Publicado

2020-08-25

SALT TOLERANT PLANTS AS A VALUABLE RESOURCE FOR SUSTAINABLE FOOD PRODUCTION IN ARID AND SALINE COASTAL ZONES.

Plantas tolerantes a la sal como un recurso valioso para la producción sostenible de alimentos en zonas costeras áridas y salinas

DOI:

https://doi.org/10.15446/abc.v26n1.82412

Palabras clave:

bioprospecting, halophyte, seawater (en)
agua de mar, bioprospección, halófita (es)

Descargas

Autores/as

This review focuses on the potential of halophytes for food, fodder and biofuels production, as well as their impacts on the environment and societies. Moreover, to open new areas in production systems using novel technologies such as halophytes in a desert agriculture. We are faced with the crisis and the shortage of freshwater in arid, semi-arid and desert regions. For this reason, we have to apply sustainable systems for human food, fodder and biofuels. Halophytes are naturally resistant to salt and develop on the coastal coast and arid-saline areas. We present a complete summary of the current situation of human population growth and food demand, a sustainable alternative such as halophilic crops of agro-industrial importance compared with conventional crops and how they can be incorporated into agriculture sustainable in arid, desert and coastal areas, basing the above on success stories.

Esta revisión se centra en el potencial de las halófitas para la producción de alimentos, forrajes y biocombustibles, así como en sus impactos en el medio ambiente y en las sociedades. Asimismo, en las nuevas áreas que buscan sistemas de producción utilizando tecnologías novedosas como las halófitas en agricultura en el desierto. Nos encontramos ante una crisis de escasez de agua dulce en regiones áridas, semiáridas y desérticas. Por esta razón, tenemos que aplicar sistemas sostenibles para alimento humano, forraje y biocombustibles. Las halofítas son naturalmente resistentes a la sal y se desarrollan en litorales costeros y zonas árido-salinas. Presentamos un resumen completo de la situación actual del crecimiento de la población humana y de la demanda de alimentos, de los cultivos halófilos de importancia agroindustrial como una alternativa sustentable, comparados con los convencionales, y de la forma como se pueden incorporar en una agricultura sustentable en zonas áridas, desérticas y costeras, fundamentando lo anterior con casos de éxito. 

Referencias

Abideen Z, Hameed A, Koyro H, Gul B, Ansari R, Ajmal K. Sustainable biofuel production from non-food sources – An overview. Emir J Food Agri. 2014; 26(12):1057–1066. Doi: 10.9755/ejfa.v26i12.19107. DOI: https://doi.org/10.9755/ejfa.v26i12.19107

Alam H, Khattak J, Ppoyil S, Kurup S, Ksiksi T. Landscaping with Native Plants in the UAE: A Review. Emir J Food Agric. 2017; 29 (10):729-41, Doi: https://doi.org/10.9755/ejfa.2017.v29.i10.319. DOI: https://doi.org/10.9755/ejfa.2017.v29.i10.319

Anwar F, Bhanger M, Khalil M, Nasir A, Ismail S. Analytical characterization of Salicornia bigelovii seed oil cultivated in Pakistan. J of Agric Food Chem 2002; 50(15):4210-4214. Doi: https://doi.org/10.1021/jf0114132 DOI: https://doi.org/10.1021/jf0114132

Attia FM, Alsobayel AA, Kriadees MS, Al-Saiady MY, Bayoumi MS. Nutrient composition and feeding value of Salicornia bigelovii Torr meal in broiler diets. An Feed Sc Tech. 1997; 65(1): 257-263. Doi: https://doi.org/10.1016/S0377-8401(96)01074-7 DOI: https://doi.org/10.1016/S0377-8401(96)01074-7

Bareno P. Hierbas aromáticas culinarias para exportacion en fresco, manejo agronómico, producción y costos. In: Ultimas tendencias en hierbas aromáticas culinarias para exportación en fresco. Curso de Extensión. Produmedios, Bogota. (ed by Universidad Nacional de Colombia), 2006; p. 86–87.

Barrett C. Measuring food insecurity. Science. 2010; 327(5967):825-828. DOI: https://doi.org/10.1126/science.1182768

Bates B, Kundzewicz S, Wu S, Palutikof J. Climate change and water. Technical Paper VI. Intergovernmental Panel on Climate Change. Geneva: IPCC; 2008; 214 p.

Bermúdez G. Planes rectores, sistemas productos estratégicos de Baja California Sur- sistema productos orgánicos: albahaca. La Paz, B.C. Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA), 2005; 210 p.

