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RESUMEN
Se llevaron a cabo comparaciones morfométricas de las cinco clases de vertebrados (peces, anfibios, reptiles, aves y mamíferos), 
revelando similitudes notables en la presencia de sus estructuras encefálicas, así como diferencias significativas en términos de 
tamaño y forma. A través del uso de técnicas topográficas y biomodelos tridimensionales (3D), se pudo visualizar y analizar con mayor 
precisión las estructuras cerebrales, lo que proporciona una comprensión más profunda de cómo estas diferencias morfológicas 
se relacionan con las funciones biológicas y comportamentales de cada clase. Este enfoque también permite comprender cómo 
las presiones selectivas han moldeado la evolución de las regiones encefálicas a lo largo del tiempo, evidenciando la riqueza y 
diversidad del reino animal. Se observó que, sin importar la complejidad de los vertebrados, en su estudio neuroanatómico, muchas 
de las mismas subdivisiones estructurales se encuentran presentes a través de diversas especies. Estas divisiones incluyen el tronco 
encefálico, que conecta el cerebro con la médula espinal y regula funciones vitales como la respiración y el ritmo cardíaco. El 
cerebelo juega un papel crucial en la coordinación motora y el equilibrio. Por otra parte, el mesencéfalo actúa como un puente entre 
diferentes partes del cerebro y es esencial para funciones visuales y auditivas. En la mayoría de los vertebrados, también se puede 
observar un par de lóbulos ópticos, involucrados en el procesamiento de la información visual y la coordinación de los movimientos 
oculares. Se concluye que las estructuras cerebrales analizadas varían significativamente en tamaño y funcionalidad dependiendo de 
la complejidad de la especie.

Palabras clave: Corteza cerebral, homología estructural, imprenta-tridimensional, neuroanatomía, neurobiología. 

ABSTRACT
Morphometric comparisons were carried out on the five classes of vertebrates (fish, amphibians, reptiles, birds, and mammals), 
revealing remarkable similarities in the presence of their brain structures, as well as significant differences in terms of size and 
shape. Through the use of topographic techniques and three-dimensional (3D) biomodels, brain structures could be visualized and 
analyzed with greater precision, providing a deeper understanding of how these morphological differences relate to the biological 
and behavioral functions of each class. This approach also allows us to understand how selective pressures have shaped the evolution 
of brain regions over time, highlighting the richness and diversity of the animal kingdom. It was observed that regardless of the 
complexity of vertebrates, in their neuroanatomical study, many of the same structural subdivisions are present across various species. 
These divisions include the brainstem, which connects the brain to the spinal cord and regulates vital functions such as breathing and 
heart rate. The cerebellum plays a crucial role in motor coordination and balance. On the other hand, the midbrain acts as a bridge 
between different parts of the brain and is essential for visual and auditory functions. In most vertebrates, a pair of optic lobes can 
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also be observed, involved in visual information processing and eye movement coordination. It is concluded that the brain structures 
analyzed vary significantly in size and functionality depending on the complexity of the species.

Keywords: Cerebral cortex, neuroanatomy, neurobiology, structural homology, three-dimensional printing,

INTRODUCCIÓN

El encéfalo en los vertebrados constituye una parte 
fundamental del sistema nervioso central (Vargas, 2019), 
y según la especie y su grado de complejidad presenta 
diferencias notables en su morfología. Esta diversidad 
no solo expresa la evolución adaptativa de cada especie, 
sino también su fisiología y etología (Moulin et al., 2021; 
MacIver, y Finlay, 2022). La morfología encefálica de los 
vertebrados, especialmente en lo relativo al estudio neural en 
diversas especies (Montgomery, 2024), ha sido ampliamente 
estudiada, revelando patrones que van desde la organización 
del sistema nervioso en peces (Kasumyan y Pavlov, 2023) 
hasta los complejos lóbulos frontales en mamíferos (Faglioni, 
2020; Akat et al., 2022; Heldstab et al., 2022). 

