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ABSTRACT
Complex traits are those whose inheritance does not follow simple and predictable patterns. They are not governed by a single locus, 
instead, they are determined by several loci and are influenced by the environment. Most of the traits with agronomic interest and 
economic importance such as resistance to biotic and abiotic stress, and yield, among others, are quantitative traits and their study 
is based on dissecting the underlying genetic architecture, the number of loci responsible for the variance of a quantitative trait, 
the relevant contribution made by each locus and their interaction with the environment. This review provides the most relevant 
conceptual bases for the study of the genetic architecture of complex quantitative traits in plants. The methodologies that allow 
identifying the loci and candidate genes that govern this type of traits are described, such as QTL mapping by linkage and association 
mapping. In addition, the incorporation of these loci in phenotype prediction strategies such as marker-assisted selection and 
genomic selection, exhibits the benefits and limitations of these approaches. Finally, the challenges and perspectives facing the study 
of the genetic architecture of complex traits in plants are discussed.
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RESUMEN
Los rasgos complejos son aquellos cuya herencia no sigue patrones simples y predecibles. No están gobernados por un solo locus, 
sino que están determinados por varios loci y, además, están influenciados por el entorno. La mayoría de los rasgos de interés 
agronómico como la resistencia al estrés biótico y abiótico, el rendimiento, entre otros, son rasgos complejos, gobernados por 
múltiples genes a lo largo del genoma. El estudio de la arquitectura genética de rasgos complejos se basa en la identificación del 
número de loci asociados a un rasgo, la contribución individual de cada loci al rasgo, la heredabilidad y el grado de influencia que del 
ambiente en el fenotipo. Esta revisión proporciona los conceptos más relevantes para el estudio de la arquitectura genética de rasgos 
complejos en plantas. Se describen las metodologías que permiten identificar los loci y genes candidatos, que gobiernan este tipo 
de rasgos como el mapeo QTL por ligamiento y el mapeo por asociación. Además, la incorporación de estos loci en estrategias de 
predicción del fenotipo como la selección asistida por marcadores y la selección genómica, presentando los beneficios y limitaciones 
de estos enfoques. Finalmente, se presentan los desafíos y perspectivas que enfrenta el estudio de la arquitectura genética de rasgos 
complejos en plantas.

Palabras clave: Desequilibrio de ligamiento, loci de rasgos cuantitativos, rasgo poligénico, selección genómica.
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INTRODUCTION

Since the classic Mendel´s work in 1856, the research of 
“simple” inheritance traits, or monogenic, led the research 
in plant genetics in the XX century. The characterization 
of several monogenic traits has been achieved, identifying 
their governing locus, in model and non-model plant 
species. The study of monogenetic traits is relatively simple, 
phenotyping is performed in discrete qualitative categories 
and rarely presents ambiguities, which are a reflection of the 
underlying genotype (St.clair, 2010). On the other hand, the 
inheritance of quantitative traits is polygenic and complex 
in nature, as they are controlled by many genes and their 
interaction with each other and with the environment. 
The research on quantitative traits has bloomed in recent 
decades, in part because of the economic importance of 
these traits in agriculture, which become the interest and the 
focus of many plant breeding programs around the world. 
Several studies in model species and of agronomic interest 
have described phenotypes with continuous ranges, variable 
expressivity, and in most cases highly dependent on the 
environment, such as yield (Cai et al., 2016), resistance to 
biotics (Thoen et al., 2017), and abiotics factors (Pan et al., 
2015) they owe their dynamics to the orchestrated action of 
multiple loci.

A challenge for contemporary genetics is the 
understanding of how allelic variation causes phenotypic 
variation in complex traits. As well as describing the 
number of quantitative trait loci or QTL, that underlie 
their genetics, the possible interactions between these loci 
and their individual and synergistic effects. At the end, to 
describe its genetic architecture, including all those genetic 
contributions to the trait (Goddard et al., 2016). The 
challenge of dissecting complex traits does not stop at simply 
understanding and describing loci and candidate genes that 
govern traits, on the contrary, it goes further. Being able to 
use the molecular markers associated with QTLs in order 
to select individuals with greater effects, and thus, from 
the genotype, to predict the phenotype. Approaches such 
as marker-assisted selection (MAS) (Francia et al., 2005) 
and more recently genomic selection (GS) (Crossa et al., 
2017) have made progress in this regard for plant species 
of economic interest (Foolad and Panthee, 2012; Zhao et 
al., 2014)

Quantitative genetics is the branch of genetics that 
studies the factors that govern complex traits (Hill, 2010). 
This is supported by the development of different strategies 
that use models based on parametric and non-parametric 
statistics, as well as methodologies for genotyping and 
obtaining polymorphisms in the study of populations, 
and phenotyping of the trait, to identify the regions of the 
genome that are associated with the phenotype of interest 
(Hill, 2010). The most popular strategy is genetic mapping 
by QTL linkage and more recently association mapping or 
AM (Breseghello and Sorrells, 2006). 

A decade ago, the greatest challenge we had in QTL 
identification studies in both, plants, and animals, was 
to increase the number of polymorphisms obtained by 
genotyping in the populations, in order to capture all the 
allelic variants of the loci that govern the complex traits. 
However, thanks to the advances in next-generation 
sequencing technologies, this limitation has been overcome 
(Elshire et al., 2011). However, advances in genotyping and 
phenotyping techniques have not been synchronous. This 
has generated an urgent need to achieve robust, precise 
phenotypes and, if possible, obtained under different 
environmental conditions, since the complex traits are highly 
dependent on the environment.

This review presents the concepts and theorical principles 
of the quantitative genetics of complex traits in plants. 
Also, the current methodologies to decipher the genetic 
architecture of this type of traits are described, exposing their 
benefits and limitations. Finally, we discuss the challenges 
and the opportunities ahead in the field of studying complex 
traits in plants.