Bresdin C. Agronomy of halophytes as constructive use of saline systems (tesis de doctorado). Arizona: Soil, Water and Environmental Science Departament, University of Arizona; 2015; p. 24-34

Brown M, Funk C. Food security under climate change. Science. 2008; 319(5863): 580-581. DOI: https://doi.org/10.1126/science.1154102

Buhmann A. Waller U, Wecker B, Papenbrock J. Optimization of culturing conditions and selection of species for the use of halophytes as biofilter for nutrient-rich saline water. Agric Wat Manag. 2015; 149:102-114. ISSN 0378-3774, Doi: https://doi.org/10.1016/j.agwat.2014.11.001. DOI: https://doi.org/10.1016/j.agwat.2014.11.001

Burchi F, de Muro P. From food availability to nutritional capabilities: Advancing food security analysis. Food Pol. 2016;60:10-19. Doi: https://doi.org/10.1016/j.foodpol.2015.03.008. DOI: https://doi.org/10.1016/j.foodpol.2015.03.008

Cardona A, Carrillo-Rivera J, Huizar-Álvarez R. Salinization in coastal aquifers of arid zones: an example from Santo Domingo, Baja California Sur, Mexico. Environ Geo. 2004; 45: 350. Doi: https://doi.org/10.1007/s00254-003-0874-2. DOI: https://doi.org/10.1007/s00254-003-0874-2

Cardozo K, Guaratini T, Barros M, Falcão V, Tonon A, Lopes N, Campos S, Torres M, Souza A, Colepicolo P, Pinto E. Metabolites from algae with economic impact.Comparative Biochemistry and Physiology Part C: Tox Pharm. 2007; 146 (1-2) 60-78. Doi: https://doi.org/10.1016/j.cbpc.2006.05.007 DOI: https://doi.org/10.1016/j.cbpc.2006.05.007

Castellanos J, Ortega-Guerrero A, Grajeda O, Vázquez-Alarcón A, Villalobos S, Muñoz-Ramos J, Zamudio B, Martínez J, Hurtado B, Vargas P, Enríquez S. Changes in the quality of groundwater for agricultural use in Guanajuato. Terra. 2002; 20(2):161-170.

Davy A, Bishop G, Costa C. Salicornia L. (Salicornia pusilla J. Woods, S. ramosissima J. Woods, S. europaea L., S. obscura P.W. Ball & Tutin, S. nitens P.W. Ball & Tutin, S. fragilis P.W. Ball & Tutin and S. dolichostachya Moss). J Ecol. 2001; 89:681–707. Doi: 10.1046/j.0022-0477.2001.00607.x DOI: https://doi.org/10.1046/j.0022-0477.2001.00607.x

D’Odorico P, Bhattachan A, Davis K, Ravi S, Runyan C. Global desertification: Drivers and feedbacks. Adv Wat Res. 2013; 51:326–344. DOI: https://doi.org/10.1016/j.advwatres.2012.01.013

Enduta A, Jusoh A, Ali N, Wan Nik W. Nutrient removal from aquaculture wastewater by vegetable production in aquaponics recirculation system. Des Wat Treat. 2011; 32(1-3):422-430. Doi: https://doi.org/10.5004/dwt.2011.2761 DOI: https://doi.org/10.5004/dwt.2011.2761

FAO. World agriculture: towards 2015/2030. Summary report. Rome, Food and Agriculture Organization of the United Nations, 2002. http://www.fao.org/docrep/005/ac911e/ac911e05.htm.

Fedoroff N, Battisti D, Beachy R, Cooper P, Fischhoff, D, Hodges C, Knauf V, Lobell D, Mazur B, Molden D, Reynolds M, Ronald P, Rosegrant M, Sanchez P, Vonshak A, Zhu J. Radically Rethinking Agriculture for the 21st Century. Science. 2010; 327:833–834. Doi: 10.1126/science.1186834 DOI: https://doi.org/10.1126/science.1186834

Wade O, WatanabeT, Losordo M, Fitzsimmons K, Hanley F. Tilapia Production Systems in the Americas: Tech Adv T Chal. 2010; 465-498. Doi: https://doi.org/10.1080/20026491051758 DOI: https://doi.org/10.1080/20026491051758

Flowers T, Galal H, Bromham L. Evolution of halophytes : multiple origins of salt tolerance in land plants. Func Plant Biol. 2010; 37:604–612. DOI: https://doi.org/10.1071/FP09269

Flores-Márquez EL, Campos-Enríquez JO, Chávez-Segura RE, Castro-García JA. Intrusión de agua salada del acuífero de la Costa de Hermosillo, Sonora, México: una simulación numérica. Geo Int. 1998; 37(3):133-151.

Jafari B, Hanifezadeh M, Jalali Parvin M. Molecular study of bacteria associated with Salicornia symbiotic bacteria as a candidate for Hormozgan salty zone culturing by Persian Gulf water irrigation. Af J Microbiol Res. 2012; 6(22):4687–4695.

Geissler N, Lieth H, Koyro H. Cash crop halophytes: the ecologically and economically sustainable use of naturally salt-resistant plants in the context of global changes. In: Ahmad P, Wani M, editors. Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. New York: Springer; 2014.450 p. DOI: https://doi.org/10.1007/978-1-4614-8591-9_7

Gerber N. Bioenergy and rural development in developing countries: a review of existing studies. Zentrum für Entwicklungsforschung (ZEF)-Discussion Papers on Development Policy. 2008; Number 122:76 pp. http://ssrn.com/abstract=1162142).

