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RESUMEN

La especiacién es un concepto fundamental en la biologfa evolutiva. En este trabajo, se analiza dicho concepto utilizando redes
complejas. Se estudié el gen ortélogo apolipoproteina E (APOE) presente en vertebrados para identificar informacién sobre la cla-
sificacién y evolucién de las especies. Desde el portal del NCBI, se descargé la secuencia genética del gen APOE para 239 especies.
Para el analisis de los datos, se generé una matriz de identidad a partir de alineamientos, y posteriormente dicha matriz se transformé
en matrices de adyacencia para llevar a cabo los andlisis de redes complejas. Los resultados muestran relaciones de tipo evolutivo
entre las especies y confirman la especiacién como un proceso evolutivo a nivel genético. Ademas, indican que la evolucién a nivel
de genes ortélogos presenta las relaciones taxonémicas y de derivacién entre especies. En el estudio, se identificé que las redes de
genes ort6logos son similares a las redes de pequefio mundo y que éstas, a su vez, permiten reconocer automaticamente las especies
a nivel de orden taxonémico como grupos inherentes a la evolucién. El método propuesto permite obtener evidencia de la teoria de
la evolucidn a nivel genético y es una alternativa para hacer clasificacién taxonémica semi-automatica.

Palabras clave: Alineacién de secuencia, Apolipoproteinas, Filogenia, Redes de genes, Redes semanticas.

ABSTRACT

This study addresses the the concept of speciation in the context of evolutionary biology, employing complex network approaches.
It primarily focuses on the analysis of the orthologous gene apolipoprotein E (APOE), which is present in vertebrates, to investigate
species classification and evolution. Genetic sequences of APOE from 239 species were collected from the NCBI portal. The data were
analyzed using an identity matrix generated from alignments, subsequently transformed into adjacency matrices for complex network
analysis. The results revealed evolutionary relationships among species and affirmed specialization as a genetic evolutionary process.
Furthermore, it was observed that orthologous gene networks resemble “small-world” networks and possess the ability to automati-
cally identify species at the taxonomic order level, enhancing our understanding of evolutionary groupings. This proposed approach
provides evidence for the theory of evolution at the genetic level and offers a semi-automated alternative for taxonomic classification.

Keywords: Apolipoproteins, Gene Networks, Phylogeny, Semantic Networks, Sequence Alignment.
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INTRODUCCION

La capacidad para generar informacién genética, alma-
cenarla, procesarla y compartirla ha incrementado en las
dltimas décadas (Perez De Souza et al., 2020). Estas fuentes
de datos son ricas en patrones e informacién (Sreeja et al.,
2019) con el potencial de contribuir en trabajos de clasifi-
cacién de las especies. Una aproximacién para el andlisis de
sistemas bioldgicos es representarlos como una red (Perez
De Souza et al., 2020). Una red o grafo permite definir un
conjunto de nodos y encontrar las diferentes estructuras de
relaciones entre ellos (Wasserman y Faust, 1994) y puede
usarse como una generalizacién simple, estructurada y efi-
ciente de sistemas biolégicos complejos (Sreeja et al., 2019).
Por ejemplo, se usa el agrupamiento de genes bajo la teorfa
espectral de grafos para recuperar comunidades de genes,
relacionados con el trastorno del espectro autista, mejoran-
do la eficiencia en la identificacién respecto a otros métodos
tradicionales y contribuyendo a diagndsticos y tratamientos
(Sreejaetal., 2019).