HISTORIC BACKGROUND

From a historical perspective, studying the genetics 
of heritable traits has two distinct paths according to the 
number of loci controlling the character, monogenic or 
polygenic. A division that reflects two distinct schools of 
geneticists since the early 1900’s (Robinson, 1996). The 
term for simple inheritance pattern -monogenic- derives from 
classical Mendel’s work with qualitative plant characters whose 
variation can be rated as present or absent. Given that each 
gene could represent two states, dominant or recessive, when 
an individual that has the same alleles, both dominant or 
recessive is considered homozygous, while an individual with 
one dominant allele and one recessive allele is heterozygous. 
The identification of monogenic traits in discrete categories, 
represents the underlying genotype and facilitates their 
study (St.clair, 2010). Traits such the monogenic potato 
resistance to some pathotypes of Synchytrium endobioticum, 
conferred by the Sen3 locus (Bartkiewicz et al., 2018) and 
the rice red seed color (Waghmode et al., 2017), are just two 
typical examples of agronomical monogenic traits and they 
are also referred commonly as mendelian traits. A distinct 
approach was considered when many genes contribute 
to one phenotypic trait - polygenic-, the characters that are 
quantitatively variable, those traits are not clearly separated in 
discrete classes. Geneticists interested in quantitative traits 
such as Charles Darwin, Thomas Huxley, and Francis Galton 
used continuous scales of measurements that when plotted, 
produced a bell-shaped curve, or normal distribution. 
Pearson later developed regression and correlation 
techniques for analysis of quantitative traits (Lynch and 
Walsh, 1998). In the early 1900’s the Mendelian school 
was working on single-gene characters, while the school of 
biometricians was dealing with quantitative traits (Lynch 
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and Walsh, 1998; Robinson, 1996). Among those early 
works in quantitative traits, the study of wheat seed coat 
color inheritance patterns by Nilsson-Ehle in 1908 (Nilsson-
Ehle, 1908), revealed a complex or ‘non-mendelian’ pattern, 
representing a trait value that varies continuously with 
contributions by multiple loci (Meunier, 2016).

The conceptual framework of quantitative genetics was 
developed after Fisher in 1919, who deduced that multiple 
loci contribute to one trait, producing continuously varying 
quantitative phenotypes when measured in populations 
(Boyle et al., 2017). The ‘infinitesimal model’ developed by 
Fisher states that when a large number of loci are associated 
to a trait, each loci contributes individually in an additive 
manner (Boyle et al., 2017; Fisher, 1919). At the time, was 
not possible to know how many genes were responsible for 
a specific trait value. A contrasting model was proposed by 
Wright (1931), whose premise indicates that complex traits 
are the outcome of multiple loci interacting, and the effect 
varies importantly according to the genetic background. Both 
models are considered nowadays relevant in understanding 
the genetic architecture of complex traits.

During the second half of the XX century, the 
understanding of DNA as genetic unit, and the advances in 
molecular biology techniques allowed progress in the field 
of quantitative genetics. The last few decades have provided 
new technologies and methodologies, such that nowadays 
it is understood that complex genetic traits, and their 
corresponding phenotypes- are those governed by multiple 
loci, their interaction, the environment, and the genetic 
context (Goddard et al., 2016).

GENETIC ARCHITECTURE: STUDY OF THE 
COMPOSITION AND DYNAMICS OF COMPLEX TRAITS

The modern field of quantitative genetics uses a collection 
of approaches aiming to understand the nature of genetic 
variation underlying quantitative traits (Bazakos et al., 
2017). The objective of studying a trait genetic architecture 
largely depend on whether it is a monogenic or polygenic 
trait. This, due to the variability in the way genes contribute 
to the phenotype, whether it is a single gene or multiple genes 
(Hansen, 2006). In the case of monogenic traits, the genetic 
architecture seeks to identify the functions of individual 
genes and the pathway that controls phenotypic variation 
(Hansen, 2006). In contrast, in a polygenic trait, the study 
of its genetic architecture seeks to identify the number of 
genes involved, the contribution of the different alleles of 
these genes to the trait, and the genetic interactions between 
them (Sella and Barton, 2019). 

The studies of the genetic architecture of complex traits 
increased in the 1970s, with the rise of molecular biology 
tools and the development of genotyping techniques based 
on the detection of DNA polymorphisms. These made it 
possible, through molecular markers, to develop linkage 
maps and to identify the QTLs of interest (Edwards et 

al., 1992; Remington, 2015). The first studies that were 
carried out on QTL identified chromosomal regions with 
great effects on agronomic traits such as grain yield in corn 
(Edwards et al., 1987), insect resistance mechanisms in 
tomato (Nienhuis et al., 1987) and the content of soluble 
solids in tomato fruits (Osborn et al., 1987), among others. 

Currently, the study of genetic architecture continues to 
be oriented towards the identification of QTLs associated 
with the phenotypic variability of the traits of interest. It 
integrates approaches such as linkage QTL mapping and 
association mapping. Successful cases of QTL mapping for 
yield have been identified for species such as rice (Zaw et 
al., 2019), soybean (Diers et al., 2018), and wheat (Li et 
al., 2019) among others. QTL mapping identified tolerance 
to abiotic stress in Arabidopsis thaliana (Thoen et al., 2017), 
cold tolerance in sorghum (Marla et al., 2019), and iron 
deficiency in soybean (Assefa et al., 2020). Also, resistance 
to biotic stress, such as disease resistance in A. thaliana 
(Rajarammohan et al., 2017), cassava- Manihot esculenta 
(Soto et al., 2017) and corn-Zea mays (Ju et al., 2017), 
among many others.

The increasing interest of understanding quantitative traits 
in multiple fields of biology such as evolutionary biology, 
plant physiology, crop breeding, among others implies that 
the extent of detail obtained for a quantitative trait can 
vary depending on the purpose and field of study. Within 
the context of evolutionary biology, genetic architecture is 
a tool to understand the genetic basis of adaptive traits, 
the phylogenetic constrains of polymorphic traits, and the 
genetic variation that arises from evolutionary forces such 
as selection and random drift (Morris et al., 2019). It also 
reveals the mechanisms for speciation as consequences of 
inbreeding and outcrossing, and develops predictive models 
for evolutionary change (Lynch and Walsh, 1998). In the 
field of plant physiology, genetic architecture has made 
possible to describe the genomic regions involved in the 
regulation of physiological processes such as photosynthesis 
and respiration (de Oliveira Silva et al., 2018).

