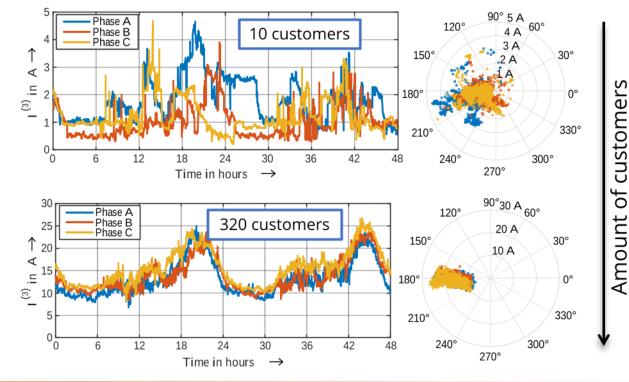


Daily Pattern recognition of Harmonic Currents of Residential Low Voltage Networks

Authors: Ana Maria Blanco, Jan Meyer, Peter Schegner, Andres Pavas

Institutions: Technische Universität Dresden and Universidad Nacional de Colombia


Contents

- I. Introduction
- II. Distance and similarity measures
- III. Measurement campaign
- IV. Application of distance and similarity measures
- V. Conclusions
- **VI. Questions**

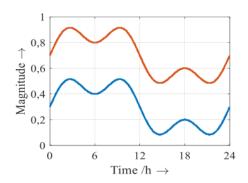
I. Introduction

Harmonic emission characteristic depends on the number of aggregate customers

- "smoother" magnitude
- Prevailing direction of phase angles

I. Introduction

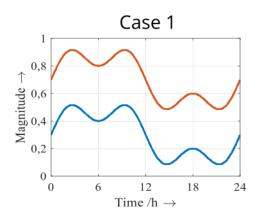
- Daily pattern of harmonic magnitudes and phase angles?
 - Which harmonic orders?
 - Similar pattern for different networks?
- Modeling using time-series?

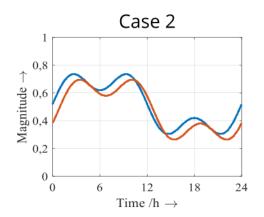

- Analyze the daily pattern characteristics of the harmonic currents in typical residential low-voltage networks.
 - Application of distance and similarity measures.
 - Measurements of different residential networks.

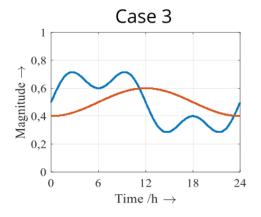
II. Distance and similarity measures

- Distance Measures:
 - Euclidean distance in time domain
 - Minkowski distance in time domain
 - Euclidean distance in frequency domain

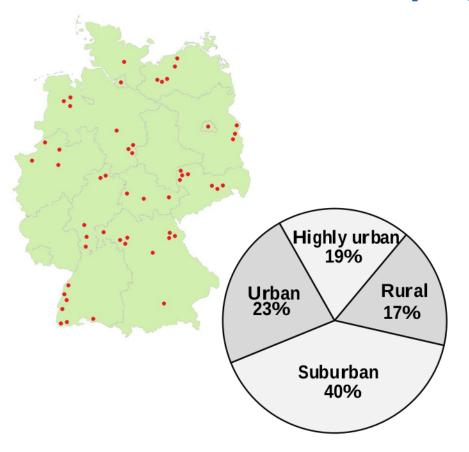
- 2. Similarity measures:
 - Cosine measure
 - Pearson's correlation coefficient




$$DM_{E} = \sqrt{\sum_{i=1}^{n} (x_{i} - y_{i})^{2}} = 15.18$$

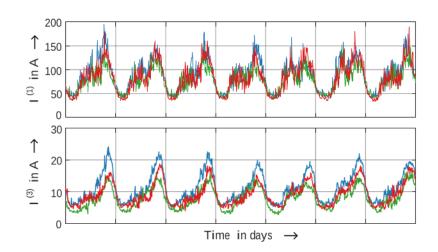

$$SM_{P} = \frac{\sum_{i=1}^{n} (x_{i} - \mu_{x}) (y_{i} - \mu_{y})}{\sqrt{\sum_{i=1}^{n} (x_{i} - \mu_{x})^{2} \sum_{i=1}^{n} (y_{i} - \mu_{y})^{2}}} = 1$$

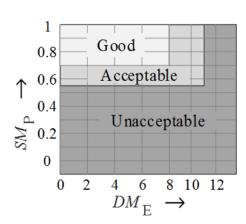
II. Distance and similarity measures



Case		Distance	Similarity		
	DM_E	$\mathrm{DM}_{\mathrm{M}\infty}$	$\mathrm{DM}_{\mathrm{FFT}}$	SM_C	SM_P
1	15.18	0.4	0.4	0.966	1
2	2.45	0.14	0.082	0.995	0.95
3	6.57	0.29	0.245	0.944	0

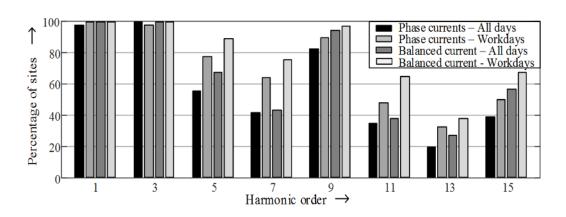
III. Measurement campaign




- 37 residential low-voltage networks
- Minimum 80% of residential customers
- Low penetration of PV systems $(P_{\text{G TOT}} < 0.1 \cdot S_{\text{rT}})$
- Minimum 1 week of measurements in winter
- Holidays were excluded
- Magnitude and phase angle of current harmonics
- Electrical characteristics of the network, climate and social conditions

IV. Application of distance and similarity measures

- Current magnitudes are normalized (min-max normalization) and smoothed (moving average, window of 10 minutes).
- Method is applied to phase components and sequence components.
- Thresholds for the distance and similarity measures obtained based on the fundamental and third harmonic currents.



IV. Application of distance and similarity measures

Similarity for single sites

- DM_E and SM_P measures were calculated between the daily curves of each site and each phase.
- Harmonic currents of a site have a daily pattern only if at least 80% of the days are similar between them (80% of the days have good or acceptable $\overline{\rm DM}_{\rm E,i}$ and $\overline{\rm SM}_{\rm P,i}$).

IV. Application of distance and similarity measures

Similarity between sites

• $\overline{\rm DM}_{\rm E,i}$ and $\overline{\rm SM}_{\rm P,i}$ were calculated between all daily curves of the balanced component of harmonic current magnitudes of sites with clear daily patterns.

	Harmonic order									
	1	3	5	7	9	11	13	15		
Percentage of days	100	100	97.4	93.3	97.6	84.5	81.7	73.9		

Daily patterns ✓ Time-series modeling ✓

V. Conclusions

- Only the fundamental, 3rd and 9th harmonic magnitudes show a clear daily pattern during the whole week in more than 80% of the measured residential networks.
- For other harmonic orders the randomness of the harmonic magnitudes is higher and a daily pattern is not recognizable for all the networks.
- If the balanced component of the harmonic currents is used instead of the phase currents, and if only workdays are considered, the results improve considerably.
- Daily patterns of the harmonic currentmagnitudes of almost all residential networks (>80% of the networks) have very similar characteristics.
- Harmonic phase angles do not show a clear daily pattern.

Thank you for your attention! Questions?

Contact:

Dr.-Ing. Ana Maria Blanco Scientific Researcher

Technische Universität Dresden Institute of Electrical Power Systems and High Voltage Engineering (IEEH) Email: ana.blanco@tu-dresden.de