Este trabajo se basa en redes complejas. Estas describen
la estructura de las interrelaciones o interacciones (Valavanis
etal., 2010) entre los nodos de una red. De esta manera, la
evolucién a nivel genético se entiende no sélo como un con-
junto de elementos independientes (Telesford et al., 2011),
sino como un modelo descrito por sus relaciones y estruc-
turas matemadticas (Valavanis et al., 2010). Las propieda-
des y caracteristicas del mismo son representadas por una
red que puede ser caracterizada por medidas topolégicas
(Valavanis et al., 2010) tales como el coeficiente de agrupa-
miento (clustering coefficient), la longitud promedio de la ruta
(average path length) o medidas de eficiencia (Telesford et al.,
2011), entre otras. Con estas medidas, es posible clasificar
la red como aleatoria, libre de escala o de mundo pequefio
(small-worldness), evidenciando informacién complemen-
taria que puede resultar de gran interés para el sistema estu-
diado (Valavanis etal., 2010).

En este trabajo se presenta un método para la clasifica-
cién semiautomadtica de las especies y para ello se estudia-
ron los genes ortélogos. Estos genes permiten describir las
diferencias y similitudes en la composicién de los diferentes
genomas a partir de un gen ancestral, confirmando eventos
de especiacién (Gabaldén y Koonin, 2013). Asi, se usé el
gen ortélogo Apolipoproteina E (APOE) para 239 especies
de animales. Este gen desempefia un papel importante en la
unién, el transporte de lipidos y es un miembro de |a familia
de las apolipoproteinas, ampliamente distribuidas en verte-
brados (Fangetal., 2010; Liu etal., 2019).

Para este estudio, se propuso una red cuyos nodos fue-
ron cada una de las especies y los enlaces representan una
caracteristica genética comun entre cada par de especies.
En este caso, la caracteristica utilizada fue el porcentaje de
identidad genética entre dos especies analizadas, calculado
a partir de los alineamientos del gen APOE. Los resultados
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muestran que fue posible calcular métricas para andlisis de
redes a partir de las diferentes secuencias del gen. Este ana-
lisis revel6 caracteristicas emergentes de los datos genéticos
como comunidades (agrupamiento de las especies), espe-
cies de importancia en cada comunidad, especies de eslabén
entre dos conjuntos de especies. Asimismo, se determind
que el tipo de la red es de mundo pequefio para identida-
des entre el 50 al 80 %, valores para los cuales es mejor la
clasificacién de las especies. Finalmente, las comunidades
obtenidas fueron cotejadas con las clasificaciones taxoné-
micas descritas en trabajos de biologfa evolutiva, descarga-
bles desde National Center for Biotechnology Information
(NCBI, 2023) con resultados prometedores.

MATERIALES Y METODOS

A continuacidn, se presenta el procedimiento metodolé-
gico (Fig. 1) para desarrollar un andlisis de redes complejas
con informacién genética estudiando el gen ortélogo APOE.

Busqueda de secuencias y alineamiento

Se encontraron secuencias del gen APOE para 239 es-
pecies (NCBI, 2022), que se listaron y alojaron en un re-
positorio (Hurtado, 2023). Posteriormente, se procedié a
realizar un alineamiento de las secuencias a partir de un
tnico archivo en formato FASTA, utilizando el algoritmo
ClustalW (Thompson et al., 1994) implementado en el sof-
tware Bioedit (Alzohairy, 2011).

Matriz de identidad

A partir del alineamiento se calculé una matriz de iden-
tidad de las secuencias (Hurtado, 2023) en el software
Bioedit (Alzohairy, 2011) y se generd un archivo separado
por tabuladores. Las filas y columnas de la matriz represen-
tan cada especie y los coeficientes indican el porcentaje de
identidad entre las secuencias genéticas de las dos especies
referenciadas. Los valores de los coeficientes de la matriz de
identidad estdn en un rango de cero a uno, es decir, repre-
sentan un porcentaje de qué tan parecidas son las secuen-
cias genéticas entre las dos especies a las que hace referencia
el coeficiente.

