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Abstract

Soil compaction is a complex physical process that affects the crop performance by limiting the expansion of the 
roots and the reduction of water and nutrients uptake from soil. Due to the spatial variability of soil compaction, 
the needs for remedial practices may vary within the field. However, mapping soil compaction estimated by cone 
index (CI) data is a difficult task. The aim of this study were to examine the spatial variability of CI data in a fine-
mixed-thermic Typic Argiudoll soil form the center of Santa Fe, province -Argentina under no-till system, and to 
delineate zones for site-specific tillage based on maps of probabilities of occurrence of soil compaction developed 
using indicator kriging. Sixty nine georeferenced CI and volumetric water content (SWC) measurements were 
recorded in a 70 x 110 m experimental area. Sample locations were distributed following a pseudo-regular grid 
avoiding visible machinery footprint. An indicator variable was created by splitting the sampling locations into 
two groups based on the CI profiles within 0-30 cm depth. The spatial structure of the CI data aggregated by 
10-cm layers and the indicator variable was assessed by a model-based approach. The high variability and poor 
spatial structure observed in CI data was attributed to the effect of tillage and traffic under the sampling scale. 
This feature underpinned the application of spatial interpolation techniques for this property. However, maps of 
the probability of occurrence of soil compaction in the root zone were be obtained by integrating the cone index 
data of the arable horizon (0-30 cm) using the indicator kriging approach. Such probability maps could be useful 
for the delineation of potential zones for site-specific tillage.

Keywords: Cone index; potential site-specific tillage management zones;  soil resistance; spatial variability; 
variography.   

Resumen

La compactación del suelo es un proceso físico complejo que afecta el desempeño del cultivo por limitar la 
expansión de las raíces y la reducción de agua y asimilación de nutrientes desde el suelo. Debido a la variabilidad 
espacial de la compactación del suelo, las necesidades de las prácticas de remediación, pueden variar respecto 
al suelo. Sin embargo, el mapeo de compactación del suelo estimado mediante los datos del índice de cono (IC), 
es una tarea difícil. El objetivo de este estudio fue el de examinar la variabilidad espacial de los datos del IC en 
un suelo Typic Argiudoll en el centro de la provincia de Santa Fe, Argentina bajo un sistema de no labranza y 
el delineamiento de zonas para labranza en sitio específico basado en mapas de probabilidades de ocurrencia 
de compactación del suelo desarrollada usando el kriging indicador. Se registraron 69 IC georreferenciados y 
determinaciones volumétricas de agua (SWC) en un área experimental de 70 x 110 m. Los sitios de muestreo 
fueron distribuidos de acuerdo a una malla psedo- regular, evitando la huella visible de la maquinaria. Se creó 
una variable indicadora mediante el agrupamiento de los sitios de muestreo en dos grupos según los perfiles de 
IC dentro de los 30 cm de profundidad. La estructura espacial de los datos de IC agregados por capas de 10 cm 
y la variable del indicador, fueron evaluados mediante un enfoque basado en el modelo.  La alta variabilidad y la 
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pobre estructura espacial observada en los datos IC, fueron atribuidas al efecto de la labranza y al tráfico bajo 
la escala del muestreo. Esta característica de los datos limitó la aplicación de técnicas de interpolación para este 
atributo de suelo. Sin embargo, los mapas de probabilidad de ocurrencia de la compactación del suelo en la zona 
radicular, fueron obtenidos mediante la integración de los datos del índice de cono del horizonte arable (0-30cm), 
usando el enfoque del kriging indicador. Tales mapas de probabilidad podrían ser útiles para el delineamiento de 
zonas potenciales para labranza en sitio específico.                     

Palabras clave: Índice de cono, resistencia del suelo, variabilidad espacial, variografía, zonas de manejo de 
labranza potencial por sitio específico.   