Glenn EP, O'Leary JW, Watson MC. Thompson TL, Kuehl RO. Salicornia bigelovii Torr.: an oilseed halophyte for seawater irrigation. Science. 1991; 251(4997): 1065-1067. DOI: https://doi.org/10.1126/science.251.4997.1065

Graber A, Junge R. Aquaponic Systems: nutrient recycling from fish wastewater by vegetable production. Desalination. 2009; 246(1–3):147-156. ISSN 0011-9164, https://doi.org/10.1016/j.desal.2008.03.048. DOI: https://doi.org/10.1016/j.desal.2008.03.048

Grigore M, Toma C. Definition and Classification of Halophytes. In: Anatomical Adaptations of Halophytes. Springer, Cham. 2017; 322 p. DOI: https://doi.org/10.1007/978-3-319-66480-4

Gunning D, Maguire J, Burnell G. The Development of Sustainable Saltwater-Based Food Production Systems: A Review of Established and Novel Concepts. Water. 2016; 8(12):598. Doi:10.3390/w8120598. DOI: https://doi.org/10.3390/w8120598

Hari TK, Yaakob Z, Binitha NN. Aviation biofuel from renewable resources: Routes, opportunities and challenges. Ren Sust Ener Rev. 2015; 42, 1234-1244.

Hillebard E. The Global Distribution of Income in 2050. W Dev. 2008; 36(5):727-740. DOI: https://doi.org/10.1016/j.worlddev.2007.05.013

Himabindu Y, Chakradhar T, Reddy M, Kanygin A, Redding K, Chandrasekhar T. Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Env Exp Bot. 2016; 124:39-63. ISSN 0098-8472, https://doi.org/10.1016/j.envexpbot.2015.11.010. DOI: https://doi.org/10.1016/j.envexpbot.2015.11.010

Kearney J. Food cons tr dri. Phil Tran Roy Soc B: Biol Sc. 2010; 365 (1554):2793-2807. Doi: http://doi.org/10.1098/rstb.2010.0149. DOI: https://doi.org/10.1098/rstb.2010.0149

Klim B. Optimization model for the management of a horizontal sub-surface flow constructed wetland planted with the halophyte Salicornia bigelovii in the treatment of shrimp mariculture effluent (Order No. 1531818). Available from ProQuest. Dissertations & Theses Global. (1283126800). 2012; 132p. https://search.proquest.com/docview/1283126800?accountid=27958.

Knaus U, Palm H. Effects of the fish species choice on vegetables in aquaponics under spring-summer conditions in northern Germany (Mecklenburg Western Pomerania). Aquaculture. 2017; 473:62-73. Doi: https://doi.org/10.1016/j.aquaculture.2017.01.020. DOI: https://doi.org/10.1016/j.aquaculture.2017.01.020

Klinger D, Naylor D. Searching for solutions in aquaculture: charting a sustainable course. An Rev Env Res. 2012; 37(1):247-276. DOI: https://doi.org/10.1146/annurev-environ-021111-161531

Koehler A. Water use in LCA: managing the planet’s freshwater resources. International Journal of Life. 2008; 13:451-455. Doi: 10.1007/s11367-008-0028-6 DOI: https://doi.org/10.1007/s11367-008-0028-6

Körner C. Plant–environment interactions. Strasburger's Plant Sciences. Springer, Berlin, Heidelberg. 2013; pp 1065-1166. Doi: https://doi.org/10.1007/978-3-642-15518-5_12 DOI: https://doi.org/10.1007/978-3-642-15518-5_12

Koyro, H, Lieth H. Global water crisis: the potential of cash crop halophytes to reduce the dilemma. In: Lieth H., Sucre M.G., Herzog B, editor (s) Mangroves and halophytes: restoration and utilisation. Tasks for Veg Sc, Springer, Dordrecht. 2008; vol 43. DOI: https://doi.org/10.1007/978-1-4020-6720-4

Koyro H, Khan M, Lieth H. Halophytic crops: A resource for the future to reduce the water crisis?. Em J Food Agric. 2011; 23(1):1–16. DOI: https://doi.org/10.9755/ejfa.v23i1.5308

Ksouri R, Ksouri W, Jallali I, Debez A, Magné C, Hiroko I, Abdelly Ch. Medicinal halophytes: potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit Rev Biot. 2012; 32(4):289-326. DOI: https://doi.org/10.3109/07388551.2011.630647

Ladeiro B. Saline agriculture in the 21st Century: Using salt contaminated resources to cope food requirements. J Bot. 2012; 7p. Doi:10.1155/2012/310705. DOI: https://doi.org/10.1155/2012/310705

Lambin E, Geist H, Lepers E. Dynamics of Land-Use and Land-Cover Change in Tropical Regions. An Rev Env Res. 2003; 28(1):205-241. DOI: https://doi.org/10.1146/annurev.energy.28.050302.105459

Lauren F, Lawler D, Freeman B, Marrot B, Moulin P. Reverse osmosis desalination: water sources, technology, and today's challenges. Wat Res. 2009; 43(9):2317-2348. Doi: 10.1016/j.watres.2009.03.010. DOI: https://doi.org/10.1016/j.watres.2009.03.010