Matrices de adyacencia

Con la matriz de identidad se calcularon matrices de ad-
yacencia mediante un proceso (Hurtado, 2023) en el que
las relaciones representadas como porcentajes de la matriz
de identidad son transformadas a una relacién binaria en las
matrices de adyacencia, que muestra si la relacién existe o no.
Por ejemplo, para la matriz de adyacencia del 10%, se pone
en cada coeficiente el valor de uno si la identidad entre dos
especies es superior al 10 % y un coeficiente de cero en caso
contrario. Se calcularon matrices de adyacencia para valores
de identidad entre 10 y 100 % con intervalos de 10 %.
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Figura 1. Metodologia de construccién de una red bioldgica a partir de las secuencias genéticas del gen ortélogo APOE.

Analisis de redes y métricas

Cada matriz de adyacencia obtenida representa una red
compleja que puede analizarse usando metodologfas de
ciencias de redes (Ledn et al., 2018; Leytdn Yela et al., 2022).
Para ello, se calculan y analizan métricas como centralidad
por intermediacién, estructura de comunidades y diversas
representaciones gréficas de las redes, con algunos pardme-
tros representativos como el coeficiente de agrupamiento y
la longitud promedio de la ruta. La légica empleada para
este analisis (Hurtado, 2023) se desarrollé en libretas de
Wolfram Mathematica (Wolfram Research Inc., 2022).

Rango clasificacion especies

Teniendo en cuenta las métricas calculadas, se delimité
un rango para escoger matrices de adyacencia entre 50 y 80
%. Este rango se definié al considerar las caracteristicas de
las redes obtenidas y sus métricas (Perera etal., 2017), dado
que en estos valores de identidad se observan pardmetros
que corresponden a redes de mundo pequefio.

Determinacion de tipo de red

Sumado a las métricas obtenidas para redes, se genera-
ron grafos aleatorios siguiendo el modelo de Erdés-Rényi,
y se obtuvo la métrica de coeficiente de mundo pequefio
(small-worldness) empleando la ecuacién , donde , . y son los
coeficientes de agrupamiento de la red evaluada y la red
aleatoria simulada, respectivamente, y y son las longitudes
promedio del camino de la red evaluada y la red aleatoria
simulada (Humphries y Gurney, 2008). La obtencién de la
red aleatoria simulada se realiza con el mismo nidmero de
nodos y ejes de la red biolégica propuesta.

Clasificacion filogenética

A partir de la red representada por la matriz de adyacen-
cia, se obtuvo la clasificacién automdatica de comunidades
(Wolfram Research Inc., 2023). Adicionalmente, se consul-
t6 para cada nodo-especie la taxonomia en una base de da-
tos (NCBI, 2023). Cada comunidad representa una lista de
especies, y al etiquetar la taxonomia consultada, se eviden-
cia la concordancia de la clasificacién taxonémica a nivel de
orden con las comunidades encontradas automaticamente.

RESULTADOS

El andlisis de las diferentes redes obtenidas a partir de
cada matriz di6 como resultado multiples grafos, de los
cuales se escogieron los de mayor claridad respecto a re-
laciones filogenéticas y evolutivas. Los grafos generados
permitieron identificar casos con un claro agrupamiento de
especies (Fig. 2) estrechamente relacionadas entre sf, al me-
nos desde el conocimiento general de sus relaciones filoge-
néticas (historia evolutiva).

En la red de especies de 80 % de identidad (Fig. 3), se
muestran los nodos de mayor importancia, con colores que
tienden al amarillo de acuerdo con el valor de la métrica de
centralidad por intermediacién calculada para cada especie
de la red. Esta métrica sugiere especies eslabdn entre otras
especies o clasificaciones. Adicionalmente, se presentan al-
gunos nodos con imdgenes representativas de las especies,
mostrando la obtencién de comunidades. En la primera co-
munidad, se observa que todas las especies corresponden
al orden Chiroptera (Mamiferos voladores, murciélagos).
En este grupo, la especie Myotis myotis (216) resalta porque
es un eslabén entre los diferentes individuos del grupo, es
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decir, tiene una similaridad genética desde la cual se puede
derivar hacia las otras especies del mismo orden. Andlisis
similares se pueden realizar para los otros grupos represen-
tados en la red (Fig. 3).