Estudios relacionados con neurociencia comparativa 
entre anfibios, aves, reptiles (tortugas), peces y mamíferos 
(Güntürkün et al., 2020; Ogawa et al., 2021; Alesci et al., 
2022; Hussan et al., 2022; Font et al., 2023) han demostrado 
que existen características fisiológicas compartidas que 
pueden explicar la convergencia evolutiva entre especies 
(MacIver y Finlay, 2022; Suryanarayana et al., 2022; Aversi-
Ferreira et al., 2022). Por lo tanto, el presente estudio realiza 
un análisis comparativo de las características morfológicas 
del encéfalo en vertebrados mediante modelos 3D, con el 
fin de contribuir a una comprensión más detallada de estas 
estructuras y de su papel fisiológico.

MATERIALES Y MÉTODOS

Lugar de estudio

El estudio se realizó en la Unidad de Apoyo Laboratorio 
de Fisiología Animal (FA-UA), ubicada en la sede centro de la 
Universidad de la Amazonía, Florencia (Caquetá, Colombia), 
coordenadas 1° 36’ 28,83’’ N; 75° 36’ 23,22’’ W, a 377 m 
s. n. m. El laboratorio pertenece al grupo de investigación en 
Biodiversidad y Desarrollo Amazónico (BYDA).

Obtención de especímenes y modelos virtuales

Se utilizaron encéfalos de ocho especies de las cinco 
clases de vertebrados: pez (Colossoma macropomum), anfibio 
(Leptodactylus  sp.), reptil (Caiman crocodilus), ave (Gallus gallus 
domesticus) y mamíferos (Bos taurus, Sus scrofa domesticus, Mus 
musculus, Canis familiaris). Las especies de consumo (cachama, 
pollo, cerdo y bovino) se adquirieron en expendios locales; la 
babilla fue donada por una comunidad rural y el canino fue 
donado por su propietaria después de eutanasia en la Clínica 
de Pequeños Animales de la Universidad de la Amazonía.

La obtención de los encéfalos de bovino, cerdo, canino, pollo, 
babilla y cachama se realizó mediante un corte en la región 
fronto-parietal del cráneo, siguiendo las técnicas descritas por 
Guillén (2022) y Hernández-Barrera (2023). Para las especies 
de la rana y el ratón se emplearon modelos virtuales.

Fijación y preservación de encéfalos

Los encéfalos se fijaron durante cuatro días en formaldehído 
al 4 % (pH 7.3, 4 °C); posteriormente, se conservaron en 
etanol al 70 % por ocho días, y finalmente se deshidrataron en 
alcoholes graduados al 80 %, 90 % y 96 % hasta su respectiva 
descripción morfométrica (Alarcón et al., 2021).

Generación de biomodelos en 3D

Se realizó un registro fotográfico de cada encéfalo (vista 
dorsal, ventral y lateral) con cámara digital Nikon D60, para 
la base del modelado 3D. Este proceso incluyó escaneo de 
superficie (software CR-Scan Ferret) y el uso de programas 
especializados (Autodesk Maya versión 2017 y ZBrush 
versión 4R7). Los modelos virtuales se imprimieron en una 
impresora 3D (Creality Ender 5 Plus) utilizando filamento 
PLA blanco de 1.75 mm de diámetro, logrando un alto 
grado de realismo geométrico, dimensional y estructural. 

Análisis estadístico

Los datos morfométricos se registraron en una hoja de 
cálculo (Microsoft Excel) y se analizaron mediante estadística 
descriptiva con el programa InfoStat Profesional® versión 
2020. Se aplicó un análisis de varianza (ANOVA) de una vía 
y la prueba de Tukey (alfa = 0.05) para la comparación de 
medias y la identificación de diferencias estadísticamente 
significativas entre las especies.

RESULTADOS

El análisis de los ocho biomodelos encefálicos generados 
a partir de las diferentes especies de vertebrados (Tabla 
1)  evidenció la conservación de las estructuras generales, 
pero reveló variaciones morfométricas significativas en 
tamaño y forma.