This review considers four practical aspects that build 
up the conceptual framework of genetic architecture 
with focus on crops and plant breeding (Fig. 1). The first 
aspect is identifying the number and distribution of loci 
underlying the QTLs associated with the trait of interest, 
the gene content or copy number is useful for determining 
a genotypic value. The second aspect are the allelic effects, 
given by the additive genetic variance and the dominance 
genetic variance for each locus. Both genotypic values and 
variance partitioning are computed using statistical models 
accounting for all the loci and the interactions involved in the 
trait. The third consideration are the gene interactions, and 
the dynamics of the identified loci/genes. In some cases, two 
traits governed by different QTLs, have a genetic correlation 
due to linkage or pleiotropy. When multiple loci are linked, 
they are in physical proximity in the same chromosome, 
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by using repeated cycles of meiosis (selfing) those linked 
traits can be separated. On the other hand, pleiotropy of 
two traits controlled by the same loci cannot be changed 
by repeated cycles of meiosis and often has a physiological 
basis (Bernardo, 2010). A different type of gene interactions 
is epistasis, that occur between genes located at different loci 
(Yadav and Sinha, 2018). Unraveling the effects of epistatic 
and pleiotropic genes involved in genetic architecture goes 
beyond QTL linkage mapping and association mapping 
approaches. These techniques hardly detect interaction 
between genes, since they do not map a specific gene, but 
rather a region in which many genes are located (Flint and 
Mott, 2001), thereby representing a challenge within the 
techniques presented here.

The fourth consideration is the interaction of genotype 
and environment (G x E), since the effect of the environment 
on complex traits has been one of the key points in the 
dissection of the genetic architecture of complex traits in 

plants (Diouf et al., 2020). The ability of the genotype to 
give variability to phenotypes in response to the environment 
under which it is influenced, which is known as genotype-by-
environment interaction (G × E) (Zakir, 2018). 

QTL IDENTIFICATION: CORNERSTONES OF THE 
GENETIC ARCHITECTURE

QTLs are genomic regions (loci) that correlate with the 
variation of a quantitative or polygenic trait in a population 
of individuals of a species. The identification of QTL has been 
relevant for the scientific community because it provides: 1) 
a way to genetically dissect the quantitative variation that 
governs the traits of interest, 2) are informative about the 
selection of traits and parents in breeding programs, and 3) 
it allows to propose hypotheses about candidate genes that 
control a trait of interest (Hill, 2010). The approaches for 
QTL identification are based on associating the quantified 

Figure 1. Composition of the genetic architecture of a complex trait. Components of the genetic architecture of complex traits in plants 
explain the complexity of genetic architecture in plants and how multiple factors interact to influence trait expression These components 
include the influence of environmental factors and phenotypic plasticity, gene interactions such as epistasis and pleiotropy, allelic effects 
related to dominance and additivity, and the number and distribution of loci contributing to the trait.
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phenotype (phenotyping) in a specific population with 
genetic markers/variation (genotyping) present within the 
individuals in the study population(s). The most relevant 
considerations of each of these processes are presented 
below.

Genotyping 
After the explosion in the knowledge of both the physical 

and chemical properties of the DNA molecule between 
the 50’s and 70’s, and consequently the recognition of 
the existence of differences in DNA sequences between 
individuals of a population (polymorphisms), a new era 
was born for the study of genetic architecture. Molecular 
markers are defined as a particular segment of DNA that 
differs between individuals at the genome level, with a known 
location on a chromosome, and that can be associated with 
a particular gene or trait (Hayward et al., 2015). 

Molecular markers can be in linkage disequilibrium (LD) 
or segregating non-independently with the loci that influence 
the trait of interest. It is expected that the greater the linkage 
between them, the more frequently they segregate with 
the values of the phenotype of interest. While the unlinked 
markers will not show a significant association with the 
phenotype (Gupta et al., 2005).

The first studies on complex traits in plants were carried 
out by Sax (1923) in beans, whose available genetic markers 
at that time where morphological, histological, and 
biochemical, and were obtained with laborious process. Sax 
methodologies were the basis for establishing experimental 
QTL mapping (Sax, 1923).

Later on, Restriction Fragment Length Polymorphism 
(RFLP) were the first type of molecular markers distributed 
along the genome with sufficient density, that permitted 
the beginning of identification and characterization of 
QTL’s (Lander & Botstein, 1989). Besides RFLPs, Random 
Amplified Polymorphic DNA (RAPD) and simple sequence 
repeats (SSR’s) were the methods available and used during 
three decades (70’s to 90’s) for developing genetic maps 
and QTL mapping (Williams et al., 1990). These types 
of molecular markers had several limitations, they were 
obtained in low quantities, the distribution in the genome 
was limited and not of highly density, also the position in the 
genome was unknown (or anonymous). 

The development in the early 2000’s of Next Generation 
Sequencing (NGS), reduced dramatically the cost and 
time of sequencing, and equally important allowed the 
massive and simultaneous detection of thousands of single 
nucleotide polymorphisms (SNP’s). SNP’s markers are 
widely distributed along the genome, and can be deployed 
in n numbers of individuals representing populations 
(Elshire et al., 2011). When a reference genome is available 
for the species of interest, the SNPs are mapped to an exact 
location in the genome, with non-anonymous markers. 

Several genotyping methods have been developed and 
their use would vary according to the stage in the study of 
the crop/species, and available funding. Typically, de novo 
SNP identification pipelines use NGS raw read data, quality 
control, filtering and trimming, mapping or alignment to 
a reference genome, SNP calling, filtering and validation 
which requires several steps of bioinformatic processing 
(Pavan et al., 2020). Currently the most used methods 
are reduced representation sequencing technologies 
including Genotyping by Sequencing (GBS) (Elshire et al., 
2011), Restriction Site Associated DNA Sequencing (RAD-
seq), Specific Locus Amplified Fragment (SLAF), Type IIB 
Endonucleases Restriction-site Associated DNA (2b-RAD) (Davey 
et al., 2011). These methods use restrictions enzymes 
that fragment the genome and allow adapter ligation for 
sequencing, they are popular because have reduced cost, 
and can be customized with different combination of 
enzymes (Pavan et al., 2020). Some limitations from NGS 
technologies are associated with labor-intensive library 
preparation, genotyping errors in low coverage runs, which 
can be improved using deeper sequencing or reducing 
multiplexing. NGS data analysis is complex because of 
missing data and sequencing errors, and imputation models 
could introduce bias, also heterozygote miscalling produce 
incorrect genotype-phenotype associations (Pavan et al., 
2020; Rasheed et al., 2017).

