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ABSTRACT

This paper presents a novel strategy for building a high-dimensional feature space to
represent histopathology image contents. Histogram features, related to colors, textures
and edges, are combined together in a unique image representation space using kernel
functions. This feature space is further enhanced by the application of Latent Semantic
Analysis, to model hidden relationships among visual patterns. All that information is
included in the new image representation space. Then, Support Vector Machine
classifiers are used to assign semantic labels to images. Processing and classification
algorithms operate on top of kernel functions, so that, the structure of the feature space
is completely controlled using similarity measures and a dual representation. The
proposed approach has shown a successful performance in a classification task using
a dataset with 1,502 real histopathology images in 18 different classes. The results show
that our approach for histological image classification obtains an improved average
performance of 20.6% when compared to a conventional classification approach based
on SVM directly applied to the original kernel.

Key words: Automatic image annotation, machine learning.

RESUMEN

Este trabajo presenta una estrategia nueva para la construcción de un espacio de ca-
racterísticas de gran dimensionalidad para la representación del contenido de imágenes
de histopatología. Histogramas de características, relacionados con colores, texturas y
bordes, son combinados para obtener una única representación de la imagen utilizando
funciones de kernels. Este espacio de características es mejorado mediante la aplicación
de Análisis de Semántica Latente, para modelar relaciones ocultas entre los patrones
visuales. Esta información es incluida en la representación de la imagen en el nuevo es-
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pacio. Luego, un clasificador de Máquinas de Vectores de Soporte es utilizado para
asignar etiquetas semánticas a las imágenes. Algoritmos de procesamiento y de clasi-
ficación son utilizados en las funciones del kernel, por lo que la estructura del espacio
de características es completamente controlada mediante medidas de similitud y la
representación dual. El enfoque propuesto mostró un desempeño exitoso en la tarea de
clasificación con un conjunto de datos de 1.502 imágenes reales de histopatología en
18 clases diferentes. Los resultados muestran que nuestro enfoque para la clasifica-
ción de imágenes histológicas obtiene una mejora promedio en el rendimiento del
20,6% en comparación con un método de clasificación convencional, basado en la
aplicación de una Máquina de Vectores de Soporte sobre la función de kernel original.

Palabras clave: anotación automática de imágenes, aprendizaje máquina.

INTRODUCTION

Histology samples have been successfully used to diagnose a wide range of diseases,
specially related to cancer (Lee et al., 2009). Pathologists evaluate histology sections under
the microscope to identify affected biological structures and determine the grade of the
lesion. Observations under the microscope can be captured using a digital camera to
document the case, elaborate reports and facilitate the exchange of information in
research. Pathology departments in hospitals and universities can accumulate large
amounts of histology images in digital format, whether they are archived in a unified
information system, a common storage service or personal databases. These image
collections may be used as reference material to support the decision making process in
clinical services, for instance, when a physician wants to observe previously diagnosed
cases, either by himself or other experts, to confirm the current findings. Also, a
histopathology image collection may be used in research to follow up a disease across
different patients, observing tissue mutation or recovery and characterizing visual patterns.
Accessing a large collection of medical images in order to obtain useful information is a
difficult task. A human being can only manage a limited amount of images in personal
archives, on the order of some hundreds. In a collaborative environment, such as an
information system in a large hospital, users are not aware of the complete contents in
the image collection. So that, when users need some images to support a particular task,
they will often review only previously known records, limiting the possibility of accessing
other useful information. Automatic analysis of image contents has been proposed for a
wide range of applications (Smeulders et al., 2000; Müller et al., 2004). In the area of
histology images, some approaches have been proposed to design visual similarity
measures among image contents (Caicedo et al., 2008; Caicedo et al., 2009; Lee et al.,
2009) and to automatically annotate histopathology images (Caicedo et al., 2009). The
main purpose of these approaches is to be able to identify the semantic meaning of the
image content to support case-based reasoning or evidence based medicine.
In this paper, we propose a novel strategy to represent visual image contents to feed an
automatic annotation system for histopathology images. Previous studies have shown
that histopathology patterns rely on different characteristics such as color, morphology
and textures (Caicedo et al., 2009; Caicedo et al., 2008). To increment the accuracy of
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classification algorithms, we involve different visual features that complement each other.
We propose an efficient and extensible approach to include many features in the same
representation space to classify image contents. The combination of features is performed
using kernel functions that map input data to a new feature space in which all visual
features are combined. In addition, this combined feature space is processed using Latent
Semantic Kernels to identify statistical relationships between visual patterns, and the
obtained information is also included in the new image representation. Since the proposed
algorithms are based on kernel functions, the input data in our framework may be easily
extended to use structured objects such as graphs or trees. In fact, the proposed feature
representation in this work is based on histogram structures, which are mapped to a
feature space using a kernel function to exploit the geometric structure of such data.
The proposed approach results into a rich feature space to represent the visual contents of
histopathology images. Afterwards, the task is to assign to each image a subset of labels
from a predefined semantic vocabulary that describes histopathology image concepts. We
used Support Vector Machine (SVM) classifiers to identify semantic concepts in images
given a multi-feature representation. Experimental results showed an important
improvement in classification performance using the proposed approach, with respect to
individual visual features strategy. This paper is organized as follows: Section 2 presents the
classification problem and the feature extraction, Section 3 describes the methods and
models applied in the proposed method. The experimental setup and experimental
evaluation is presented in Section 4 and finally, Section 5 presents some concluding remarks.

