







# Overcurrent protection of active distribution networks: A comparative review

B. Grisales-Soto, S. Pérez-Londoño, J. Mora-Flórez

Universidad Tecnológica de Pereira

## **Contents**

- I. Introduction
- II. Conventional approach for overcurrent relays coordination
- III. Adaptive approach for overcurrent relays coordination
- IV. Results
- V. Conclusions
- **VI. Questions**





## I. Introduction



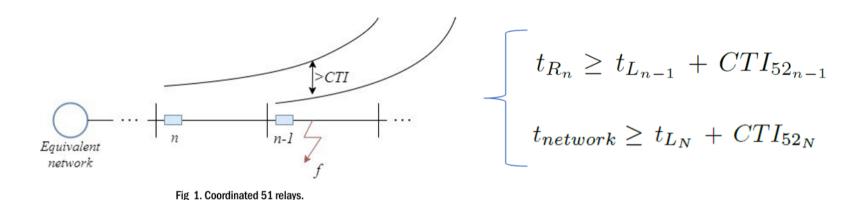
1. Decarbonisation of the energy sector.





2. Integration of Distributed Energy Resources (DER).






3. Transition to Active Distribution Networks (ADN)





## II. Conventional approach for overcurrent relay coordination



The operation time is defined by the according to the IEC 255 standard.

$$t_{op} = \frac{A}{M^P - 1}TDS \qquad M = \frac{I_F}{I_p}$$



# III. Adaptive approach for overcurrent relay coordination

#### 1. Sequence currents based adaptive protection approach for DNs with DER

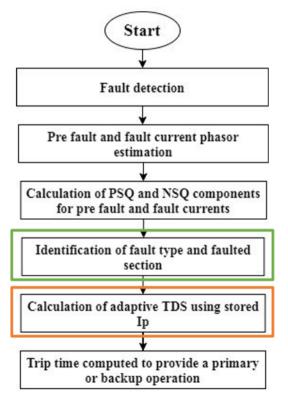



Fig 2. Flow chart of the adaptive approach I.

Positive sequence componet Negative sequence componet

$$t_{\text{p}\_ij}^{\text{c}} = \frac{0.14}{\left( (I_{1\text{F}ij}^{\text{c}}/I_{\text{p}j}^{\text{c}}) \right)^{0.02} - 1} \text{TDS}_{\text{p}j}^{\text{c}} \qquad t_{\text{b}\_ij}^{\text{c}} = \frac{0.14}{\left( (I_{2\text{F}ij}^{\text{c}}/I_{\text{b}j}^{\text{c}}) \right)^{0.02} - 1} \text{TDS}_{bj}^{\text{c}}$$

The relay computes the adaptive-TDS when a fault has occurred

$$TDS_{new} = \frac{(M)_{new}^P - 1}{(M)_{old}^P - 1} TDS_{old}$$



#### 2. Superimposed Adaptive Sequence Current Based Microgrid Protection: A New Technique

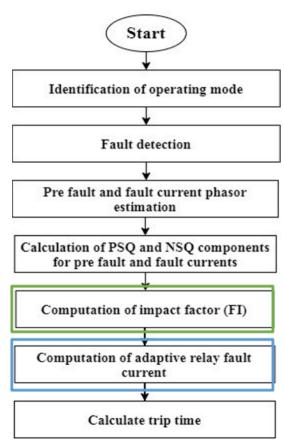
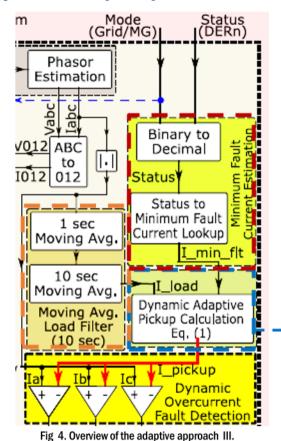



Fig 3. Flow chart of the adaptive approach II.