DESCRIPCIÓN MORFOLÓGICA

Se describieron las principales estructuras anatómicas 
en los mamíferos Bos taurus (bovino), Sus scrofa domesticus 
(porcino), Canis familiaris (canino) y Mus musculus 
(roedor), destacándose los hemisferios cerebrales, los 
lóbulos olfatorio, frontal, parietal y occipital, la cisura 
interhemisférica y el cerebelo (Fig. 1).
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Figura 1. Biomodelos encefálicos en vista dorsal (VD), vista ventral (VV) y vista lateral (VL) a. Bos taurus, b. Sus scrofa domesticus, c. Canis 
familiaris, d. Mus musculus.
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Los biomodelos encefálicos de Gallus gallus domesticus 
(pollo), Caiman crocodilus (babilla), Colossoma macropomum 
(cachama negra) y Leptodactylus sp. (rana) (Fig. 2), 
permitieron la identificación de lóbulos óptico y olfatorio, 
prosencéfalo, mesencéfalo, rombencéfalo, cerebelo, bulbo 
raquídeo y médula espinal.

El uso de técnicas topográficas y biomodelos en 3D, facilitó 
visualizar y analizar con mayor precisión las estructuras 
cerebrales, proporcionando una comprensión más profunda 
de cómo estas diferencias morfológicas se relacionan con 
las funciones biológicas y comportamentales de cada clase 
taxonómica. El estudio neuroanatómico evidenció que, 
sin importar la complejidad de los vertebrados, muchas 
subdivisiones estructurales se encuentran presentes a través 
de las diversas especies (Fig. 3). 

Finalmente, se observó que los mamíferos comparten 
consistentemente el cerebelo (vista dorsal), rombencéfalo, 
prosencéfalo y el diencéfalo mientras que difieren en 
telencéfalo, tronco encefálico, metencéfalo, mielencéfalo, y 
el cerebro (vista ventral). 

Análisis morfométrico comparativo

La (Tabla 2) presenta la morfometría detallada de 
los encéfalos estudiados, encontrándose similitud en las 
medidas de los lóbulos frontal, parietal, occipital, y la 
fisura interhemisférica; sin embargo, también se observaron 
diferencias significativas en el lóbulo óptico entre C. 
macropomum, Leptodactylus sp., Caiman crocodilus y Gallus 
gallus domesticus. El análisis estadístico mostró diferencias 
significativas para el ancho de los hemisferios cerebrales 

Figura 2. Biomodelos encefálicos en Vista dorsal (VD), Vista ventral (VV) y Vista lateral (VL) del a. Gallus gallus domesticus, b. Caiman 
crocodilus, c. Colossoma macropomum, d. Leptodactylus sp. (rana).

(izquierdo y derecho), la vista dorsal del cerebro y el ancho 
del mesencéfalo en todas las especies.

Se identificaron medidas específicas que variaron 
individualmente, como el lóbulo olfatorio (vista dorsal) 
en Leptodactylus, sp., y la vista ventral en Caiman crocodilus. 
Otras estructuras tuvieron las mimas medidas entre grupos 
específicos, como el diencéfalo (C. macropomum, Leptodactylus 
sp., G. g. domesticus y B. Taurus y S. s. domesticus); el mesencéfalo 
(B. taurus y Canis familiaris), el ancho del hemisferio izquierdo (C. 
macropomum y Leptodactylus, sp.); el bulbo raquídeo vista dorsal 
(C. crocodilus, C. familiaris y G. gallus domesticus), el rombencéfalo 
(C. macropomum con C. crocodilus y Leptodactylus sp.).

Algunas difieren entre ellos como es el bulbo raquídeo 
(vista ventral) entre Leptodactylus, sp, Caiman crocodilus y Gallus 
gallus domesticus; y la médula espinal entre C. macropomum y 
Caiman crocodilus. 

DISCUSIÓN

Las variaciones morfométricas encontradas en las 
estructuras encefálicas de las ocho especies, que representan 
las cinco clases de vertebrados (Tabla 2), son el resultado de 
adaptaciones evolutivas específicas que han permitido a cada grupo 
de vertebrados optimizar sus estrategias de supervivencia en 
una amplia gama de hábitats y nichos ecológicos. 