In about 25 crops with extensive genomic resources, 
genotyping SNP arrays have been developed, using a chip 
manufactured from companies such as Affymetrix and 
Illumina, that contains probes to detect from 3K to 5 
million SNPs in one sample (Pavan et al., 2020; Rasheed et 
al., 2017). The use of SNPs arrays is cost-effective in large 
breeding programs, produce accurate genotype call, with 
reduced missing data, and is computationally faster. They 
have been mainly used for genotyping polyploid species with 
better accuracy than NGS (Rasheed et al., 2017). 

Phenotyping
The concept of phenotype refers to the actual measurable 

trait value for an individual, it represents both the genetic 
and environmental effects. The phenotypic variation in 
organisms arises at multiple biological levels, structural or 
functional, and is dynamic along individual developmental 
time, representing a challenge for a single definition of 
phenotype. 

In plants, there are different methods and approaches for 
phenotyping depending on the spatial scale and the species 
such as crop phenotyping in the field, medium or large-
scale greenhouse experimental units, and smaller scale with 
artificial media, substrates, or special designs to facilitate 
data acquisition. In each approach and scale, multiple 
considerations and limitations (technical or financial) can 
constrain data acquisition and experimental design. In all 
cases, the objective is to understand the plant- environment 
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interactions and quantify the trait of interest (Pieruschka 
and Schurr, 2019). 

The concept of functional units for a trait- “phene”- refer 
to a set of parameters that provide a function, it has been 
particularly useful to select root system architecture phenes 
for adaptation to low fertility soils (Lynch, 2011; York, 2019). 
Phenotyping is the measure of multiple characteristics in 
the organism, it can be performed at multiple scales: field 
level, individual whole plants, at organ level or at subcellular 
level. It can include the biochemical profile, metabolites, 
volatile compounds, RNA profile, or protein profile (Yang 
et al., 2020). Field phenotyping is the basis of plant genetics 
and crop improvement, is the scale that provide more 
realistic information regarding crop performance, testing 

plant genetic material in soils and multiple geographic 
locations captures the genotype- environment variability to 
the external conditions, biotic and abiotic stresses that are 
dynamic in space and time (Pieruschka and Schurr, 2019). 
Traditionally, field phenotyping relies mainly on the visual 
observations, breeder criteria, and human experience for 
a few targeted traits for selection and directed crossing. 
Grain yield is the main traditional quantitative value for field 
crops, it encompasses all the developmental, physiologic, 
and metabolic aspects of a genotype (Bucksch et al., 2014; 
Kirchgessner et al., 2016). Other measurements at a single 
timepoints require destructive or invasive methods that are 
labor intensive (Biomass dry weight, Digging roots). Non-
destructive measurements for physiological canopy traits 

Figure 2. Graphic summary of the approaches used to identify QTLs. Linkage mapping approach shown on the left and the association 
mapping (AM) approach shown on the right. It depicts the essential steps involved in identifying QTLs, including the type of population used 
for linkage mapping and AM (1), genotyping using molecular markers (M1, M2, M3, M4) (2), and phenotyping (3). In both approaches, 
the relationship between phenotypic and genotypic data is crucial and is depicted using a box plot. The linkage mapping identifies QTLs in 
an interval of flanking markers (M1 and M2) and the peak marker (Mb) within a linkage group on a genetic map. In contrast, QTLs in AM 
are located at a specific position in the genome. The figure also emphasizes that a significance threshold must be set (represented by a red 
line) for both approaches.
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such as transpiration and photosynthesis are measures 
that occur one plant at the time, requiring multiple sets of 
equipment and operators. 

Greenhouse or growth chamber experiments have a 
comparative advantage by reducing the dimension of 
external variation that occur in the field, and controlling 
environmental conditions, permits to study aspects of the 
phenotype (Metabolites, RNAseq), as well as increasing 
growing cycles off-season (Rapid breeding). Specialized 
growth systems such as rhizotrons allow to acquire digital 
imaging without perturbing the root system for phenotypic 
quantification (Bontpart et al., 2020; Bucksch et al., 2014). 
Other cases that could not be managed in field situations 
include controlled drought experiments requiring multiple 
measures of soil water content along the plant cycle (Khan 
et al., 2020). 

While powerful as experimental setting for phenotyping, 
the genotypes selected based on artificial growth systems 
could perform different under field conditions. For example, 
a comparison of A. thaliana grown in controlled conditions 
vs. field conditions, showed a difference of leaf size and 
chlorophyll content among different conditions (Fiorani 
and Schurr, 2013). In fact, a characteristic of quantitative 
traits is the phenotypic plasticity and G X E interactions. 
Therefore, performing field trials is considered more relevant 
and critical for quantitative traits that are more influenced 
by the environment.

Independent of the scale of the experimental system, 
there is a growing need for optimizing data acquisition that 
reflects the nature of the quantitative trait variation and 
that is useful for breeding programs. One source of genetic 
diversity for crop improvement are gene bank collections, 
and combining high throughput genotyping with selective 
phenotyping with a subset of 290/962 sorghum accessions 
were phenotyped in quantitative traits such as yield, plant 
height and more (Yu et al., 2016).

The limitations and bottlenecks of field phenotyping and 
other settings are being addressed by the emerging discipline 
of phenomics. The goal of phenomics is to characterize 
accurately a full set of phenotypes of an individual, in 
a fast way (high throughput), achieving large scale and 
automation to reduce manual labor. There is a bloom of 
phenotyping platforms developed using tools such as 
digital imaging, spectroscopy, remote sensing (Yang et al., 
2020), digital sensors, robotics and high throughput data 
centers (Pieruschka and Schurr, 2019). Some platforms 
are commercial and the software of analysis proprietary, 
requiring licenses, while other initiatives for open source 
hardware and open source software that can be customized 
(Yang et al., 2020). The outcomes of phenomic experiments 
can be stored and shared in open source platforms, with 
good practices of data management (Wilkinson et al., 
2016) including standardized information storage and 
interoperable data usage (Krajewski et al., 2015).

However, the development of phenomic platforms is 
limited, since the technical expertise to install, maintain 
and operate is sophisticated and can result expensive 
for individual research groups. Despite the challenge, a 
goal for breeding programs in developing countries is the 
implementation of accessible, precise, fast, and cost-
permissive phenotyping. 