Impact factor (FI) based on the operation of the microgrid.

$$FI = \frac{|\Delta I_{1F}|}{|1 - I_{1F}||1 - \Delta I_{1F}||I_{1pre}|} \quad FI = \frac{|\Delta I_{1F}| - |I_{1pre}|}{|\Delta I_{1F}|}$$

Adaptive fault current.


$$I_{F_{ad}} = (I_{1F} + I_{2F})(FI)$$

Depending on the change of the operating mode, the authors propose the calculation of an new TDS.

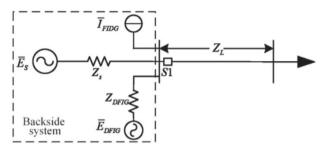
$$TDS_{new} = \frac{(M)_{old}^P - 1}{(M)_{new}^P - 1} TDS_{old}$$



#### 3. Dynamic adaptive protection for distribution systems in Grid-Connected and Island Modes



The paper is focused on the estimation of an Dynamic Adaptive Pickup current  $(I_{p_{ad}})$ 


$$I_{p_{ad}} = a I_{mov_{10s}} + b (I_{F_{DERs}} - a I_{mov_{10s}})$$

- $I_{mov_{10s}}$  is a 10-second moving average window filter.
- $I_{F_{DERS}}$  is the minimum fault current estimation.



Image taken from: Dynamic Adaptive Protection for Distribution Systems in Grid-Connected and Islanded Modes.

#### 4. An adaptive directional current protection scheme for distribution network with DERs



The system at the backside of the protection could be replaced with a equivalent after fault occurred.

Fig 5. Equivalent circuit of simple ADN

The setting formula



$$I_{p_{ad}} = \frac{K_{rel} K_d \overline{E}_e}{Z_e + Z_L}$$

When the fault location  $\alpha(\beta)$ 

When the fault location  $\alpha \beta$ 

$$I_{p_{ad}} = \frac{\sqrt{3}}{2} \left| \frac{\overline{E}_e}{Z_e + \alpha Z_L} \right| > \frac{\sqrt{3}}{2} \left| \frac{\overline{E}_e}{Z_e + \beta Z_L} \right|$$

$$I_{p_{ad}} = \frac{\sqrt{3}}{2} \left| \frac{\overline{E}_e}{Z_e + \alpha Z_L} \right| < \frac{\sqrt{3}}{2} \left| \frac{\overline{E}_e}{Z_e + \beta Z_L} \right|$$



#### **Test system**

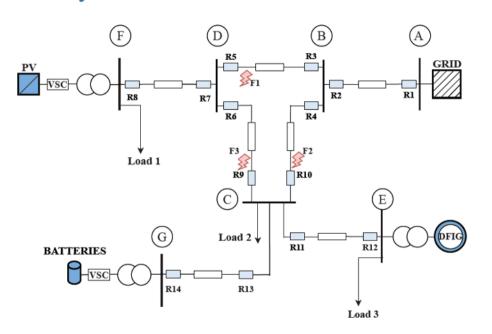



Fig 6. ADN used as test system.

Mode I: all sources are on.

Mode II: only the DFIG based DER is on.

Mode III: only the PV-based DER is on.



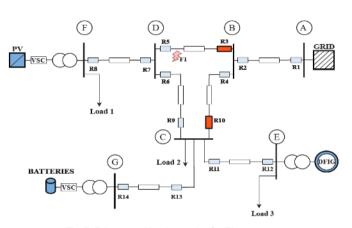



Fig 7. Primary and back-up relay for F1.

Mode I: all sources are on.

Mode II: only the DFIG based DER is on.

