

Conceptual Design of Protection Scheme for Active Distribution Network using a Smart Grid Architecture Model framework

Authors: Juan D. Orozco-Álvarez*.

Andrés R. Herrera-Orozco.

Juan J. Mora-Flórez.

Institution: Universidad Tecnológica de Pereira.

Contents

- I. Introduction
- **II.** Theoretical aspects
- III. Proposed methodology
- **IV. Results**
- V. Conclusions
- **VI. Questions**

I. Introduction

Motivation Information Management EU mandate M/490 **Power System** Market **Equipment & Energy Conversion** Enterprise Operation Station Generation Zones Field Transmission Distribution **Process** DER Customer **Domains Premises**

Fig. 1: Domains and Zones of the Smart Grid Architecture Model (SGAM) framework. Image taken from: CEN, CENELEC, & ETSI. (2014). Report on Smart Grid Coordination Group: Smart Grid Information Security.

II. Theoretical aspects

II. Theoretical aspects

The IEC 62559 methodology

What is an use case?

- Actor.
- Scenario.
- Event.

III. Proposed methodology

III. Proposed methodology

IEC 62559 methodology

- 1. Describe the use case.
- 2. Make a diagram of use case.
 - 3. Specify technical details.
 - **4.** Step-by-step analysis of the use case.
 - **5.** Identify the information being exchanged.
 - **6.** Define the requirements necessary to make the communication effective.

Fig. 5: Use case

diagram.

III. Proposed methodology

STEPS - SCENARIOS

IEC 62559 methodology

- 1. Describe the use case.
- 2. Make a diagram of use case.
- 3. Specify technical details.
- 4. Step-by-step analysis of the use
 - **5.** Identify the information being exchanged.
 - **6.** Define the requirements necessary to make the communication effective.
 - **7.** Define common terms and definitions

Scenario Scenario name: Network reconfiguration			
No.	Event	Name of the process/activity	Description of the process/activity
1	Continuous measurement of microgrid parameters.	Monitoring the current status of the network.	The smart meters send information to the multifunctional relays.
2	Storage of DER data and network configurations in the database.	Preparation of availability of distributed generation sources.	The EMS provides predictive data on the availability of distributed generation sources.
3	The database sends stored data and network settings.	Continuous communication between DB and multifunctional relays.	The databases receive information from the EMS and communicate with the multifunctional relays.

Table 1: Step-by-step analysis of the use case.

IV. Results

Fig. 6: Component Layer.

Fig. 7: Communication Layer.

IV. Results

Fig. 8: Information Layer.

Fig. 9: Function Layer.

IV. Results

Fig. 10: Business Layer.

V. Conclusions

- Following the template proposed by the IEC 62559-2 standard makes it possible to recognize devices, events, and scenarios to develop the reference architecture.
- The description of any process within the generation chain allows the standardization of the processes described there, making a process interoperable.
- Research on the IEC 62559 standard allows the identification of constraints and standards to be considered when implementing systems using new technologies.

VI. Questions