Lobell D, Burke M, Tebaldi C, Mastrandrea M. Priorizing climate change adaptation needs for food security in 2030. Science. 2008; 319(5863):607-610. Doi: 10.1126/science.1152339. DOI: https://doi.org/10.1126/science.1152339

Mariscal-Lagarda M, Páez-Osuna F, Esquer-Méndez J, Guerrero-Monroy I, Romo del Vivar A, Félix-Gastelum R. Integrated culture of white shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum Mill) with low salinity groundwater: Management and production. Aquaculture. 2012; 366–367:76-84. Doi: https://doi.org/10.1016/j.aquaculture.2012.09.003 DOI: https://doi.org/10.1016/j.aquaculture.2012.09.003

Masters D, Benes S, Norman H. Biosaline agriculture for forage and livestock production. Agric Ecos Env. 2007; 119(3–4):234-248. Doi: 10.1016/j.agee.2006.08.003. DOI: https://doi.org/10.1016/j.agee.2006.08.003

Nasar M. Exploitation survey of sea water in agriculture of coastal deserts. Int Acad Ecol Env Sc. 2014; 4(2):72–80.

Marques B, Calado R, Lillebo A. New species for the biomitigation of a super-intensive marine fish farm effluent: combined use of polychaete-assisted sand filters and halophyte aquaponics. Sci Total Environ. 2017; 599-600:1922-1928. Doi: 10.1016/j.scitotenv.2017.05.121. Epub 2017 May 21. DOI: https://doi.org/10.1016/j.scitotenv.2017.05.121

Martínez-Porchas M, Martínez-Córdova L, Porchas-Cornejo M, López-Elías J. Shrimp polyculture: a potentially profitable, sustainable, but uncommon aquacultural practice. Rev Aq. 2010; 2:73–85. Doi:10.1111/j.1753-5131.2010.01023.x DOI: https://doi.org/10.1111/j.1753-5131.2010.01023.x

Mbaga M. The Prospects of sustainable desert agriculture to improve food security in Oman. Cons: J Sust Dev. 2014; 13(1):114-129.

Murray F, Bostock J, Fletcher D. Review of recirculation aquaculture system technologies and their commercial application. Highlands and Islands Enterprise. University of Stirling Aquaculture. 2014; 84 pp. http://www.hie.co.uk/common/handlers/download-document.ashx?id=236008c4-f52a-48d9-9084-54e89e965573.

Naylor R, Hardy R, Bureau D, Chiu A, Elliott M, Farrell A, Forster I, Gatlin D, Goldburg, R, Hua K, Nichols P. Feeding aquaculture in an era of finite resources. PNAS. 2009; 106 (36):15103-15110. DOI:10.1073/pnas.0905235106 DOI: https://doi.org/10.1073/pnas.0905235106

Neori A, Shpigel M, Guttman L. The Development of Polyculture and Integrated Multi -Trophic Aquaculture (IMTA) in Israel: A Review. Isr J Aq. Bamidgeh, IJA_69.2017.1385. 2017; 19 pages. DOI: https://doi.org/10.46989/001c.20874

Okemwa E. Challenges and opportunities to sustainability in aquaponics and hydroponics systems. Int J Sc Res Inn Tech. 2015; 2(11):23pp. 54 ISSN: 2313-3759.

Padmavathiamma P, Ahmed Mushtaque, Rahman H. Phytoremediation - A sustainable approach for contaminant remediation in arid and semi-arid regions -a review. Em J Food Agric. 2014; 26(9):757-772. Doi: https://doi.org/10.9755/ejfa.v26i9.18202 DOI: https://doi.org/10.9755/ejfa.v26i9.18202

Panta S, Flowers T, Lane P, Doylr R, Haros G, Shabala S. Halophyte agriculture : Success stories. Env Exp Bot. 2014; 107:71–83. Doi.org/10.1016/j.envexpbot.2014.05.006. DOI: https://doi.org/10.1016/j.envexpbot.2014.05.006

Pérez-Fuentes J, Hernández-Vergara M, Pérez-Rostro C, Fogel I. C:N ratios affect nitrogen removal and production of Nile tilapia Oreochromis niloticus raised in a biofloc system under high density cultivation. Aquaculture. 2016; 452:247-251. ISSN 0044-8486. Doi: https://doi.org/10.1016/j.aquaculture.2015.11.010. DOI: https://doi.org/10.1016/j.aquaculture.2015.11.010

Pimentel D, Berger B, Filiberto D, Newton M, Wolfe B, Karabinakis E, Clark S, Poon E, Abbett E, Nandagopal S. Water resources: agricultural and environmental issues. BioSc. 2004; 54 (10):909-918. DOI: https://doi.org/10.1641/0006-3568(2004)054[0909:WRAAEI]2.0.CO;2

PRB, Population Reference Bureau. World Population Data Sheet. 2017; 20 pp. (http://www.prb.org).

Qadir M, Nejadhashemi P, Harrigan T, Woznicki S. Productivity enhancement of salt-affected environments through crop diversification. Land Deg Devel. 2008; 19, pp.429–453.