Introduction

Precision Agriculture is based on the knowledge 
and quantification of the spatial variability 
of yield limiting factors. Soil compaction is a 
complex physical process that affects the crop 
performance by limiting the expansion of the 
roots and the reduction of water and nutrients 
uptake from soil (Hamza & Anderson, 2005). Cone 
penetrometers have been widely used to assess 
soil compaction at field conditions because cone 
index (CI) is an inexpensive way to monitor and 
assess soil compaction and it is closely related to 
the pressure encountered by roots (Adamchuk, 
Ingram, Sudduth, & Chung, 2008; Carrara, 
Castrignanò, Comparetti, Febo, & Orlando, 2007; 
Jabro, Iversen, Stevens, & Evans, 2015). Values 
of CI greater than 2 MPa measured at soil water 
content near to field capacity are regarded as 
limiting for normal root growth, although there 
is no agreement about this threshold because it 
depends on crop species and soil type as well as 
the shape and dimension of the penetrometer 
probe (Pilatti, Orellana, de Imhoff, & Silva, 2012).

Due to the spatial variability of soil compac-
tion, the needs for remedial practices may vary 
within the field, thus mapping the spatial dis-
tribution of soil compaction is a key component 
of site-specific tillage management (Basso et al., 
2011). However, mapping the spatial distribution 
of CI is a challenging task due to the point natu-
re of the measurement and the high spatial and 
temporal variability (Carrara et al., 2007; Jabro et 
al., 2015). Furthermore, the small scale of spatial 
structure in the horizontal plane increases the 
efforts needed to accurately map the spatial dis-
tribution of this soil property (Adamchuk et al., 
2008; Castrignanò, Maiorana, Fornaro, & Lopez, 
2002; Veronesi, Corstanje & Mayr, 2012). 

Data from handheld soil penetrometers have 
been widely used to develop soil compaction maps 
relying on 2D (Bonnin, Mirás-Avalos, Lanças, 
González, & Vieira, 2010; Veronese et al., 2006) 
or 3D (Castrignanò et al., 2002; Veronesi et al., 
2012) interpolation techniques. Among the spa-
tial interpolation techniques applied to CI data, 
indicator kriging has been reported as an effec-
tive way to deal with high spatial variation of soil 

properties including CI data (Bonnin et al., 2010; 
Castrignanò et al., 2002). 

Rather than working with actual CI values, 
this technique transforms the target variable into 
a binary one based on some arbitrary threshold 
and maps the probabilities of critical value being 
exceeded at each node of the interpolation grid 
(Webster & Oliver, 2007). Characterizing the spa-
tial extent and severity of soil compaction with CI 
measurements could be labor and time consu-
ming thus the probabilistic approach to assess 
soil impedance should be preferred (Castrignanò 
et al., 2002). 

Our working hypothesis is that the indicator 
transformation of the CI data from the upper layer 
(0-30 cm), could be used to map the probability of 
occurrence of soil compaction which could help to 
delineate potential tillage zones. Thus, the aim of 
this research was to examine the spatial variabi-
lity of CI data in a silty-loam soil form the center 
of Santa Fe (Argentina) under no-till system, and 
to delineate zones for site-specific tillage based on 
occurrence probabilities maps of soil compaction 
developed by kriging indicator. 

Material and methods

The study was carried out in the experimental 
field of the Facultad de Ciencias Agrarias (FCA-
UNL) located at Esperanza, Santa Fe province 
(31.4º S, 60.9º W). The soil of the experimental 
plot has been classified as fine-mixed-thermic 
Typic Argiudoll Esperanza series,  which is 
characterize by a top mollic layer of 30 cm depth 
and 48 g kg-1 sand, 667 g kg-1 silt, and 287 g kg-1 
clay followed by a 10 cm transitional horizon to 
an argillic textural horizon with higher contents 
of clay. The field has been under conventional 
tillage for more than 50 years and recently it has 
been turned into no-till system. The previous 
five seasons were cropped with wheat-soybean 
sequence under direct planting. 