El tamaño del encéfalo y del cerebro o prosencéfalo 
según Heldstab et al. (2022), se relaciona directamente con 
la cognición, lo cual puede indicar el grado de inteligencia 
y complejidad que tenga el organismo. Los datos 
morfométricos del encéfalo en las especies de mamíferos 
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Figura 3. Modelos encefálicos de los cinco grupos de vertebrados con sus respectivas estructuras, vista dorsal.
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analizadas (bovino, cerdo, ratón y canino), podrían 
manifestar diferencias en la complejidad neural. Estas 
variaciones podrían estar asociadas a una etología más 
elaborada en ciertas especies, facilitando una explotación 
más eficiente de los recursos del hábitat y contribuyendo 
positivamente a su adaptación ecológica y social.

Heldstab et al. (2022) indican que especies como el 
bovino, cerdo y canino pueden soportar la competencia 
y colaborar en situaciones estresantes; en contraste, el 
roedor (Mus musculus) al ser un animal social, la presencia 
de un cerebelo relativamente más pequeño podría estar más 
relacionada con una estrategia evolutiva que les permite 
colonizar otros lugares. 

Las diferencias significativas obtenidas en varias 
estructuras encefálicas entre los mamíferos del estudio 
evidencian que la evolución se puede dar de forma concertada 
(sincronizada y generalizada) o en mosaico (asincrónicas 
y específicas). La evolución en mosaico, respaldada por 
estudios como los de Kotrschal et al. (2017) y Fong et 
al (2021), permite que regiones cerebrales individuales 
cambien de tamaño de manera relativamente independiente 
en respuesta a presiones selectivas especificas del entorno. 

En relación con las aves, Song et al. (2024) indican que las 
especies con cerebros más grandes pueden generar técnicas 
de alimentación complejas, entre ellas la depredación o la 
alimentación extractiva; esto difiere de los hallazgos en G. 
g. domesticus (pollo) que presenta un cerebro más pequeño, 
lo que sugiere una menor complejidad en sus estrategias 
de forrajeo. 

Los anfibios, reptiles y peces del estudio presentaron 
un cerebelo de menor tamaño en comparación con los 
mamíferos y aves. De Meester et al. (2019) indican que, 
si bien el tamaño absoluto del cerebelo puede no diferir 
entre especies del mismo grupo con cerebros más grandes 
(como es el caso del bovino y del roedor), el éxito en la 
colonización de nuevas áreas es mayor en estas últimas. 
Asimismo, funciones vitales como la alimentación son 
manejadas por el cerebelo y sus componentes estructurales. 
El cerebro relativamente pequeño en anfibios (Leptodactylus 
sp) y roedores (Mus musculus) sugiere limitaciones en 
ambientes estacionales con baja disponibilidad de recursos. 

Sin embargo, el tamaño del prosencéfalo en roedores, ranas 
y aves están relacionadas con la complejidad del hábitat que 
ocupan (Heldstab et al., 2022) 

Otro factor que influye con la morfología del encéfalo es la 
estrategia reproductiva y el cuidado parental. MacIver y Finlay 
(2022) proponen una relación inversa: a mayor descendencia 
y menor cuidado parental, menor es el tamaño del encéfalo. 
Esta hipótesis se alinea con los hallazgos en Colossoma 
macropomum (pez) y Leptodactylus sp. (anfibio) que presentan 
encéfalos pequeños. En contraste, Gallus gallus domesticus (ave) 
y los mamíferos del estudio, que tienden a tener encéfalos más 
grandes, generalmente invierten más energía en el cuidado de 
su descendencia (Griesser et al., 2023). El Caiman crocodilus 
(babilla) representa una excepción interesante, ya que tiene 
alta descendencia, pero presentan cierto grado de cuidado 
parental (Heldstab et al., 2022).

A nivel funcional, el encéfalo es crucial para todas las 
funciones vitales del organismo (Hernández et al., 2022). La 
integración sensorial, que presenta una función importante 
relacionada a la sobrevivencia y la etología del animal 
(Felix et al., 2022), las funciones respiratorias, el sistema 
cardiovascular y las actividades gastrointestinales, son 
manejadas por el bulbo raquídeo, los movimientos oculares 
y su integración a la audición por el mesencéfalo, mientras 
que el cerebelo se encarga de coordinación motora y el 
equilibrio (Martins, 2023). 