Quezada F. Status and potential of commercial bioprospecting activities in Latin America and Caribe. Serie medio ambiente y desarrollo no. 132. Onu, Cepal Chile. 2007; 24 pp.

Ravallion M. How long will it take to lift one billion people out of poverty? The World Bank Research Observer. 2013; 28(2):139-158. DOI: https://doi.org/10.1093/wbro/lkt003

Rees W, Wackernagel M. Urban ecological footprints: why cities cannot be sustainable—and why they are a key to sustainability. Env Imp As Rev. 1996; 16(4–6):223-248. Doi: https://doi.org/10.1016/S0195-9255(96)00022-4. DOI: https://doi.org/10.1016/S0195-9255(96)00022-4

Rakocy J, Shultz R, Bailey D, Thoman E. Aquaponic production of tilapia and basil: Comparinga batch and staggered cropping system. Acta Hortic. 2004; 648:63–69. DOI: https://doi.org/10.17660/ActaHortic.2004.648.8

Raskin I, Ribnicky D, Komarnytsk, S, Ilic N, Poulev A, Borisjuk N, Brinker A, Moreno D, Ripoll C, Yakoby N, O'Neal J, Cornwell T, Pastor I, Fridlender B. Plants and human health in the twenty-first century. Tr Biot. 2002; 20(12):522-531. Doi: https://doi.org/10.1016/S0167-7799(02)02080-2. DOI: https://doi.org/10.1016/S0167-7799(02)02080-2

Riley JJ, Glenn EP, Mota CU. Small ruminant feeding trials on the Arabian Peninsula with Salicornia bigelovii Torr. In: Halophytes as a resource for livestock and for rehabilitation of degraded lands. 1994; (pp. 273-276). Springer Netherlands DOI: https://doi.org/10.1007/978-94-011-0818-8_26

Ríos-Durán MG, Valencia IR, Ross LG, Martínez-Palacios CA. Nutritional evaluation of autoclaved Salicornia bigelovii Torr. seed meal supplemented with varying levels of cholesterol on growth, nutrient utilization and survival of the Nile tilapia (Oreochromis niloticus). Aq int. 2013;21(6): 1355-1371. DOI: https://doi.org/10.1007/s10499-013-9638-5

Rodríguez-González H, Rubio-Cabrera S, García-Ulloa M, Montoya-Mejía M, Magallón-Barajas F. Análisis técnico de la producción de tilapia (Oreochromis niloticus) y lechuga (Lactuca sativa) en dos sistemas de acuaponía. Agro produc. 2015; 8(3):15-19.

Ronzon-Ortega M, Hernández-Vergara M, Pérez-Rostro C. Hydroponic and aquaponic production of sweet basil (Ocimum basilicum) and Giant River prawn (Macrobrachium rosenbergii). Trop Subt Agroecos. 2012; 15:(2): S63-S71.

Rougoor W, van Marrewijk Ch. Demography, growth, and global income inequality. World Development. 2015; 74:220-232. DOI: https://doi.org/10.1016/j.worlddev.2015.05.013

Rueda-Puente E, Castellanos T, Troyo-Diéguez E, Díaz de León-Alvarez J, Murillo-Amador B. Effects of a nitrogen-fixing indigenous bacterium (Klebsiella pneumoniae) on the growth and development of the halophyte Salicornia bigelovii as a new crop for saline environments. J Agr Crop Sc. 2003; 189:323–332. Doi:10.1046/j.1439-037X.2003.00051.x DOI: https://doi.org/10.1046/j.1439-037X.2003.00051.x

Rueda-Puente E, Murillo-Amador B, Ortega-García J, Rangel-Preciado P, Nieto- Garibay A, Holguín Peña R, López Ahumada G, Rodríguez-Félix F, Vargas-López J, Wong-Corral F. Desarrollo natural de la halófita Salicornia bigelovii (Tor.) en zona costera del estado de Sonora. Trop Subt Agroecos. 2017; 20(1):1-9.

Satreps. Development of Aquaponics Combined with Open Culture Adapting to Arid Regions for Sustainable Food Production. Avert food crises by making effective use of limited water resources. Science and technology Research Development Program. SATREPS. 2016; https://www.jst.go.jp/global/english/kadai/h2605_mexico.html.