METHODOLOGICAL APPROACHES FOR QTL 
IDENTIFICATION

QTL linkage mapping
QTL linkage mapping is a statistical method that 

compares phenotypic data in quantitative measures, 
with genotypic data (molecular markers), considering the 
recombination frequencies in a genetic map (linkage map). 
This method allows positioning the phenotypic variation in 
a specific region within a chromosome (Giri et al., 2018). 
The phenotypic mean values of the quantitative traits will 
be different with different genotypes at the marker locus 
(Mackay, 2001). Linkage mapping is based on the premise 
that the markers associated with genetic loci responsible 
for quantitative variation are segregating during meiotic 
chromosomal recombination (Boopathi, 2020). During 
recombination the genes and markers that are tightly linked, 
or in linkage disequilibrium, will be passed to the progeny 
with more frequency than those genes and markers that are 
further apart (Boopathi, 2020).

Populations used for QTL linkage mapping.
Linkage mapping identification is performed in structured 

populations, using contrasting parental lines for the trait in 
directed crosses (Rajpal et al., 2016). A linkage mapping 
population size range from 50 to 250 individuals (Collard 
et al., 2005), or even more (Li et al., 2010). There are 
different ways to build up a linkage mapping population, 
and the resolution of the QTL interval is contingent to 
the recombination events within the population (Mackay, 
2001). Among the most used populations are the F1 
segregants of full siblings, F2 populations derived from F1 
hybrids, and recurrent backcrossing (BC) from the hybrid F1 
with one of the parental lines, in order to increase the effect 
of the QTL (Collard et al., 2005; Mackay, 2001).

Other type of populations widely used that require 
successive self-pollination are Recombinant Inbred Lines 
(RIL), where a F2 population undergo successive and 
repetitive cycles of self-pollination to produce endogamic 
lines (Ordas et al., 2010). By using RIL advanced generations, 
there will be more recombination events and can increase 
the precision mapping (Mackay, 2001).

Near-Isogenic Lines (NIL) populations are obtained by 
crossing a line with the trait of interest -or molecular 
marker- and continuous backcrossing with a donor line. 
NIL populations have identical genetic background with the 
exception of the small interval of introgression representing 
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few loci (Szalma et al., 2007). One of the advantages of NIL 
populations, is the possibility of multiple measurements of 
the trait in different environments or locations, using the 
same genetic background.

QTL identification by linkage methods
The methods for the detection of QTL by linkage are based 

on detecting significant correlations between the variation of 
the phenotype, given by continuous values, and the genotype 
(polymorphism or molecular markers) in a segregating and 
contrasting population for the trait of interest. The three 
most popular models for these analyzes are single marker 
analysis, Simple Interval Mapping (SIM), and Composite 
Interval Mapping (CIM) (Liu, 1998; Tanksley, 1993).

Single marker analysis is a simple method that allows 
identifying QTLs associated with a single marker, does not 
require the generation of a linkage map and can be performed 
using basic statistical analyzes such as t-test, analysis of 
variance (ANOVA) and lineal regression. This is most often 
used because the marker’s coefficient of determination (R2) 
explains the percentage of phenotypic variation that arises 
from the QTL. Since this analysis does not use a genetic map, 
it does not provide information on the chromosomal position 
of the identified QTL (Collard et al., 2005).

On the other hand, the interval mapping approach uses 
genetic maps as a positional reference of the polymorphisms 
for the detection of QTLs. In addition, the result is presented 
with a polymorphism or peak marker (QTL), which will 
present the highest level of significance, and two flanking 
markers, one to the right and one to the left of the peak 
marker, generating an interval where it is expected that 
the candidate loci / genes responsible for the phenotypic 
variation of the trait under study will be found (Collard et 
al., 2005) .

The SIM, tests for the presence of significant QTLs at 
many positions between two mapped markers. Therefore, 
the most probable position of a QTL and the size of its 
effects are estimated with greater precision than in single 
point analysis. The presence of a significant QTL is calculated 
using the Logarithmic of Odds Score. This statistical estimate 
indicates the probability that a significant QTL exists or 
not at that position. The scores of each marker are plotted 
along the genetic map, those that exceed the threshold of 
significance, example LOD 3 (1000 times more probable) 
then suggest the presence of a QTL in that position. This 
approach has some limitations, among them that it can 
be difficult to separate the effects of nearby QTLs, as well 
as that the position of one QTL can be influenced by other 
QTLs (Rajpal et al., 2016).

An evolution of SIM analysis, which is more robust, 
is the CIM method. The basis of this method is to isolate 
individual QTL effects by combining interval mapping with 
multiple regression. CIM controls genetic variation in other 
regions of the genome, thus reducing background “noise” 

that can affect QTL identification (Jansen, 1993). For this, 
cofactors are selected, these are representative markers of 
the identified QTL. Cofactors make it possible to eliminate 
variations in other QTLs located in other parts of the 
genome, thereby reducing the effect of those other QTLs 
(Jansen, 1993). The number of markers that are selected 
as cofactors is essential because it will affect the detection 
of QTL. If few cofactors are selected, the variation of the 
other QTLs will not decrease, but, if too many cofactors are 
selected, the detection power of the QTL will decrease (Silva 
et al., 2012).

Regardless of whether the model used for the detection 
of QTL is SIM or CIM, a typical result is a graph in which 
the molecular markers are positioned by linkage group on 
the “x” axis, while the “y” axis represents the values of the 
LOD test statistic, and their threshold are presented. The 
point(s) where the molecular markers reach the highest 
LOD values are identified as the most likely positions for the 
presence of a QTL. The point at which the marker reaches 
a high LOD value is called the “peak marker”, when it 
exceeds the specified level of significance, it indicates that 
the QTL is statistically significant (Collard et al., 2005). The 
determination of the thresholds of significance is carried 
out a priori by the investigator, normally using a LOD of 3, 
or by means of permutation tests, generally between 500 
and 1000 (Collard et al., 2005). These tests evaluate the 
phenotypic values given for the individuals of the population 
with respect to all the markers, in order to determine robust 
levels of significance of the marker-phenotype associations.