Además, el telencéfalo se encuentra asociado con 
procesos cognitivos como el pensamiento, la memoria 
y las decisiones (Corona, 2021). Finalmente, los bulbos 
olfatorios, cuyas variaciones se notaron entre especies, 
procesan la información olfativa (Pereyra et al., 2024), una 
función sensorial critica para la supervivencia y la búsqueda 
de alimentos en muchos vertebrados.

CONCLUSIONES

Las comparaciones morfológicas del encéfalo confirman 
que, a pesar de las diferencias significativas en tamaño y 
forma, existe una notable conservación de las subdivisiones 
estructurales encefálicas generales en las cinco clases de 
vertebrados estudiadas, lo que sugiere un plan corporal 
compartido, modificado por la evolución adaptativa 
específica de cada grupo.

Las variaciones morfométricas significativas, 
especialmente el tamaño relativo del prosencéfalo (cerebro), 
se correlacionaron con el grado de complejidad cognitiva 
y etológica de las especies. Estas fueron más evidentes en 
los mamíferos (bovino, porcino, canino), que presentaron 
estructuras con mayor grado de desarrollo asociadas a una 
mayor flexibilidad conductual y estrategias sociales más 
complejas, mientras que especies como el pez, el ave o el 
anfibio mostraron una morfología encefálica más simple, 
acorde con estrategias de supervivencia menos exigentes 
cognitivamente.

Tabla 1. Número total de biomodelos en 3D.

N° de biomodelos en 3D Especie

1 Bos taurus

1 Sus scrofa domesticus

1 Canis familiaris

1 Mus musculus

1 Gallus gallus domesticus

1 Colossoma macropomum

1 Caiman crocodilus

1 Leptodactylus sp
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Tabla 2. Medidas morfométricas del encéfalo en las diferentes especies.