Mode III: only the PV-based DER is on.

| Test Results - Conventional Approach |              |    |          |                   |            |          |                   |            |          |                   |            |  |
|--------------------------------------|--------------|----|----------|-------------------|------------|----------|-------------------|------------|----------|-------------------|------------|--|
|                                      | Relay Mode I |    |          |                   |            |          | Mode I            | Ι          | Mode III |                   |            |  |
| Fault                                | PR           | BR | $t_{PR}$ | $\mathbf{t}_{BR}$ | $\Delta t$ | $t_{PR}$ | $\mathbf{t}_{BR}$ | $\Delta t$ | $t_{PR}$ | $\mathbf{t}_{BR}$ | $\Delta t$ |  |
| F1                                   | 3            | 10 | 0.296    | 0.441             | 0.145      | 0.315    | 0.121             | -0.194     | 0.317    | 0.119             | -0.198     |  |

|       | Test Results - Adaptive Approach I |    |          |                   |            |          |                   |            |          |                   |            |  |
|-------|------------------------------------|----|----------|-------------------|------------|----------|-------------------|------------|----------|-------------------|------------|--|
|       | Relay Mode I                       |    |          |                   |            |          | Mode I            | [          | Mode III |                   |            |  |
| Fault | PR                                 | BR | $t_{PR}$ | $\mathbf{t}_{BR}$ | $\Delta t$ | $t_{PR}$ | $\mathbf{t}_{BR}$ | $\Delta t$ | $t_{PR}$ | $\mathbf{t}_{BR}$ | $\Delta t$ |  |
| F1    | 3                                  | 10 | 0.296    | 0.441             | 0.145      | 0.276    | 0.421             | 0.145      | 0.296    | 0.452             | 0.156      |  |

|       | Test Results - Adaptive Approach II |    |          |                   |            |          |                   |            |          |                   |            |  |  |
|-------|-------------------------------------|----|----------|-------------------|------------|----------|-------------------|------------|----------|-------------------|------------|--|--|
|       | Relay Mode I                        |    |          |                   |            | Mode I   | I                 | Mode III   |          |                   |            |  |  |
| Fault | PR                                  | BR | $t_{PR}$ | $\mathbf{t}_{BR}$ | $\Delta t$ | $t_{PR}$ | $\mathbf{t}_{BR}$ | $\Delta t$ | $t_{PR}$ | $\mathbf{t}_{BR}$ | $\Delta t$ |  |  |
| F1    | 3                                   | 10 | 0.297    | 0.407             | 0.110      | 0.297    | 0.411             | 0.114      | 0.323    | 0.457             | 0.134      |  |  |



|       | Test Results - Conventional Approach |    |          |                   |            |          |                   |            |          |                   |            |  |  |
|-------|--------------------------------------|----|----------|-------------------|------------|----------|-------------------|------------|----------|-------------------|------------|--|--|
|       | Relay Mode I                         |    |          |                   |            |          | Mode I            | I          | Mode III |                   |            |  |  |
| Fault | PR                                   | BR | $t_{PR}$ | $\mathbf{t}_{BR}$ | $\Delta t$ | $t_{PR}$ | $\mathbf{t}_{BR}$ | $\Delta t$ | $t_{PR}$ | $\mathbf{t}_{BR}$ | $\Delta t$ |  |  |
| F1    | 3                                    | 10 | 0.296    | 0.441             | 0.145      | 0.315    | 0.121             | -0.194     | 0.317    | 0.119             | -0.198     |  |  |

|       | Test Results - Adaptive Approach I |    |                   |                   |            |          |                   |            |          |                   |            |  |
|-------|------------------------------------|----|-------------------|-------------------|------------|----------|-------------------|------------|----------|-------------------|------------|--|
|       | Relay Mode I                       |    |                   |                   |            |          | Mode I            | I          | Mode III |                   |            |  |
| Fault | PR                                 | BR | $\mathbf{t}_{PR}$ | $\mathbf{t}_{BR}$ | $\Delta t$ | $t_{PR}$ | $\mathbf{t}_{BR}$ | $\Delta t$ | $t_{PR}$ | $\mathbf{t}_{BR}$ | $\Delta t$ |  |
| F1    | 3                                  | 10 | 0.296             | 0.441             | 0.145      | 0.276    | 0.421             | 0.145      | 0.296    | 0.452             | 0.156      |  |