The QTL linkage mapping has been a widely used tool 
and has allowed the identification of QTL for important 
and diverse traits of interest in plant species and despite 
its utility, for linkage QTL mapping some disadvantages 
are recognized. The first is the population design and 
development. The need to obtain a genetic map and the 
limited number of recombination present in the mapping 
population, which in turn will result in a low QTL detection 
resolution. Finally, that the result is expressed in an interval 
measured in cM, where depending on the genomic region 
they can physically reside in the number of genes. This 
last limitation has been overcome in recent years, with the 
possibility of obtaining highly dense genetic maps with 
genotyping from NGS, which has finally led to the reduction 
of the length of the QTL interval to a few cM, increasing the 
resolution in QTL detection (Jaganathan et al., 2020; Soto 
et al., 2015). As an alternative to linkage QTL mapping, the 
AM approach was generated (Risch and Merikangas, 1996). 
A more robust method than linkage mapping and which has 
made it possible to overcome the limitations of the latter 
(Zhu et al., 2008).

Association mapping 
Association mapping is a robust method that leverage on 

the historical recombination events in natural populations 
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(Mackay, 2001). It can include a wide range of genetic 
variation from diverse collection of families, inbred, races 
and multiple sources of germplasm. It offers three advantages 
over linkage mapping: better mapping resolution, more allele 
numbers, and the option to study simultaneously several 
genomic regions without using genetic maps or spending 
time in directed crosses for mapping populations (Zhu et al., 
2008). However, the mapping resolution power is influenced 
by linkage disequilibrium at the relevant genomic region, 
the species, and the type and density of molecular markers 
(Risch and Merikangas, 1996; Zhu et al., 2008).

It was first introduced for finding the genetic basis for 
human diseases (Lohmueller et al., 2003), and later expanded 
successfully to other animal species and crop plants (Ersoz 
et al., 2007). The approach of Genome Wide Association Studies 
(GWAS) in some cases produce better results in plants 
than in human quantitative traits (Anderson et al., 2019). 
Generally the studies performed in humans only explain a 
small fraction of the phenotypic variability, while in plants it 
has explained a large part of the phenotypic variability of the 
traits, possibly explained by a higher hereditability in plant 
traits (Korte and Farlow, 2013).

In association mapping it is critical to evaluate 
the population structure, and the degree of genetic 
differentiation among groups, to avoid false marker-trait 
associations. It is also critical to test the level of relatedness 
among pairs of individuals in a sample (Abdurakhmonov 
and Abdukarimov, 2008). This can be achieve calculating 
the similarities between genotypes or individuals, using 
the whole genome wide SNPs, in a matrix called genomic 
relationship matrix (GRM), build from a pairwise kinship 
analysis among individuals and its genomic inbreeding 
coefficients (Villanueva et al., 2021). Then, with the 
information obtained from phenotypic and genotypic data, 
it is proceeded to quantify the LD and population structure 
and perform the statistical analysis for associating the 
markers with the phenotypic value.

Populations used for association mapping 
Contrary to the populations used in QTL linkage 

mapping, AM requires populations with little or no 
population structure (Pritchard et al., 2000). One type of 
population used in AM are unstructured populations, where 
the kinship relationship is unknown, as occurs in natural 
populations or diverse panels. In plants, they are groups 
of lines of diverse origin that represent the variability of the 
species under study with historical recombination events, 
resulting in greater allelic richness (Collard et al., 2005). 
Compared to populations derived from biparental crosses, 
natural unstructured populations such as elite cultivars, local 
varieties, landraces, wild relatives and exotic accessions have 
greater power to identify QTL (Collard et al., 2005). This 
approach avoids the need to build mapping populations for 
each trait of interest and instead uses recombination events 

that have occurred throughout the evolutionary history of 
the species. It has been applied in corn, finding candidate 
genes for starch content regulation (Liu et al., 2016), in A. 
thaliana for traits such as flowering time (Zan and Carlborg, 
2018). In rice, to identify candidate genes associated with 
resistance to drought (Guo et al., 2018), and to improved 
yield (Yano et al., 2019). In potato, genes related to 
resistance to Phytophthora infestans (Juyo Rojas et al., 2019), 
among many others. 

In contrast to natural populations multi-parent populations 
such as Nested Association Mapping or NAM (Gage et al., 2020), 
and the Multiparent Advanced Generation Intercross or MAGIC 
(Cavanagh et al., 2008), have been designed in order to 
take advantage of the benefits of both linkage mapping and 
association mapping. By having multiple parents, the genetic 
diversity of these leads to a great phenotypic diversity, which 
increases the allelic diversity and the QTL detection power 
(Flint‐Garcia et al., 2005).

Analytic considerations in Genome wide Association Studies. 
The first step for association mapping analysis is a 

selection of a diverse association panel, it can be a natural 
population, a germplasm collection with broad genetic 
diversity or a multiparent population (Ibrahim et al., 2020). 
The second step is phenotyping the population for the trait 
of interest under different environments and genotyping 
to obtain molecular markers, perform the kinship analysis 
through the GRM and analyzed an eventual population 
structure. The association among phenotypic variance 
and each allelic variant in the genome in a diverse panel 
of individuals is preformed using linear models. Next, the 
interpretation of the association can lead to identify a 
narrow genetic region or ideally candidate genes responsible 
of the phenotypic variation (Alqudah et al., 2020). The 
linkage disequilibrium (LD) degree is quantified based 
on the genotypic data (Ersoz et al., 2007) and is specific 
within the studied populations. It is expected that in an AM 
approach, blocks in the genome occur with less distance in 
the genome (Davey et al., 2011).

The degree of resolution and accuracy of GWAS depend 
on the LD decay in the studied population. The LD decay 
can be plotted with the “y” axis representing the R2 values 
and the “x” axis representing the genetic distance or physical 
distance of the SNP’s along the genome (Alqudah et al., 
2020). When the LD decay occurs over a short distance it 
is expected a high resolution- the capacity of associating 
a SNP within a causal locus-, in that case it is required to 
have a high density of SNPs. On the contrary, if the LD 
decay occurs over a long distance, the mapping resolution is 
reduced even in the case of having low density of molecular 
markers (Ibrahim et al., 2020). For example, in Barley when 
the LD decay is around 5 kbp (Kilobase pair), it is required 
around ~1million SNPs to cover the genome 5.100 Mb 
(Mega bases). While when the LD decay occurs at 100 
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kbp, the analysis can use only 57.000 SNPs (Semagn et al., 
2010). The rate of LD decay allow to identify the number 
of markers required for the study, the value is obtained in a 
species dividing the genome size by the distance of LD decay 
(Alqudah et al., 2020). Hence, the number of informative 
molecular markers depend both on genome size and rate of 
LD decay.