Especies

Variable Bos taurus Sus scrofa Mus musculus Canis familiaris

A. H-izq (VD) 1,06 ± 0,00058B 1,87 ± 0,00058D 2,09 ± 0,00058E 2,11 ± 0,00058F

L.H- izq (VD) 3,23 ± 0,00058C 3,6 ± 0,00058D 4,17 ± 0,00058E 4,47 ± 0,00058H

A. H- der (VD) 2,36 ± 1,4A 2,15 ± 1,4A 2,04 ± 1,4A 1,85 ± 1,4A

L. H- der (VD) 3,21 ± 0,00058C 3,61 ± 0,00058D 4,17 ± 0,00058E 4,39 ± 0,00058H

A. lob- Fr. (VD) 1,59 ± 0,00047E 1,25 ± 0,00047C 0,54 ± 0,00047B 1,51 ± 0,00047D

L. lob-F. (VD) 1,01 ± 0,00047C 1,34 ± 0,00047D 0,89 ± 0,00047B 1,63 ± 0,00047E

A. lob- Par (VD) 2,11 ± 0,00047E 1,27 ± 0,00047B 1,74 ± 0,00047C 1,89 ± 0,00047D

L lob- Par (VD) 1,14 ± 0,0027B 1,96 ± 0,0027E 1,17 ± 0,0027C 1,29 ± 0,0027D

A. lob-Occ (VD) 0,96 ± 0,00047B 2,15 ± 0,00047E 1,89 ± 0,00047C 1,91 ± 0,00047D

L. lob-Occ (VD) 0,79 ± 0,00047B 1,98 ± 0,00047E 1,26 ± 0,00047C 1,6 ± 0,00047D

A. Fis-InterH. 2,36 ± 0,00047E 0,14 ± 0,00047B 2,18 ± 0,00047D 0,32 ± 0,00047C

L. Fis-InterH. 0,21 ± 0,00047B 3,1 ± 0,00047D 1,19 ± 0,00047C 3,44 ± 0,00047E

A. Cer (VD) 2,89 ± 0,00058G 2,84 ± 0,00058C 0,29 ± 0,00058F 2,79 ± 0,00058E

L. Cer (VD) 1,77 ± 0,00062G 1,19 ± 0,00062C 1,66 ± 0,00062F 1,66 ± 0,00062E

A. BRq (VD) 0,87 ± 0,01C 1 ± 0,01D 3,3 ± 0,01F 0,00033 ± 0,01A

L. BRq (VD) 1,05 ± 0,0005E 0,93 ± 0,0005D 1,96 ± 0,0005F 0,00033 ± 0,0005A

A. lob- opt (VD) 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A

L. lob- opt (VD) 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A

A. Cbelo (VD) 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A

L. Cbelo (VD) 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A

A. M esp (VD) 0,00033 ± 0,00041A 0,00033 ± 0,00041A 0,00033 ± 0,00041A 0,00033 ± 0,00041A

L. M esp (VD) 0,00033 ± 0,00041A 0,00033 ± 0,00041A 0,00033 ± 0,00041A 0,00033 ± 0,00041A

A. lob-Olf (VD) 0,00033 ± 0,00037A 0,00033 ± 0,00037A 0,00033 ± 0,00037A 0,00033 ± 0,00037A

L. lob-Olf (VD) 0,00033 ± 0,00037A 0,00033 ± 0,00037A 0,00033 ± 0,00037A 0,00033 ± 0,00037A

A. Tel (VV) 2,14 ± 0,00047D 2,48 ± 0,00047E 1,72 ± 0,00047B 1,85 ± 0,00047C

L. Tel (VV) 3,32 ± 0,00047B 3,78 ± 0,00047C 3,98 ± 0,00047D 4 ± 0,00047E

A. T-enc (VV) 2,73 ± 0,00047D 3,71 ± 0,00047E 2,02 ± 0,00047C 1,52 ± 0,00047B

L. T-enc (VV) 3,54 ± 0,0023C 2,27 ± 0,0023B 3,66 ± 0,0023E 3,63 ± 0,0023D

A. Die (VV) 2,03 ± 0,0005E 1,46 ± 0,0005E 1,13 ± 0,0005D 0,68 ± 0,0005B

L. Die (VV) 0,84 ± 0,0005C 0,91 ± 0,0005E 1,61 ± 0,0005F 0,89 ± 0,0005D

A. Pros (VV) 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A

L. Pros (VV) 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A

A. Mes (VV) 1,56 ± 0,00058D 1,61 ± 0,00058F 1,59 ± 0,00058E 0,7 ± 0,00058A

L. Mes (VV) 0,4 ± 0,00058A 0,58 ± 0,00058B 0,62 ± 0,00058C 0,4 ± 0,00058A

A. Met (VV) 1,53 ± 0,00047C 1,66 ± 0,00047D 1,72 ± 0,00047E 1,18 ± 0,00047B

L. Met (VV) 0,67 ± 0,00047D 0,68 ± 0,00047E 0,47 ± 0,00047C 0,38 ± 0,00047B

A. Miel (VV) 1,58 ± 0,00047B 1,68 ± 0,00047C 1,97 ± 0,00047D 2,02 ± 0,00047E

L. Miel (VV) 1,67 ± 0,00047D 1,54 ± 0,00047C 1,4 ± 0,00047B 2,13 ± 0,00047E

A. Cer (VV) 1,15 ± 0,00047D 0,73 ± 0,00047B 1,19 ± 0,00047E 0,85 ± 0,00047C

L. Cer (VV) 1,14 ± 0,00047D 1,08 ± 0,00047C 0,96 ± 0,00047B 1,58 ± 0,00047E

A. Rom (VV) 0,00033 ± 0,06A 0,00033 ± 0,06A 0,00033 ± 0,06A 0,00033 ± 0,06A

L. Rom (VV) 0,00033 ± 0,03A 0,00033 ± 0,03A 0,00033 ± 0,03A 0,00033 ± 0,03A
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Comparaciones morfológicas del encéfalo en vertebrados mediante biomodelos en 3D