Saoud I. Ensuring Food Security by Improving “Freshwater Use Efficiency” or by Farming the Seas. In: Murad S., Baydoun E., Daghir N. editor (s) Wat, Ener Food Sus Mid East. Springer, Cham. 2017; 320 p. DOI: https://doi.org/10.1007/978-3-319-48920-9_15

Savidov N, Hutchings E, Rakocy J. Fish and plant production in a recirculating aquaponics system: a new approach to sustainable agriculture in Canada. Acta Hortic. 2007; 742:209-221. Doi: 10.17660/ActaHortic.2007.742.28. DOI: https://doi.org/10.17660/ActaHortic.2007.742.28

Shahid M, Jaradat AA, Rao NK. Use of Marginal Water for Salicornia bigelovii Torr. Planting in the United Arab Emirates. In: Developments in Soil Salinity Assessment and Reclamation. 2013; (pp. 451-462). Springer Netherlands DOI: https://doi.org/10.1007/978-94-007-5684-7_31

Segovia-Quintero M. An overview on desert aquaculture in Mexico. In: V. Crespi & A. Lovatelli, editor (s). Aquaculture in desert and arid lands: development constraints and opportunities. FAO Technical Workshop. 6–9 July 2010, Hermosillo, Mexico. FAO Fisheries and Aquaculture Proceedings No. 20. Rome, FAO. 2011. pp. 187–202

Schmidhuber J, Tubiello F. Global food security under climate change. Proc Nat Ac Sc USA. 2007; 104(50):19703-19708. Doi: http://doi.org/10.1073/pnas.0701976104. DOI: https://doi.org/10.1073/pnas.0701976104

Shabala S, Mackay A. Ion Transport in Halophytes. Adv Bot Res. 2011; 57:152–187. DOI: https://doi.org/10.1016/B978-0-12-387692-8.00005-9

Shi-Yang Z, Gu L, Hui-Bi W, Xing-Guo L, Yan-Hong Y, Ling T, Huang L. An integrated recirculating aquaculture system (RAS) for land-based fish farming: The effects on water quality and fish production. Aq Eng. 2011; 45(3):93-102. ISSN 0144-8609. Doi: https://doi.org/10.1016/j.aquaeng.2011.08.001. DOI: https://doi.org/10.1016/j.aquaeng.2011.08.001

Siap. Estadísticas de producción nacional http://www.siap.gob.mx/cierre-de-laproduccion-agricola-por-estado. Fecha de consulta: 2015. 18/Nov/15.

Stanley O. Bio prospecting marine halophyte Salicornia brachiata for medical importance and salt encrusted land development. J Coa Dev. 2008; 11(2): 62-69.

Stankus A. Integrating Biosystems to foster Sustainable Aquaculture: Using Black Soldier Fly Larvae as Feed in Aquaponic Systems. Master of Science Candidate. Zoology Department, University of Hawai’i Mānoa. May 2013 Final Thesis. 2013; 167 p.

Sternberg T, Rueff H, Middleton N. Contraction of the Gobi Desert, 2000 – 2012. Rem Sen. 2015; 7(2072-4292):1346–1358. DOI: https://doi.org/10.3390/rs70201346

Sullivan C. Calculating a water poverty index. World Dev. 2002; 30(7):1195-1210. Doi:https://doi.org/10.1016/S0305-750X(02)00035-9. DOI: https://doi.org/10.1016/S0305-750X(02)00035-9

Tirado M, Clarke R, Jaykus L, McQuatters-Gollop A, Frank J. Climate change and food safety: a review. Food Res Int. 2010; 43(7):1745-1765. Doi: https://doi.org/10.1016/j.foodres.2010.07.003. DOI: https://doi.org/10.1016/j.foodres.2010.07.003

Thornton P. Livestock production: Recent trends, future prospects. Phil Trans: Biol Sc. 2010; 365(1554), 2853-2867. Retrieved from http://www.jstor.org/stable/20752983 DOI: https://doi.org/10.1098/rstb.2010.0134

Van Wesenbeeck C, Keyzer M, Nubé M. Estimation of undernutrition and mean calorie intake in Africa: methodology, findings and implications. Int J Health Geo. 2009; 8, 37. Doi: http://doi.org/10.1186/1476-072X-8-37. DOI: https://doi.org/10.1186/1476-072X-8-37

Ventura Y, Wuddineh WA, Myrzabayeva M, Alikulov Z, Khozin-Goldberg I, Shpigel M, Sagi M. Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Sc Hort. 2011; 128(3), 189-196.

Von Grebmer K, Von Grebmer C, Rosegrant M, Olofinbiyi T, Wiesmann D, Fritschel H, Badiane O, Torero M, Yohannes Y, Thompson J, von Oppeln C, Rahall J. Global Hunger Index: The Challenge of Hunger: Ensuring Sustainable Food. 2012; 67 pp DOI: https://doi.org/10.2499/9780896298101

Webb P, Coates J, Frongillo E, Lorge R, Swindale A, Bilisky P. Measurement measuring household food insecurity: why it’s so important and yet so difficult to do. Advances in developing country food insecurity. J Nut. 2006; 136:1404S-1408S. DOI: https://doi.org/10.1093/jn/136.5.1404S

Wheeler T, Von Braun J. Climate change impacts on global food security. J Sc. 2013; 341(6145):508-513. DOI: https://doi.org/10.1126/science.1239402

Yamaguchi T, Blumwald E. Developing salt-tolerant crop plants: challenges and opportunities. Tr Plant Sc. 2005; 10(12):615-620. ISSN 1360-1385, Doi: https://doi.org/10.1016/j.tplants.2005.10.002. DOI: https://doi.org/10.1016/j.tplants.2005.10.002

Zanella D. Seawater forestry farming: An adaptive management strategy for productive opportunities in “barren” coastal lands (Order No. 1470817). Available from ProQuest Dissertations & Theses Global. 2009; (305183800). https://search.proquest.com/docview/305183800?accountid=27958.