MATERIALS AND METHODS

Images used in this work have been acquired to diagnose basal cell carcinoma, the most
common skin cancer in white populations (Wong et al., 2003). The whole histopathology
collection is composed of 5,995 images at 1,280×1,024 pixels, acquired under a Nikon
microscope at the Pathology Lab. In the acquiring process a set of clinical cases was
selected, related to different patients. Each patient sample was put under the microscope
and after a visual inspection some images are captured at different zoom levels. A histology
section is evaluated by pathologist to grade the severity of the lesion, follow up the patient
condition and recommend treatments. An image collection is constantly feed at the
Pathology Laboratory of the National University of Colombia with new cases and new
patients, for clinical evaluations and research activities (Caicedo et al., 2008). Images were
stored in a common directory in JPG format for their later analysis. From this collection,
researchers selected a subset of 1,502 images with different structures and lesion severities,
organizing them according to 18 concepts related to carcinoma patterns or biological
structures. As a result, the later process gives a dataset with images and descriptions of their
related concepts, in which one image may contain several concepts associated to it. The
challenge in this dataset is to identify as many correct concepts for each image from all the
possible ones that we can assign to each, that is why this is not a multiclass classification
problem. The list of histopathology concepts is shown on Table 1. 
This dataset contains image examples of diverse carcinoma patterns and the collection
also includes a set of images without any lesion. The dataset has been previously used
for testing content-based image retrieval systems and classification systems as well
(Caicedo et al., 2009; Caicedo et al., 2008).