For AM, the population structure is an important 
parameter when selecting the work material, since its 
presence can result in false positives -false trait-markers 
associations-, especially if the population structure induces 
LD (large blocks at a great distance, throughout the 
genome) (Platt et al., 2010). False positives occur when 
highly significant associations are present between a marker 
and a phenotype, even though that marker is not physically 
linked to the causal allele responsible for the phenotypic 
variation of the trait of interest (Zhu et al., 2008).

There are different approaches that allow determining 
and correcting the population structure, thereby ensuring 
that the identified associations are real. Approaches 
include Principal Component Analysis (PCA), Mixed Model 
Approach, Structured Association (SA), and Genomic 
Control (Price et al., 2006), among others.

Currently there are different software that compute 
GWAS, such as Trait Analysis by Association, Evolution, and Linkage 
(TASSEL) (Bradbury et al., 2007), as well as R package such 
as Genome Association and Prediction Integrated Tool (GAPIT) 
(Lipka et al., 2012) and the Whole genome association 
analysis toolset Plink (Purcell et al., 2007), among others. 
The statistical test that are used to identify the association 
among phenotype and genotype are based in p-value. The 
p-value is plotted in logarithmic scale -log

10 e in the “y” axes, 
and the genomic position of the molecular markers in the 
“x” axes, the produced graph is a Manhattan plot (Fig. 
2). The genomic regions with a peak above a threshold 
level are the genomic positions with the strongest signals 
that contribute to the phenotypic variation (Burghardt 
et al., 2020). With the purpose of using a p-value that 
reduces the risk of false associations with multiple testing, 
statistical test such as False Discovery Rate (FDR) (Kaler and 
Purcell, 2019) are used. However, there are several multiple 
testing corrections applied to linear mixed models, such 
as Bonferroni correction among others (Joo et al., 2016). 
Routinely, SNPs with p-values <0.05 and FDR <0.1 are 
considered significantly associated, and if they reside in a 
coding gene, those can be candidate genes responsible for a 
percentage of phenotypic variability for the trait. 

APPLICATIONS IN AGRICULTURE

Several applications in agriculture are promising once 
a QTL is identified, delimited by molecular markers with 
a significant association with a phenotype. The routine 
detection of those markers is known as directed genotyping, 
which is useful in marker-assisted selection, background 

selection, marker-assisted backcrossing, and gene tagging. 
Methodologies for detection of specific alleles of individuals 
in a population are based on quantitative PCR (qPCR) such 
as Kompetitive Allele Specific PCR (KASP), a cost-effective 
method, other PCR-based methods are also available for 
single marker genotyping (Rasheed et al., 2017). 

Marker-Assisted Selection (MAS), aims at detecting markers 
associated with a QTL to keep the trait of interest in new 
populations or individuals in early developmental stages. 
The commercial breeding programs for horticultural crop 
routinely use MAS in the seedling stages, before planting the 
material in the field that will be available for breeders for 
selection. In that way the new germplasm maintains traits 
that are desirable. A potential limitation is that multiple 
loci of small effect could not be easily maintained in a 
population. Although the MAS strategy has been successful 
in some cases, for traits governed by multiple genes of small 
effect, this strategy has not been entirely effective. 

A different and more accurate approach is genomic 
selection Genomic Selection (GS), a strategy for selection 
of individuals based on predicting the phenotype using 
markers that represent the whole genome (Jannink et al., 
2010). The rationale for GS, also known as genome wide 
selection, is to omit significance test (such as the ones used 
for QTL mapping or association mapping) and use a large 
set of random markers along the genome in marker-based 
selection. This type of selection maintains multiple QTL loci 
with small contributions, rather than focusing on one single 
QTL with a large effect (Bernardo, 2010). It requires using 
cheap genotyping methods that can be followed in multiple 
growth cycles. Calculating the kinship and GRM then effects 
of markers in genome wide selection can be performed with 
BLUP, a simplification calculation when the variance and 
random effects are known. Training populations are used 
for modeling the genotype with the phenotypes measured, 
to produce a predictive value for the phenotype in new 
individuals that are only genotyped. The model for genomic 
selection can be more robust using prior information, and 
incorporating it with Bayesian methods (Bernardo, 2010; 
Jannink et al., 2010). 

Both MAS and GS can be subsequent and complementary 
approaches to QTL linkage and GWAS analysis, insofar 
as the SNPs/loci associated with the trait of interest can 
strengthen the prediction by being incorporated into the 
phenotype prediction equation.

Candidate Gene Approach 
Candidate gene (CG) approach assumes that a gene 

with specific function is contributing to the phenotype 
of a trait. The SNPs polymorphisms within the candidate 
gene can occur in the coding part of the gene or in the 
regulatory elements, for plant geneticist CG are genes with 
polymorphisms linked to a QTL or statistically associated 
with phenotypic trait variation (Pflieger et al., 2001).
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A candidate gene can be identified based on literature 
background, the outcomes of QTL mapping, fine-mapping, 
or GWAS in a different species where the candidate gene is 
proposed. The hypothesis of a gene associated with a trait 
can arise from prior information for gene structure, known 
expression patterns, gene product, and regulatory elements 
that can be found in databases such as Entrez Gene and 
Ensembl (Patnala et al., 2013). An additional source of 
information is provided with tools such as RNAseq, that 
provide expression profile to specific experimental or 
environmental conditions (Giri and Mohapatra, 2017). 
Another tool for selecting CG is comparative map analysis, 
by using positional information and comparative mapping 
from another related species. Several grasses have highly 
conserved gene order, thus for species such as rice, millet, 
sugarcane, sorghum, maize, and oat, proposing candidate 
genes based on syntenic regions and QTLs, is a way 
to economize resources and optimize time for analysis 
(Bernardo, 2010; Pflieger et al., 2001). The main advantage 
of CG approach is that the analysis requires less time and 
investment, given that they test previously reported genes 
that are potentially valuable. However, it is also a biased 
approach towards the hypothetical association of a known 
gene, omitting genes or genetic regions that can also 
contribute to the phenotype.