Acta Biol. Colomb., 30(3) 136-146 Septiembre - Diciembre 2025–143

Especies

Variable Bos taurus Sus scrofa Mus musculus Canis familiaris

A. BRaq (VV) 0,00033 ± 0,00044A 0,00033 ± 0,00044A 0,00033 ± 0,00044A 0,00033 ± 0,00044A

L. BRaq (VV) 0,00033 ± 0,00044A 0,00033 ± 0,00044A 0,00033 ± 0,00044A 0,00033 ± 0,00044A

A. lob-Olf (VV) 0,00033 ± 0,00033A 0,00033 ± 0,00033A 0,00033 ± 0,00033A 0,00033 ± 0,00033A

L. lob-Olf (VV) 0,00033 ± 0,00033A 0,00033 ± 0,00033A 0,00033 ± 0,00033A 0,00033 ± 0,00033A

A. M esp (VV) 0,00033 ± 0,00044A 0,00033 ± 0,00044A 0,00033 ± 0,00044A 0,00033 ± 0,00044A

L. M esp (VV) 0,00033 ± 0,00037A 0,00033 ± 0,00037A 0,00033 ± 0,00037A 0,00033 ± 0,00037A

Especies

 Variable Colossoma macropomum Leptodactylus sp Caiman crocodilus Gallus gallus 

A. H-izq (VD) 1,04 ± 0,00058A 1,04 ± 0,00058A 1,53 ± 0,00058C 2,58 ± 0,00058G

L.H- izq (VD) 3,04 ± 0,00058B 4,21 ± 0,00058G 2,01 ± 0,00058A 4,19 ± 0,00058F

A. H- der (VD) 5,29 ± 1,4A 1,19 ± 1,4A 1,23 ± 1,4A 2,58 ± 1,4A

L. H- der (VD) 3,07 ± 0,00058B 4,19 ± 0,00058F 1,63 ± 0,00058A 4,29 ± 0,00058G

A. lob- Fr. (VD) 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A

L. lob-F. (VD) 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A

A. lob- Par (VD) 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A

L lob- Par (VD) 0,00033 ± 0,0027A 0,00033 ± 0,0027A 0,00033 ± 0,0027A 0,00033 ± 0,0027A