FEATURE EXTRACTION

The purpose of this work is to include different features in the image representation. We
selected six different histogram features, each capturing the probability distribution of
different characteristics in the image. The first two histograms are related to color and
luminance: the RGB color histogram, with 512 bins, and the Gray scale histogram. Two
additional histograms related to texture have been extracted: Tamura Textures (Deselaers
et al., 2004) and Local Binary Patterns (Berman et al., 1998). The last two histograms
capture information of edges and invariant features: Sobel histogram and Invariant
Feature histogram (Deselaers et al., 2004). Note that all features in this evaluation are
global histograms, measuring the overall distribution of visual characteristics in
histopathology images. To avoid the problem of working with histograms from different
representations, histograms are normalized from frequency distributions to probability
distributions, that is, adding the values in their bins, sums up to 1.
Also, we assume these distributions capturing enough global information from image
content, even though similar images can have different histograms. In content-based systems,
a common problem occurs when similar images have different meanings or different images
have the same meaning, this is called the semantic gap and we tackle this problem using
machine learning strategies to map low level features to histopathology concepts.
We did not evaluate different feature configurations to observe whether they help to
improve the results because this is not part of our contribution. The feature configuration
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                                                  Baseline                     Multi-Feature Representation Space
Concepts                                     P          R         F           P           R          F          k            α          Performance
                                                                                                                                                        Improvement
Pilosebaceous annexa                0.58     0.43    0.49     0.59     0.54     0.57    1,000    0.75    15.3%
Cystic change                              0.85     0.62    0.72     0.88     0.71     0.79    100       0.25    10.1%
Elastosis                                      0.79     0.38    0.52     0.88     0.42     0.57    200       0.25    10.5%
Eccrine glands                             0.70     0.21    0.32     0.65     0.35     0.46    400       0.25    43.2%
Lymphocyte infiltrate                 0.57     0.33    0.42     0.53     0.41     0.46    200       0.25    10.6%
Perineural invasion                     0.00     0.00    -           0.00     0.00     -           -            -           -
Lesion with fibrosis                    0.83     0.55    0.66     0.82     0.61     0.70    800       0.75    6.0%
Micronodules                             1.00     0.17     0.29     0.67     0.33     0.44    600       0.25    55.6%
Necrosis                                      1.00     0.40    0.57     1.00      0.40     0.57    200       0.75    0.0%
N-P-C. elastosis                          0.75     0.50    0.60     0.88     0.58     0.70    1,200    0.25    16.7%
N-P-C. fibrosis                            1.00     0.15     0.25     1.00      0.38     0.55    100       0.75    114.3%
N-P-C. infiltrate                          0.68     0.29    0.41     0.59     0.42     0.49    100       0.50    21.5%
N-P-C. pilosebaceous annexa    0.33     0.09    0.14     0.33     0.09     0.14    100       0.75    0.0%
N-P-C. trabeculae                       0.00     0.00    -           0.50     0.25     0.33    800       0.25    -
Morpheaform pattern                0.82     0.58    0.68     0.83     0.63     0.71    300       0.75    4.7%
Rod trabeculae                           0.83     0.20    0.32     0.67     0.27     0.38    200       0.25    18.1%
Ulceration                                   0.50     0.20    0.29     0.50     0.20     0.29    300       0.75    0.0%
Sanguineous vessel                     0.60     0.24    0.35     0.54     0.27     0.36    100       0.50    3.7%

Table 1. Precision (P), Recall (R), F-measure (F) of baseline and the proposed method for the 18
concepts. Values showed are the results for the best parameters combinations in Multi-Feature
Representation Space.



has been selected just as has been reported in the literature (Barla et al., 2003), to make
the process easier we use 512 bins in the histogram representations.

MULTI-FEATURE REPRESENTATION SPACE

Kernel functions. Since input objects in this work are histogram features, we chose the
Histogram Intersection Kernel (Barla et al., 2003) to evaluate the similarity between a
pair of features and to embed the visual characteristics in a high-dimensional vector
space. This similarity measure calculates the common area between two given
histograms, and this operation has been proved to be a valid Mercer’s kernel (Barla et
al., 2002). The computation of this kernel is as follows:

where h1 and h2 are the j-th histogram of images 1 and 2 respectively, and hf(i)
1, hf(i

2 are
the i-th bins in the j-th histogram for image 1 and image 2 respectively. This operation
is evaluated between a pair of histograms of the same nature, e.g. between color
histograms or texture histograms. This leads to a different feature space for each visual
characteristic. In order to concatenate the corresponding feature spaces for each visual
characteristic, we designed a new kernel function that corresponds to the linear
combination of the histogram intersection kernel evaluated in different feature spaces:

where I1 and I2 are images. All features have the same weight with this formulation, i.e.
all features are of the same importance. Using the kernel function kc, images are now
embed in a high dimensional feature space containing all visual characteristics. This
new feature space will be named the combined feature space through this work. Note
that this embed leads to a feature space that is completely different to one in which all
histograms are concatenated before the evaluation of the kernel function, since the
structure of each histogram is preserved in the resulting high dimensional feature space.
We can build a kernel matrix that contains the values obtained with the kernel function
combination between the images in the collection. This matrix is defined as:

This matrix can be rewritten like a K = DD’, where the D matrix is a term-document
matrix and the kernel function used is a dot product.