| Test Results - Adaptive Approach II |              |    |          |                   |            |          |                   |            |          |                   |            |  |
|-------------------------------------|--------------|----|----------|-------------------|------------|----------|-------------------|------------|----------|-------------------|------------|--|
|                                     | Relay Mode I |    |          |                   |            |          | Mode I            | [          | Mode III |                   |            |  |
| Fault                               | PR           | BR | $t_{PR}$ | $\mathbf{t}_{BR}$ | $\Delta t$ | $t_{PR}$ | $\mathbf{t}_{BR}$ | $\Delta t$ | $t_{PR}$ | $\mathbf{t}_{BR}$ | $\Delta t$ |  |
| F1                                  | 3            | 10 | 0.297    | 0.407             | 0.110      | 0.297    | 0.411             | 0.114      | 0.323    | 0.457             | 0.134      |  |

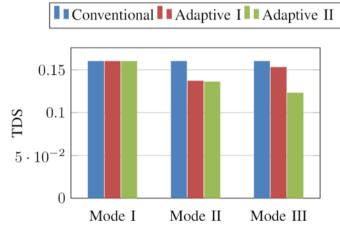



Fig 7. Relay R3's TDS for each mode operation.



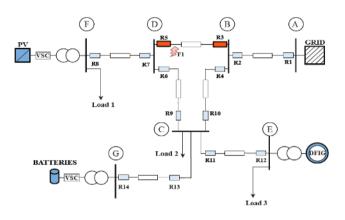



Fig 8. Primary relay for F1.

Mode I: all sources are on.

Mode II: only the DFIG based DER is on.

Mode III: only the PV-based DER is on.

|       | Test Results - Adaptive Approach III |           |       |      |           |        |      |           |       |      |  |  |  |
|-------|--------------------------------------|-----------|-------|------|-----------|--------|------|-----------|-------|------|--|--|--|
|       | Relay                                |           | Mode  | I    | 1         | Mode 1 | ΙΙ   | Mode III  |       |      |  |  |  |
| Fault | PR                                   | $I_{pad}$ | $I_F$ | Trip | $I_{pad}$ | $I_F$  | Trip | $I_{pad}$ | $I_F$ | Trip |  |  |  |
| F1    | 5                                    | 33        | 854   | Yes  | 43        | 636    | Yes  | 40        | 669   | Yes  |  |  |  |
| ГІ    | 3                                    | 30        | 707   | Yes  | 40        | 574    | Yes  | 26        | 560   | Yes  |  |  |  |

|       | Test Results - Adaptive Approach IV |           |        |      |           |         |      |           |       |      |  |  |  |  |
|-------|-------------------------------------|-----------|--------|------|-----------|---------|------|-----------|-------|------|--|--|--|--|
|       | Relay                               |           | Mode I |      | ]         | Mode II | [    | Mode III  |       |      |  |  |  |  |
| Fault | PR                                  | $I_{pad}$ | $I_F$  | Trip | $I_{pad}$ | $I_F$   | Trip | $I_{pad}$ | $I_F$ | Trip |  |  |  |  |
| F1    | 5                                   | 941       | 1255   | Yes  | 910       | 1214    | Yes  | 931       | 1241  | Yes  |  |  |  |  |
| Г1    | 3                                   | 1356      | 1808   | Yes  | 1343      | 1791    | Yes  | 1340      | 1787  | Yes  |  |  |  |  |



### **VI. Conclusions**

- An ADN has different operating modes and the conventional approach does not guarantee overcurrent relay coordination.
- Adaptive approaches I and II can provide a solution to coordination with the calculation of TDS and Ip
  for each operation mode. However, these schemes use adaptive parameters estimated using the fault
  voltages and currents.
- The approach III requires communication infrastructure, making the proposed scheme expensive and vulnerable to cyber-attacks.
- Approach IV presents an adequate performance without communication infrastructure but has a long time to detect the fault.



# **VII. Questions**