During the fallow 2011, 69 georeferenced cone 
index (CI) and volumetric water content (SWC) 
measurements were recorded on a 70 x 110 m 
experimental area. Sample locations were dis-
tributed following a pseudo-regular grid with an 

Acta Agronómica. 66 (1) 2017, p 81-87



83

average distance of 9 m between samples avoiding 
visible machinery footprint. Spatial coordinates 
were registered using a GPS and then projected 
into the Universal Transverse Mercator (UTM) 
coordinate system zone 20S. At each location, 
CI measurements from the 0-40 cm layer were 
taken at 2.5 cm increments with a soil compac-
tion meter (FieldScout® SC 900). At the same 
time, SWC at 0-20 cm depth were logged with a 
time domain reflectometry based sensor using a 
20-cm rod (FieldScout® TDR 300). Readings were 
calibrated using a local calibration function for 
these soils (Camussi & Marano, 2008). 

In order to map the probability of exceedance 
of the soil compaction threshold, the indicator 
approach was performed as described by Cas-
trignanò et al., (2002). This approach is based on 
the interpretation of the conditional probability of 
exceedance pf the cutoff value as the conditional 
expectation of an indicator variable (Webster & 
Oliver, 2007). The indicator variable (I) was crea-
ted by splitting the sampling locations into two 
groups based on their CI profiles. The sampling 
locations having CI values greater than 2 MPa at 
any depth within 0-30 cm layer were assigned 
with the value 1, and 0 otherwise. 

The spatial structure of the CI data aggregated 
by 10-cm layers and the indicator variable was 
assessed by a model-based approach (Diggle & 
Ribeiro, 2007). Thus, omnidirectional variograms 
were fitted by the restricted maximum likelihood 
procedure (REML) and then the spatial structu-
re was tested by the likelihood ratio test (LRT) 
between log-likelihood of the spatial and the 
non-spatial model. The model performance was 
checked by cross-validation procedure computing 
the correlation coefficient between observed and 
predicted values (r) and the mean error (ME). In 
cases where spatial structure was detected, spa-
tial predictions for CI were obtained by ordinary 
kriging (Webster & Oliver, 2007). 

Data management and geostatistical analysis 
were carried out using the statistical program-
ming language R (R Core Team, 2015) and the 
packages gstat and geoR (Pebesma, 2004). 

Results and discussion

Soil water content showed low variation (CV < 
6%, Table 1) and the average water content was 
near to the field capacity for this soils (Imhoff 
et al., 2016). The low variation of SWC could be 
attributed to the low spatial variation of texture 
and elevation in this soils (Alesso, Pilatti, Imhoff, 
& Grilli, 2012). The CI profiles show high degree 
of variability which decreased with depth (Figure 
1). The CV of CI data aggregated by 10-cm layers 
ranged from 32% at upper layer to 17% in the 
lowest layer (Table 1). Sample distribution of CI 

values showed low positive skewness and no 
transformations were needed (Webster & Oliver, 
2007). Spatial variability of CI is known to be 
related to changes in soil water content, texture 
and compaction (Chung, Sudduth, Motavalli, 
& Kitchen, 2013; Hummel, Ahmad, Newman, 
Sudduth, & Drummond, 2004). Thus, due to 
low variation of SWC and texture, the horizontal 
variability of CI was assumed to be related to the 
effect of tillage and traffic. 

Figure 1. Cone index profiles of the 69 sampling locations and average profile 
of the experimental plot.

Table 1. Summary statistics of soil water content (SWC) and cone index data 
(CI) aggregated by 10-cm layers.

Variable Layer 
(cm)

Mean SD Min. Med. Max. Skew.