A. lob-Occ (VD) 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A

L. lob-Occ (VD) 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A

A. Fis-InterH. 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A

L. Fis-InterH. 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A

A. Cer (VD) 1,14 ± 0,00058B 1,02 ± 0,00058A 1,32 ± 0,00058D 2,19 ± 0,00058H

L. Cer (VD) 1,14 ± 0,00062B 0,36 ± 0,00062A 1,38 ± 0,00062D 2,17 ± 0,00062H

A. BRq (VD) 0,64 ± 0,01B 1,1 ± 0,01E 0,00033 ± 0,01A 0,00033 ± 0,01A

L. BRq (VD) 0,81 ± 0,0005B 0,85 ± 0,0005C 0,00033 ± 0,0005A 0,00033 ± 0,0005A

A. lob- opt (VD) 1,3 ± 0,00047D 1,15 ± 0,00047C 0,91 ± 0,00047B 1,78 ± 0,00047E

L. lob- opt (VD) 1,77 ± 0,00047E 0,94 ± 0,00047C 0,63 ± 0,00047B 1,57 ± 0,00047D

A. Cbelo (VD) 1,76 ± 0,00047D 0,93 ± 0,00047B 1,32 ± 0,00047C 2,12 ± 0,00047E

L. Cbelo (VD) 2,31 ± 0,00047E 1,08 ± 0,00047C 0,89 ± 0,00047B 2,19 ± 0,00047D

A. M esp (VD) 0,81 ± 0,00041B 0,00033 ± 0,00041A 0,91 ± 0,00041C 0,00033 ± 0,00041A

L. M esp (VD) 0,57 ± 0,00041B 0,00033 ± 0,00041A 2,25 ± 0,00041C 0,00033 ± 0,00041A

A. lob-Olf (VD) 0,00033 ± 0,00037A 1,02 ± 0,00037B 0,00033 ± 0,00037A 0,00033 ± 0,00037A

L. lob-Olf (VD) 0,00033 ± 0,00037A 0,57 ± 0,00037B 0,00033 ± 0,00037A 0,00033 ± 0,00037A

A. Tel (VV) 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A

L. Tel (VV) 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A

A. T-enc (VV) 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A

L. T-enc (VV) 0,00033 ± 0,0023A 0,00033 ± 0,0023A 0,00033 ± 0,0023A 0,00033 ± 0,0023A

A. Die (VV) 0,00033 ± 0,0005A 0,00033 ± 0,0005A 0,89 ± 0,0005C 0,00033 ± 0,0005A

L. Die (VV) 0,00033 ± 0,0005A 0,00033 ± 0,0005A 0,68 ± 0,0005B 0,00033 ± 0,0005A

A. Pros (VV) 0,59 ± 0,00047B 2,86 ± 0,00047D 1,42 ± 0,00047C 2,95 ± 0,00047E

L. Pros (VV) 1,41 ± 0,00047C 1,12 ± 0,00047B 1,9 ± 0,00047D 3,7 ± 0,00047E

A. Mes (VV) 1,14 ± 0,00058B 1,26 ± 0,00058C 1,93 ± 0,00058H 1,62 ± 0,00058G

L. Mes (VV) 1,48 ± 0,00058E 1,42 ± 0,00058D 1,7 ± 0,00058F 2,18 ± 0,00058G

A. Met (VV) 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A

L. Met (VV) 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A
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Especies

Variable Bos taurus Sus scrofa Mus musculus Canis familiaris

A. Miel (VV) 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A

L. Miel (VV) 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A

A. Cer (VV) 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A

L. Cer (VV) 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A 0,00033 ± 0,00047A

A. Rom (VV) 1,02 ± 0,06B 1,34 ± 0,06C 0,85 ± 0,06B 2,4 ± 0,06D

L. Rom (VV) 2,03 ± 0,03B 1,95 ± 0,03B 2,21 ± 0,03C 3,02 ± 0,03D

A. BRaq (VV) 0,00033 ± 0,00044A 1,250 ± 0,00044C 0,960 ± 0,00044B 1,870 ± 0,00044D

L. BRaq (VV) 0,00033 ± 0,00044A 1,64 ± 0,00044C 0,85 ± 0,00044B 1,98 ± 0,00044D

A. lob-Olf (VV) 0,00033 ± 0,00033A 0,00033 ± 0,00033A 0,34 ± 0,00033B 0,00033 ± 0,00033A

L. lob-Olf (VV) 0,00033 ± 0,00033A 0,00033 ± 0,00033A 0,46 ± 0,00037B 0,00033 ± 0,00033A

A. M esp (VV) 0,57 ± 0,00044B 0,00033 ± 0,00044A 0,00033 ± 0,00044A 0,00033 ± 0,00044A

L. M esp (VV) 1,080,00037B 0,00033 ± 0,00037A 0,00033 ± 0,00037A 0,00033 ± 0,00037A

p-valor= <0,0001 obtenido en todos los datos. Medias con una letra común no son significativamente diferentes (p > 0,05)

VV Vista ventral VD Vista dorsal A Ancho

L Largo H Hemisferio Fr Frontal

Occ Occipital Cbelo Cerebelo Fis- InterH Fisura interhemisférica

Cer Cérebro Olf Olfatório T-enc Tronco encefálico

Optico Óptico Die Diencéfalo M esp Médula espinal

Rom Rombencéfalo Tel Telencéfalo Miel Mielencéfalo

Par Parietal Mes Mesencéfalo Met Metencéfalo

BRq Bulbo raquídeo Pro Prosencéfalo Lob Lóbulo 

La combinación de metodologías (obtención de 
especímenes, técnicas fotográficas y generación de 
biomodelos 3D) permitió la visualización y el análisis de 
las estructuras encefálicas facilitando la comprensión de 
las relaciones morfoanatómicas, fisiológicas y etológicas 
específicas de cada clase taxonómica.
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