En el grupo orden Primates (Fig. 3), tenemos especies
representativas como Propithecus coquereli (103) y Microcebus
murinus (104) con mayores valores de centralidad por in-
termediacién. Otros érdenes de importancia agrupados
por la red bioldgica creada fueron Artiodactyla (Mamiferos
ungulados, incluye cetdceos), Carnivora (Mamiferos con
caninos muy desarrollados), Cichliformes (Peces cicli-
dos, 6seos), Rodentia (Mamiferos de incisivos afilados),
Cyprinodontiformes (Peces de agua dulce), Testudines
(Reptiles, tortugas). Estos datos revelan que cada especie
en cada comunidad corresponde al mismo grupo a nivel de
orden en la taxonomfa. Por tanto, se muestra que el andlisis
de redes permite la clasificacion de especies a nivel de orden
taxondémico como grupos inherentes a la evolucién.

El resultado anterior fue comparado (Fig. 4) con la ta-
xonomfa recuperadora de las especies (NCBI, 2023) donde
cada color corresponde a las comunidades obtenidas en
este trabajo. A cada especie se le asigné su respectivo orden
taxonémico, como se muestra en la clasificacién de comu-
nidades (Hurtado, 2023). En esta clasificacién, se muestra
que la comunidad uno es la mds grande con 27 especies,
entre ellas el Homo sapiens. De esta comunidad, se obtuvo
que la clasificacién de taxonomia era del orden Primates,
con solo una especie de un orden diferente, Tupaia chinensis,
que corresponde al orden Scandentia. Se observa dentro del

Figura 2. Red APOE para el porcentaje 50 % de identidad.

Figura 3. APOE 80 % centralidad por intermediacién con anotacién del orden taxonémico encontrado e ilustraciones con imédgenes de
algunas especies.
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Figura 4. Taxonomfia de especies por colores de acuerdo a las
comunidades obtenidas.

grupo Primates que es una de las especies externas al grupo
principal, nodo 64. Estudios han discutido sobre la clasi-
ficacién de T. chinensis dentro del orden de Primates (Yao,
2017), encontrando un gran potencial frente a los roedores
como animal de experimentacién para el modelado de en-
fermedades humanas y respuestas terapéuticas. Las comu-
nidades dos con 25 especies y tres con 23 especies fueron
clasificadas en los érdenes Carnivora y Artiodactyla, sin nin-
guna especie de orden diferente.

Otro resultado obtenido (Fig. 5) muestra el grafo de co-
munidades, el coeficiente de agrupamiento (CC), |a longitud pro-
medio del camino (APL) y la métrica small-worldness (SW) para
diferentes porcentajes de identidad (ID). Se encontré que

Figura 5. Comunidades y métricas para APOE por porcentajes
de identidad.

entre mds baja la identidad entre las secuencias, se definen
comunidades con mayor ntimero de nodos. Al aumentar la
identidad entre cada par de nodos de las especies seleccio-
nadas para la generacién de las redes, las comunidades se
obtienen con menor cantidad de nodos, lo que indicarfa
una clasificacién més especifica. En el célculo de la métrica
SW para definir el tipo de red se evidencia (Fig. 5) que mien-
tras el porcentaje de identidad se mantiene bajo (< 40 % de
identidad), el valor de Small-worldness esta entre 1y 2,45.
A partir de 50 % de identidad, el valor incrementa de forma
pronunciada.