FINDING VISUAL PATTERN RELATIONSHIPS

Additionally to concatenate all feature spaces, we want to explicitly include information
of the correlation among different visual characteristics. Latent Semantic Analysis (LSA)
is a technique used in text document (Deerwester et al., 1999) for addressing two
commons problems: polysemy and synonymity. Singular Value Decomposition (SVD) is
applied to the term-document matrix in this technique, and using only the Eigenvectors
with the k largest Eigenvalues, it is possible to build a new space to represent the
documents. Semantics relationships are found in the new space because the terms are

Acta biol. Colomb., Vol. 15 N.º 3, 2010   255



mapped to concepts. The use of LSA is herein proposed to discover latent associations
between visual patterns in the combined feature space (Monay et al., 2003). Imagine that
histopathology images frequently reveal texture patterns with a purple color, or some pink
edges. Since feature spaces have been modeled in an independent way, these relationships
are not quite explicit in the combined feature space. We would like to include this
information in the image representation as well, so that, in addition to the coordinates
that are indexed by colors, textures and edges, we want to index additional coordinates
with those feature associations that reveal latent patterns in histopathology images.
The algorithm to tackle this problem in a kernel-induced feature space is Latent Semantic
Kernels (LSK; Cristianini et al., 2002), that allows us to perform Latent Semantic Analysis
without having explicit feature vectors for the image representation. So far, the combined
feature space is an image representation space induced by the linear combination of
different visual characteristics evaluated with the histogram intersection kernel. Using a
training sample of images in the combined feature space, LSK identifies an orthogonal basis
for the training data, sorted according to the directions of maximum variance. This is done
by decomposing the kernel matrix for a training dataset in Eigenvectors and Eigenvalues.
We want to model the directions of maximal variance of the data in the combined feature
space, so that, a dual representation of the vectors in the feature space is required.
Assuming D as the matrix with the feature vectors in the combined feature space, we have:

where U is the matrix with the Eigenvectors of the co-occurrence matrix and  the
Eigenvectors of the kernel matrix. We want to project any given feature vector in the
first  components of  to reorganize the dataset in terms of the directions of maximal
variance. This can be done as follows (Cristianini et al., 2002): 

where φ(I) is the image representation in the combined feature space, (λi, vi) is the i-th
Eigenvalue, Eigenvector pair of the kernel matrix, and kc is the kernel function in the
combined feature space. This new representation of the data only contains the
information of correlated patterns, and this will be named the latent semantic space in
this paper. The kernel in the latent semantic space can be calculated using:

Note that all the computations can be reduced to evaluations of the kernel function in
the combined feature space, kc. By projecting the image representation into a latent
semantic space with reduced dimensions, an implicit feature fusion leads to index the
coordinates of this new space with the most significant correlations between visual
patterns in the combined feature space.

MULTI-FEATURE REPRESENTATION SPACE

So far, we have two different representation spaces for image contents: the combined
feature space and the latent semantic space. These spaces offer different advantages,
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the combined feature include all information without information discard, but on the
other hand, the visual feature relationships are present in the latent semantic space. To
complete the multi-feature representation space, a convex combination of both feature
spaces is designed:

where αε[0,1]. This combination embeds the image representation in a feature space
with the information of the combined feature space concatenated with the latent
semantic space. The parameter α allows controlling the importance of each coordinate
in the final image representation. The complete image representation in the multi-
feature representation space is calculated by evaluating the new kernel function  in a pair
of histopathology images.