Once the CG are selected, the SNPs in the genes need to 
be screened and re-analyzed with independent association 
experiments. fine- mapping experiments, or correlations 
among the genetic polymorphisms and trait values in a 
different organisms (Patnala et al., 2013; Pflieger et al., 
2001), or differential gene expression analysis.

CHOOSING THE BEST ONES: PROMISING CANDIDATE 
GENES

Typically, QTL mapping and AM outcomes correspond 
to an interval in the genome that contains several genes, 
but not all the genes in the region are the responsible for the 
association of phenotype-genotype. Hence, a further selection 
is necessary to narrow-down the most promissory ones.

The alternatives for selection of candidate genes 
that directly co-localize with the QTL, as well as the co-
segregation of markers in the candidate loci, should fulfill 
at least one of the following criteria: 1) Those who explain a 
high percentage of phenotypic variance, indicating a major 
role in the genetic control of the trait. 2) Genes localized 
in stable QTL, that is that the gene has a strong effect with 
low environmental effect. 3) Genes that code for proteins 
with predicted functions or predicted domains relevant to 
the trait of interest. 4) Genes with mRNA profile that is 
differential in contrasting phenotypes for the trait.

After a curated selection of promising candidate genes, 
the next step is the confirmation of the effect in the trait 
of interest. The polymorphism can be found in a panel of 
accessions, different to the population where the QTL was 

initially found and perform a new round of phenotyping 
and directed genotyping. In all cases, will be required an 
experimental validation of the candidate gene for ultimate 
confirmation.

VALIDATION OF CANDIDATE GENES

When a gene is a candidate, via QTL mapping, association 
mapping, or comparative CG selection, it is relevant to 
validate their function, since that is the gold standard for a 
trait and the phenotype are controlled by that gene product.

One approach is by physiological analysis associated 
with the gene-product of the candidate gene. An important 
parameter that can be quantified is the mRNA and the 
dynamic changes in abundance, this was traditionally done 
with Northern Blot and currently with quantitative RT-PCR 
or RNAseq analysis. In addition, measures of protein level or 
enzyme activity can be contrasting in lines with or without the 
polymorphism in the candidate gene (Pflieger et al., 2001).

A different approach is the genetic transformation with 
gene gain or loss of function, which are the gold standard for 
attributing the function to a gene. For gene silencing, it can 
be used Interfering RNA (RNAi) which uses an RNA template, 
the Virus-Induced Gene Silencing (VIGS) which is useful in 
solanaceous species (Unver and Budak, 2009) and less used in 
other taxonomic groups (Robertson, 2004), or with artificial 
microRNA. Another technique uses the genome editing 
platform CRISPR / Cas9 (Ran et al., 2013). All these genetic 
transformation methods require an established protocol of 
successful transformation, in vitro tissue culture and in vitro 
regeneration, all of which represent an extended time, as well 
as high cost and limitation in the technology access. 

CHALLENGES 

The study of genetic architecture provides the principles 
for understanding the genetic basis of complex traits. 
Current genotyping technologies are highly accurate, thus 
allowing the identification of QTLs associated with the 
trait of interest in crops. Fine mapping, validation, and 
confirmation of candidate genes within QTLs as causal 
genes responsible for the variation of the trait of interest is a 
subsequent challenge.

Although the methodologies presented here allow the 
identification of QTL for complex traits, there are still 
methodological challenges for QTL linkage mapping and 
association mapping. One is the difficulty in studying the 
interactions that takes place in the genetic architecture, 
such as complex gene by gene or gene by environment 
interactions, which makes determining all the variables 
involved a very difficult and sometimes impossible task to 
accomplish (Tam et al., 2019). With GWAS CG controlling 
several traits of interest have been identified. However, a gap 
remains of the biological functions of these loci. It is not 
known exactly which variant of the identified loci give rise to 
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the association or if these loci alter the genetic regulation of 
other genes (Gallagher and Chen-Plotkin, 2018). Epigenetic 
and expression studies could provide the necessary 
information to know in a functional way the effect of the loci 
identified in the trait of interest (Albert and Kruglyak, 2015).

Finally, phenotyping also represents a challenge, to ensure 
accuracy and precision of the phenotypic data obtained. 
Accuracy ensures data reliability (Albert and Kruglyak, 
2015), and is fidelity between the phenotypic values taken 
and the true value of the phenotype. While precision refers 
to the variability in the measurements between the different 
repetitions. If the phenotypic data are not reliable, the 
genotype-phenotype relationship can become imprecise. 
Besides technical challenges, there are logistical and financial 
constrains to access phenomic platforms. The obstacles 
to access high-throughput screening methods, precision 
phenotyping, and phenomic platforms is more unequal in 
middle and low-income countries, which are the locations 
where their local crops and breeding programs will benefit 
the most.

FUTURE PERSPECTIVES

In recent years there has been a high increase in the 
identification of QTL involved in diverse traits of agronomic 
importance, in a wide variety of crops. It is relevant that 
the QTLs found in previous studies, can be validated, and 
advanced along the new advanced lines. With the creation of 
public databases, it is possible to find genetic and genomic 
information, among which the QTLs identified in different 
studies are included. Among the available databases we can 
mention Cassava Genome Hub, Legume Information System, Maize 
Genetics and Genomics Database, Solanaceae Genomics Network, 
among other databases. Such networks of multiple research 
centers help to establish collaborations in infrastructure or 
resources and build up long-term germplasm and genomics 
exchange platforms, for agriculture and crop improvement.

As mentioned, complex plant traits have agronomic and 
economic importance. Therefore, they are traits that are 
widely studied in genetic breeding programs. In a world 
with a constant population growth and climate change, 
efforts are required to improve crop production to provide 
resistant and resilient crops with higher yields. Increasing 
productivity in a context of limited arable land, changes in 
weather patterns, low soil fertility, and climatic changes in 
biotic interactions. The tools and examples of quantitative 
genetics discussed here can be extended to more local crops 
to provide elite genetic materials to small-holder farmers, 
increasing the efforts of developing cost-effective systems 
for phenotyping in developing countries (Bontpart et al., 
2020). Allowing technology transfer, with open-source 
hardware devices, and open-source software for digital 
imaging and analysis, democratizing phenomic platforms to 
improve speed, precision and reliability in data collection 
and harnessing collaborations to make phenomics a reality 

for advancing crops resilient and in response to future 
challenges in agriculture.
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