En este sentido, se muestra que las redes obtenidas son
similares a una red de mundo pequefio debido principal-
mente a que SW tiene valores muy superiores a uno. Este
comportamiento sugiere que el proceso de evolucién sigue
un patrén donde las especies no tienen una relacién alea-
toria con sus predecesores, sino que, en la medida que hay
una adaptacion, la especializacién va siguiendo una estruc-
tura similar a la de una red de mundo pequefio. En este tipo
de estructura de red, se observan grupos cuyos individuos
estdn conectados con las demds especies relacionadas en
pocos saltos, como también se evidencia en los valores de
APL (Fig. 5). Estos resultados muestran que las especies en
las diferentes comunidades obtenidas presentan una alta si-
militud y, pese a ser un agrupamiento automatizado, revelan
concordancia (Fig. 4) con la clasificacién a nivel taxonémico
de orden consultado (NCBI, 2023).

Los resultados obtenidos muestran entonces que las va-
riaciones en el porcentaje de identidad implican cambios en
la complejidad de la red, y para efectos de analizar interac-
cién entre las especies, se puede obtener informacién de im-
portancia en un rango de identidad entre el 50 y 80 %. Para
rangos menores o mayores, los andlisis cambiarian, por lo
que la decisién del porcentaje de identidad en el rango defi-
nido es un factor clave en trabajos que se deseen hacer con
un enfoque similar al presentado en lineas anteriores.

DISCUSION

Entre las herramientas computacionales mds recono-
cidas para el analisis de secuencias genémicas se encuen-
tran Bioedit (Alzohairy, 2011), MEGA (Kumar et al., 2018)
y Gene Runner (Shapouri Moghaddam et al., 2020), con
diversas capacidades para la clasificacién y filogenia de las
especies. Aun asfi, el andlisis de redes se muestra como una
alternativa simple con potencial de revelar informacién de
interés en estudios de estos sistemas biolégicos. En este tra-
bajo fue posible identificar relaciones filogenéticas de forma
automatica. El andlisis de redes complejas agrupé las espe-
cies por 6rdenes y familias, consistente con la filogenia de
los vertebrados producto de los diferentes estudios a nivel
evolutivo y filogenético (NCBI, 2023).

Como la red bioldgica seleccionada para este estudio es
del tipo mundo pequefio, se puede inferir que el gen APOE
ha evolucionado entre las especies de forma no aleatoria,
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sino que las presiones de la adaptacién han logrado que el
gen esté presente en grupos de especies fuertemente relacio-
nadas entre si y, al mismo tiempo, pueda estar presente en
grupos de especies de diferente orden a pocos saltos en la
red. De acuerdo con los resultados obtenidos, se cree que el
gen APOE puede explicar los cambios en la estructura dsea
en el proceso evolutivo, en la divergencia de peces cartila-
ginosos a éseos (Liu et al., 2019) observada en los graficos
obtenidos. Asi, su funcién no solo es clave en el metabolis-
mo de lipidos, sino también en el metabolismo éseo, por lo
que su alteracién puede estar relacionada con enfermeda-
des como la osteoporosis y la arteriosclerosis, asi como el
Alzheimer en los humanos (Noguchi et al., 2018).

El gen APOE exhibe funciones especificas en diferentes
6rdenes de la taxonomia de especies, lo que se traduce en
comunidades de especies identificadas en este estudio (Xu
et al., 1996; Witting et al., 2000). En primates, incluidos los
humanos, APOE esta estrechamente relacionado con la re-
gulacién del metabolismo cerebral, la neuroproteccién y
la respuesta a lesiones cerebrales (MclIntosh et al., 2012).
Por otro lado, en roedores como ratones y ratas, APOE des-
empefia un papel fundamental en el metabolismo lipidico,
el transporte de colesterol y la modulacién de respuestas
inmunoldgicas y plasticidad neuronal (Myers y McGonigle,
2019). Ademds, APOE contribuye a la respuesta inmunolé-
gica, defendiendo contra patégenos y manteniendo la salud
celular en entornos propensos a la contaminacién y cam-
bios estacionales, como se observé en peces, en los cuales
este gen podrfa disminuir los niveles de expresién de factores
proinflamatorios, vias relacionadas con la respuesta inmu-
noldgica y apoptosis, al tiempo que aumenta los niveles de
expresién de factores antiinflamatorios (Feng et al., 2023).
La variabilidad genética observada entre las comunidades
estudiadas refleja adaptaciones especificas a las necesida-
des de cada orden de especies.