SWC (cm3 cm-3) 0-20 0.37 0.02 0.34 0.37 0.40 0.08
CI (MPa) 0-10 1.11 0.36 0.30 1.11 2.04 0.45

10-20 1.57 0.42 0.60 1.53 2.93 0.47
20-30 1.25 0.31 0.24 1.20 2.12 0.24
30-40 1.30 0.26 0.69 1.27 2.02 0.45

SD = standard deviation; Min = minimum; Med = median, Max = maxi-
mum; Skew. = skewness.

The vertical distribution of the CI values shows an 
increase of mean CI at about 10-15 cm depth and 
below 30 cm. Whereas the former could be related 
to the presence of a plow pan, the later matches 
the beginning of the transitional horizon of this 
soil which is characterized by a higher content 
of clay. However, the overall CI values were 
below the 2 MPa threshold within the explored 
depth. Under uniform management approach, 
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the overall soil condition would be regarded as 
not restrictive for root development and thus no 
remedial practices would be recommended for 
this field. As a result, several locations would 
remain with CI values above 2 MPa within 0-30 
cm layer and soil resistance would be still limiting 
the root development in some parts of the field.

The model-based analysis of the spatial 
structure of CI data aggregated by 10-cm layers 
showed significant spatial structure only for the 
10-20 cm layer. The estimated nugget: sill ratio 
indicates that about 77% of the total variance 
is spatially structured and the range of spatial 
dependence of CI values is about 22 m (Table 
2). This results are similar to those reported by 
authors working in other soil conditions (Bonnin 
et al., 2010; Castrignanò et al., 2002; Veronese 
et al., 2006). The spatial prediction map revea-
led that most of the area has CI values smaller 
than 2 MPa (Figure 2) and the root development 
would be restricted at only about 8% of the total 
area distributed in small spots. Although this 
approach allowed mapping soil compaction, it 
only used the information from the 10-20 layer 
due to the CI of the remaining layer showed poor 
spatial structure and could not be interpolated.

Figure 2. Spatial prediction map of CI from 10-20 cm layer obtained by ordi-
nary kriging.

Table 2. Variogram model parameters estimated by restricted maximum li-
kelihood (REML) and cross-validation results for original cone index (CI) data 
and the indicator transformed data.

Variable Layer 
(cm)

Model mean

(MPa)
c0 c1 a (m) r ME

CI (MPa) 0-10 nug 1.11 0.13 - - - -
10-20 sph 1.52 0.04 0.13 23 0.45 0.15
20-30 nug 1.26 0.09 - - - -
30-40 nug 1.31 0.07 - - - -

I 0-30 sph 0.28 0 0.20 22 0.62 0.17
Model = spatial covariance model (nug = pure nugget, sph = spherical);  c0 
= nugget variance; c1 = partial silll; a = range of spatial dependence; r = co-
efficient of linear correlation between observed and predicted values; ME = 
mean error.  

The lack of spatial structure observed in the 
remaining layers is a common feature of soil 
properties such as soil resistance. In this study, 
the spatial continuity of this property would be 
under the sampling scale due to the combination 
of small scale variations and measurement errors. 
The spatial variability within plowed layers is 
the result of natural and anthropic sources 
of variation whereas spatial variability of soil 
properties at underlying horizons is commonly 
related to the natural variation of soil forming 
factors (Corá, Araújo, Pereira, & Beraldo, 2004; 
Veronese et al., 2006). Thus, the effects of tillage 
and machinery traffic are expected to increase soil 
variability and reduce the spatial dependence of 
their properties. Alesso et al., (2012), worked on 
a similar soil but using a coarser sampling scale 
and found no spatial structure for most of the 
physical and chemical properties studied, even 
those less affected by anthropic practices like 
particle size distribution.