Zerai D, Glenn E, Chaterved, R, Lu Z, Mamood A, Nelson S, Ray D. Potential for improvement of Salicornia bigelovii through selective breeding. Ecol Engin. 2010; 36:730–9. DOI: https://doi.org/10.1016/j.ecoleng.2010.01.002

Zetina-Córdoba P, Reta-Mendiola J, Olguín-Palacios C, Acosta-Barradas R, Espinosa-Sánchez G. El cultivo de tilapia (Oreochromis spp) en la rentabilidad de seis agroecosistemas en el estado de Veracruz. Tec. Pecu. Mex. 2006; 44(2):169-179.

Cómo citar

APA

HOLGUIN PEÑA, R. J., MEDINA-HERNÁNDEZ, D., GHASEMI, M. y Rueda Puente, E. O. (2020). SALT TOLERANT PLANTS AS A VALUABLE RESOURCE FOR SUSTAINABLE FOOD PRODUCTION IN ARID AND SALINE COASTAL ZONES. Acta Biológica Colombiana, 26(1), 116–126. https://doi.org/10.15446/abc.v26n1.82412

ACM

[1]
HOLGUIN PEÑA, R.J., MEDINA-HERNÁNDEZ, D., GHASEMI, M. y Rueda Puente, E.O. 2020. SALT TOLERANT PLANTS AS A VALUABLE RESOURCE FOR SUSTAINABLE FOOD PRODUCTION IN ARID AND SALINE COASTAL ZONES. Acta Biológica Colombiana. 26, 1 (dic. 2020), 116–126. DOI:https://doi.org/10.15446/abc.v26n1.82412.

ACS

(1)
HOLGUIN PEÑA, R. J.; MEDINA-HERNÁNDEZ, D.; GHASEMI, M.; Rueda Puente, E. O. SALT TOLERANT PLANTS AS A VALUABLE RESOURCE FOR SUSTAINABLE FOOD PRODUCTION IN ARID AND SALINE COASTAL ZONES. Acta biol. Colomb. 2020, 26, 116-126.

ABNT

HOLGUIN PEÑA, R. J.; MEDINA-HERNÁNDEZ, D.; GHASEMI, M.; RUEDA PUENTE, E. O. SALT TOLERANT PLANTS AS A VALUABLE RESOURCE FOR SUSTAINABLE FOOD PRODUCTION IN ARID AND SALINE COASTAL ZONES. Acta Biológica Colombiana, [S. l.], v. 26, n. 1, p. 116–126, 2020. DOI: 10.15446/abc.v26n1.82412. Disponível em: https://revistas.unal.edu.co/index.php/actabiol/article/view/82412. Acesso em: 28 mar. 2024.

Chicago

HOLGUIN PEÑA, RAMON JAIME, DIANA MEDINA-HERNÁNDEZ, MOJTABA GHASEMI, y Edgar Omar Rueda Puente. 2020. «SALT TOLERANT PLANTS AS A VALUABLE RESOURCE FOR SUSTAINABLE FOOD PRODUCTION IN ARID AND SALINE COASTAL ZONES». Acta Biológica Colombiana 26 (1):116-26. https://doi.org/10.15446/abc.v26n1.82412.

Harvard

HOLGUIN PEÑA, R. J., MEDINA-HERNÁNDEZ, D., GHASEMI, M. y Rueda Puente, E. O. (2020) «SALT TOLERANT PLANTS AS A VALUABLE RESOURCE FOR SUSTAINABLE FOOD PRODUCTION IN ARID AND SALINE COASTAL ZONES»., Acta Biológica Colombiana, 26(1), pp. 116–126. doi: 10.15446/abc.v26n1.82412.

IEEE

[1]
R. J. HOLGUIN PEÑA, D. MEDINA-HERNÁNDEZ, M. GHASEMI, y E. O. Rueda Puente, «SALT TOLERANT PLANTS AS A VALUABLE RESOURCE FOR SUSTAINABLE FOOD PRODUCTION IN ARID AND SALINE COASTAL ZONES»., Acta biol. Colomb., vol. 26, n.º 1, pp. 116–126, dic. 2020.

MLA

HOLGUIN PEÑA, R. J., D. MEDINA-HERNÁNDEZ, M. GHASEMI, y E. O. Rueda Puente. «SALT TOLERANT PLANTS AS A VALUABLE RESOURCE FOR SUSTAINABLE FOOD PRODUCTION IN ARID AND SALINE COASTAL ZONES». Acta Biológica Colombiana, vol. 26, n.º 1, diciembre de 2020, pp. 116-2, doi:10.15446/abc.v26n1.82412.