Respecto al modelo comparativo para redes, se obtuvo para
el rango seleccionado de 50 a 80 % que la red se comporta
como mundo pequefio, que derivado del modelo de Watts-
Strogatz, que es utilizado en el estudio de diferentes campos,
incluyendo la ecologia, economia, epidemiologia y neuro-
ciencia (Humphries y Gurney, 2008). Este tipo de estructura
muestra cierta robustez y eficiencia en términos de compartir
informacién genética en el conjunto de especies analizadas,
lo que podria asegurar su adaptabilidad y persistencia en el
proceso evolutivo. Asi, la construccién de redes de especies
a partir de secuencias de genes ortélogos permite reconocer
automdticamente las especies a nivel taxonémico de orden
(Fig. 4). Sin embargo, estas aproximaciones también podrian
realizarse con el andlisis de la secuencia de la proteina, para
considerar aspectos relacionados con dominios especificos, lo
cual es dtil para identificar y caracterizar regiones funcionales
dentro de la proteina, comprender las interacciones mole-
culares y predecir posibles funciones biolégicas (Wangetal.,
2021). Por ejemplo, el gen APOE en humanos es polimérfico,
presenta tres alelos principales (E2, E3, E4), lo que se asocia
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con variaciones fenotipicas en varios caracteristicas fenoti-
picas asociadas a la salud humana, incluyendo los niveles de
colesterol, la salud cardiovascular, el riesgo de enfermedad de
Alzheimer y la longevidad (Mclntosh et al., 2012; Tudorache
etal.,2017).

CONCLUSIONES

Los esfuerzos recientes en el uso de redes complejas para
el andlisis de datos, como aquellas enfocadas en secuencias
génicas, muestran resultados prometedores para ampliar el
conocimiento de cémo los genes u otras entidades mole-
culares, especies o entidades bioldgicas estdn intimamen-
te relacionados y su potencial en campos como la biologia
evolutiva, farmacéutica, e ingenierfa biomédica. De esta for-
ma, el método propuesto permite una alternativa para reali-
zar una clasificacién taxonémica semi-automatica.

El andlisis de redes basado en matrices de similitud ge-
nética revela estructuras complejas que agrupan especies
segun relaciones filogenéticas y evolutivas. Por otra parte,
los grafos generados destacaron comunidades claramen-
te definidas, donde especies estrechamente relacionadas
compartfan nodos significativos, indicando una agrupacién
taxondémica coherente. Adicionalmente, este enfoque de-
mostré ser una herramienta poderosa para el estudio de sis-
temas bioldgicos complejos, aportando nuevas perspectivas
sobre la evolucién y la adaptacién genética.

La simplicidad del modelo radicé en su capacidad para
transformar datos genéticos complejos en representaciones
vectoriales claras y estructuradas, que permiten computar
métricas y obtener visualizaciones mediante el andlisis de
redes complejas. Estas facilitan la identificacién de comu-
nidades taxonémicas y nodos de interés, proporcionando
una comprensién intuitiva y accesible de la estructura y la
dindmica evolutiva de los sistemas bioldgicos estudiados.

Para futuras investigaciones, se sugiere incorporar un
andlisis comparativo de los dominios proteicos. Este en-
foque permitird identificar y contrastar las variaciones es-
tructurales y funcionales de las proteinas entre distintas
especies, proporcionando una comprensién mas profunda
y detallada acerca de su evolucién, adaptacién y funcién
biolégica. Ademads, con este tipo de andlisis se podrian es-
tablecer correlaciones con otros factores como las presio-
nes ambientales y las necesidades fisiolégicas especificas de
cada especie.
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