asset Management – ISO 55000
- Neural Networks – Artificial Intelligence
- Industry demands
- Research opportunities

Fig 1. Distribution Transformer [1].
Fig 2. Asset lifecycle [2].
II. Classification method

- Power transformer modeling
 - Thermal, DGA, Frequency, Partial discharges
- Life cycle
 - Consequence factor, failure probability, economic lifetime
- Output indicator calculation
 - Machine Learning, fuzzy Logic, mathematical models
- Measurement and output data frequency
 - Calculation time and output data format

Fig 3. Risk assessment matrix for a fleet of n transformers [4].

Fig 4. Failure probability versus age [5].
II. Classification method

Fig 5. Classification of 12 reference Asset Management models.
III. LAB+i

- Smart Meters
- Communication through Internet
- Osisoft PI System
- Model construction
 - 33 substations
 - 53 nodes
 - Radial Topology of 3 km
- Smart Grid analysis
 - Viability
 - Demand management
 - Renewable resources
 - Big Data - governance

Fig 6. Contributions R+D+I from pilots in LAB+I Laboratory [6].
IV. AM implementation

- Thermal Model
 - IEEE Standard C57.91
 - GTC 50
 - Hot spot value
- Three Substations
 - School of Medicine
 - Mathematics Faculty
 - Central Library
- High value of remaining years
- Correlation with overall temperature

Fig 7. Initial temperature measurements of oil insulation of three substations.

Fig 8. Thermal model results.
IV. AM implementation

- **Fuzzy Logic Model**
 - Transformer age
 - Insulating oil temperature
 - Hot spot temperature
- **Weighting model**
 - Transformer age
 - Transformer load
- **Three Substations**
 - School of Medicine
 - Mathematics Faculty
 - Central Library

Fig 9. Normalized fuzzy logic and weighting model results.
V. Results - Classification

• Challenge of establishing a general modeling.
• Data with Asset Management systems.
• Use of new computational tools.
• Applicability within the LAB+I.
• Socialization – Stakeholders.
• Understanding of rules and new models.

Fig 10. Membership output function for temperature.
V. Results - Implementation

- **Thermal Model**
 - Fluctuation in final indicator value.
 - High quantity of years of remaining life.
 - Influence of low insulation temperature.
- **Fuzzy Logic Model**
 - Stability and confidence.
 - Membership functions and rules
 - Use of limited data.
- **Weighting model**
 - Use of limited data.
 - Comparison challenges.
 - Low demand related to nominal value of transformers.

Table 1. Transformer categorization.

<table>
<thead>
<tr>
<th>Substation</th>
<th>Thermal Model</th>
<th>Weighting Model</th>
<th>Fuzzy Logic Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicine F.</td>
<td>Very Good</td>
<td>Very Good</td>
<td>Good</td>
</tr>
<tr>
<td>Mathematics F.</td>
<td>Very Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Central Library</td>
<td>Very Good</td>
<td>Good</td>
<td>Good</td>
</tr>
</tbody>
</table>

Table 2. Indicator standard deviation.

<table>
<thead>
<tr>
<th>Substation</th>
<th>Thermal Model</th>
<th>Weighting Model</th>
<th>Fuzzy Logic Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicine F.</td>
<td>1.06380452</td>
<td>1.78568E-15</td>
<td>0.002605641</td>
</tr>
<tr>
<td>Mathematics F.</td>
<td>4.22224748</td>
<td>1.96425E-14</td>
<td>0.01056496</td>
</tr>
<tr>
<td>Central Library</td>
<td>5.5627336</td>
<td>1.96425E-14</td>
<td>0.015725283</td>
</tr>
</tbody>
</table>
VI. Bibliography

VI. Bibliography

VII. Questions