Figure 3. Cone index profiles and average profile of each indicator group. I = 1 
for sampling locations having CI values greater than 2 MPa at any depth within 
0-30 cm layer, and I = 0 otherwise.
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Figure 3, shows the average profile of CI for each 
indicator group. The group with I = 1 shows a 
marked increase of the mean CI at about 10-15 
cm which exceed the 2 MPa threshold indicating 
compaction issues. In order to alleviate this 
compaction, it would be necessary to perform 
a vertical tillage, i.e. chisel plow, with a tillage 
depth of 20 cm. On the contrary, the mean CI of 
the remaining group is below the threshold and 
no tillage would be required. According to the 
spatial distribution of the indicator variable, the 
locations having compaction issues tended to be 
clustered in the middle of the plot suggesting the 
need for site-specific tillage (Figure 4).

Figure 4. Spatial distribution of the indicator variable. Filled circles (I = 1) are 
sampling locations having CI values greater than 2 MPa at any depth within 
0-30 cm layer, and empty cricles (I = 0) otherwise.

Unlike CI data, the variogram of the indicator 
variable showed stronger spatial structure with a 
range of spatial dependence of about 22 m (Table 
2). The spatial structure of this variable, which 
integrates the information of CI from the root zone 
(0-30 cm), was used to map the probabilities of 
finding sites with compaction issues by kriging 
indicator (Figure 5). This map, shows a wide area 
in the middle and south part of the experimental 
plot were the probability of occurrence of 
compaction issues is high (e.g. probability greater 
than 80%). However these probabilities decrease 
quickly and become 0 at few meters due to the 
short range spatial structure. Bonnin et al., (2010), 
in their study identified a region within the plot 
with higher chances of having CI values above 
the threshold. The authors applied the indicator 
transformation to each layer and concluded that 

the spatial distribution of the probabilities were 
highly variable between layers. Castrignanò et 
al., (2002), studied the spatial patterns of the 
probabilities of occurrence of CI above 2.5 MPa 
using the CI data from the whole root zone and 
reported high variability of these patterns during 
the season. These changes were attributed by the 
authors to the changes of soil water content within 
the season. In our study, the IC data was gathered 
at a SWC near to field capacity enabling us to use 
this information as a reference for the diagnosis 
of soil compaction issues.

Figure 5. Spatial distribution of estimated probabilities of cone index excee-
ding 2 MPa threshold within 0-30 layer.

Based on the estimated probabilities showed in 
Figure 5 and setting a desired cutoff, site-specific 
tillage prescriptions could be delineated. For 
example, Figure 6 shows potential management 
zones for three levels of probability of exceeding 
the 2 MPa threshold within upper 30 cm layer. 
There is no recommendations in the literature 
about the probability levels to be used as a 
cutoff, thus the values chosen here are somewhat 
arbitrary. As the probability cutoff increase, the 
risk of tilling the soil when no tillage is needed 
decrease and the zones get smaller and patchy. 
For example, for a probability level of 0.70, the 
tillage zone represents about 25% of total area 
whereas by raising the probability cutoff to 0.9, 
only 13.3% of the area would need to be tilled. 

The needs for remedial practices vary within the 
field and mapping the spatial distribution of soil 
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compaction could help farmers to save fuel, labor, 
equipment wear and tear (Basso et al., 2011; 
Carrara et al., 2007). In this study, if the tillage 
recommendation had made based on the overall 
soil condition ignoring spatial variability of CI, the 
root development would remain limited in some 
parts of the field. On the contrary, by using the 
prescription maps of the Figure 6 would help to 
improve the soil management by tilling only the 
parts of the field where there is high chances to 
encounter compaction issues. 

Figure 6. Tillage prescription maps based on the estimated probabilities of CI. 
exceedening 2 MPa within 0-30 depth obtained by indicator kriging.

Conclusion

The high variability and poor spatial structure 
observed in CI data by layer, limited the 
application of spatial interpolation techniques 
based on spatial structure of data. However, maps 
of the probability of occurrence of soil compaction 
in the root zone were obtained by integrating the 
CI data from the arable horizon (0-30 cm) using 
the indicator kriging approach. Such probability 
maps could be useful for delineation of potential 
zones for site-specific tillage in order to save fuel, 
labor, and equipment wear.  
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