EXPERIMENTAL SETUP

An experiment with a set of 1,502 histopathology images was performed. These images
were labeled by experts with 18 different labels, where each one may be present or not in
each image. Low level features (colors, textures, edges) were taken into account for the
representation of the images. The set was split into two subsets, 1,201 images for training
to build latent semantic space and tune the parameters of the SVM, and the other 301
images to evaluate the performance of the proposed strategy. Three different values of α
were evaluated and the results obtained with the original kernel were used as the baseline.
Note that when α = 0 we have the combined features space, and the latent semantic space
is obtained when α = 1. With α = 0.5, the combined features space is as weighted as latent
semantic space, but when α = 0.25 and α = 0.75 we assigned different weights for the
spaces. We test all these values, but only the last three values for α are related to the multi-
features representation space and the first one is the baseline.
These experiments give insights on how the method performs, however a more systematic
evaluation of the impact of this parameter has to be done. This is part of our future work.
The measures used to evaluate the results are Precision, Recall and F-measure which are
defined as follows:
Where tp are the number of images with the correct histopathology concept assigned, fp
are the number of images that the system assigned incorrectly assigned the histopathology

concept, and f n is the number of the images that contained the histopathology concept
but the system did not find. We used F-measure to tune the parameters because it
provides a unified measure that includes precision and recall simultaneously. Also, specific
Precision and Recall measures are reported for the final test.
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RESULTS

We used as baseline the values of Precision, Recall and F-measure obtained to each
concept with a classifier that uses only one feature set. Our method did not compare
with other methods, because these experiments were made to compare classifiers that
use a multi-feature strategy against a classifier that use only the adding features to
determine if using our latent multiple features lead to better results.
Our reported results are based on experiments conducted on a training set with 1,200
images and a test set with 301 images. 10-folding cross validation was used for tuning
the parameters with the training set, and the measure used to select the better SVM
parameters was F-measure. Then, the trained SVM model is applied to the test set; these
results used the same parameters found in the 10-fold cross validation process. It is not
necessary to repeat over the test set because there are not variances.
Table 1 shows in the three first columns Precision, Recall and F-measure obtained for the
baseline and the next columns show the best values of Precision, Recall and F-measure
obtained by the proposed method for each of the concepts in the histopathology images
with the respective values of α and k. The last column shows the Performance Improvement
obtained with respect to F-measure results of the baseline. The obtained results show that
the proposed model provides better performance with respect to the baseline and the
average improvement obtained for all histopathology concepts is 21%. For N-P-C. fibrosis
the improvement can be easily observed, however, in some cases we do not get improvement
at all or it is very low. In three cases the method does not show an improvement, this is the
case of Necrosis, N-P-C. infiltrate and Perineural invasion concepts. To Perineural invasion,
the F-measure is not reported because it cannot be calculated, since the Recall and Precision
values are zero. To N-P-C. trabeculae, the baseline do not get any good results and the
proposed method assigned some rights labels but the Performance Improvement cannot
be calculated, because the F-measure value cannot be calculated to the baseline as in
Perineural invasion. The largest improvement was present in N.P.C. Fibrosis and the results
show an increase in the Recall value obtained for our method but the Precision value is the
same. This result was common in almost all histopathology concepts, the Precision value
do not increase or only slightly and the Recall value is increased.
Figure 1 illustrates the influence of α on the classification results. Specifically, it shows
the F-measure average obtained with the model for the histopathology concepts. To
combine the F-measure results of all these concepts, the values were weighted with the
test size of each one of the concept classes.
In figure 2 the size of the latent semantic space is studied. This shows the average
performance for the latent semantic space, the combined features space and the multi-
features representation space with best α values obtained (α = 0.75). In most k values
evaluated, we see that the average performance of the multi-features representation
space outperform the other models and the baseline, and the latent semantic space
showed a lower performance, showing that this text document strategy cannot be
directly applied in the histopathology image classification problem.
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CONCLUSIONS

In this paper an approach for histopathology image automatic annotation was introduced,
using a strategy based on the decomposition of the kernel matrix to exploit the latent
relationship between different low-level visual features. This method builds a new image
representation using a convex combination of two different spaces, the combined
feature space and the latent semantic space. This generalizes the representation and
makes possible to use only the original space, only the semantic space or the multi-
feature representation space. The results show that this representation outperform the
baseline method, the combined feature space and the latent semantic space, showing
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Figure 1. Average performance obtained for different values of the parameter.

Figure 2. Average performance dependence on the semantic space size (parameter k) for , latent
semantic space and combined feature space.



that visual patterns found in the multi-feature representation space can improve the
results obtained and help in the annotation task for almost all the concepts evaluated.
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