Turabian

HOLGUIN PEÑA, RAMON JAIME, DIANA MEDINA-HERNÁNDEZ, MOJTABA GHASEMI, y Edgar Omar Rueda Puente. «SALT TOLERANT PLANTS AS A VALUABLE RESOURCE FOR SUSTAINABLE FOOD PRODUCTION IN ARID AND SALINE COASTAL ZONES». Acta Biológica Colombiana 26, no. 1 (diciembre 28, 2020): 116–126. Accedido marzo 28, 2024. https://revistas.unal.edu.co/index.php/actabiol/article/view/82412.

Vancouver

1.
HOLGUIN PEÑA RJ, MEDINA-HERNÁNDEZ D, GHASEMI M, Rueda Puente EO. SALT TOLERANT PLANTS AS A VALUABLE RESOURCE FOR SUSTAINABLE FOOD PRODUCTION IN ARID AND SALINE COASTAL ZONES. Acta biol. Colomb. [Internet]. 28 de diciembre de 2020 [citado 28 de marzo de 2024];26(1):116-2. Disponible en: https://revistas.unal.edu.co/index.php/actabiol/article/view/82412

Descargar cita

CrossRef Cited-by

CrossRef citations9

1. Luiz Guilherme Medeiros Pessoa, Luiz Filipe dos Santos Silva, Maria Betânia Galvão dos Santos Freire, Sérgio Luiz Ferreira-Silva, Colleen Heather Machado Green, Hélio Fernandes de Melo, Josimar Gurgel Fernandes, Fernando José Freire. (2022). Effectiveness of soil conditioners to enhance salt extraction ability of Salicornia ramosissima in saline-sodic soil for different soil moisture contents. International Journal of Phytoremediation, 24(5), p.447. https://doi.org/10.1080/15226514.2021.1952924.

2. S. Cárdenas-Pérez, A. Piernik, J.J. Chanona-Pérez, M.N. Grigore, M.J. Perea-Flores. (2021). An overview of the emerging trends of the Salicornia L. genus as a sustainable crop. Environmental and Experimental Botany, 191, p.104606. https://doi.org/10.1016/j.envexpbot.2021.104606.

3. Catarina Guerreiro Pereira. (2022). Special Issue on Advances in Marine Biotechnology: Exploitation of Halophyte Plants. Applied Sciences, 12(20), p.10573. https://doi.org/10.3390/app122010573.

4. Shambhu KATEL, Shubh Pravat Singh YADAV, Benson TURYASINGURA, Aman MEHTA. (2023). Salicornia as a salt-tolerant crop: potential for addressing climate change challenges and sustainable agriculture development. Turkish Journal of Food and Agriculture Sciences, 5(2), p.55. https://doi.org/10.53663/turjfas.1280239.

5. Shiva Soltani, Ebrahim Rajabzadeh Ghatrami, Seyed Mohammad Bagher Nabavi, Nematollah Khorasani, Maziar Naderi. (2024). The correlation between echinoderms diversity and physicochemical parameters in marine pollution: A case study of the Persian Gulf coastline. Marine Pollution Bulletin, 199, p.115989. https://doi.org/10.1016/j.marpolbul.2023.115989.

6. Osama M. Al-Habahbeh, Romil S. Al-Adwan, Mustafa A. Al-Khawaldeh. (2022). Macro-engineering Design for an Artificial Lake in Southeastern Jordan. WSEAS TRANSACTIONS ON ENVIRONMENT AND DEVELOPMENT, 18, p.825. https://doi.org/10.37394/232015.2022.18.77.

7. Tomás Juan Álvaro Cervantes-Vázquez, Ana Alejandra Valenzuela-García, María Gabriela Cervantes-Vázquez, Tania Lizzeth Guzmán-Silos, Erika Lagunes Fortiz, Pablo Preciado Rangel, Edgar Omar Rueda-Puente. (2021). Morphophysiological, Enzymatic, and Elemental Activity in Greenhouse Tomato Saladette Seedlings from the Effect of Plant Growth-Promoting Rhizobacteria. Agronomy, 11(5), p.1008. https://doi.org/10.3390/agronomy11051008.

8. Maria João Rodrigues, Viana Castañeda-Loaiza, Ivo Monteiro, José Pinela, Lillian Barros, Rui M. V. Abreu, Maria Conceição Oliveira, Catarina Reis, Florbela Soares, Pedro Pousão-Ferreira, Catarina G. Pereira, Luísa Custódio. (2021). Metabolomic Profile and Biological Properties of Sea Lavender (Limonium algarvense Erben) Plants Cultivated with Aquaculture Wastewaters: Implications for Its Use in Herbal Formulations and Food Additives. Foods, 10(12), p.3104. https://doi.org/10.3390/foods10123104.

9. Maria João Rodrigues, Luísa Custódio, Débora Mecha, Gokhan Zengin, Zoltán Cziáky, Gyula Sotkó, Catarina Guerreiro Pereira. (2022). Nutritional and Phyto-Therapeutic Value of the Halophyte Cladium mariscus L. (Pohl.): A Special Focus on Seeds. Plants, 11(21), p.2910. https://doi.org/10.3390/plants11212910.

Dimensions

PlumX

Visitas a la página del resumen del artículo

1015

Descargas

Los datos de descargas todavía no están disponibles.