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ABSTRACT RESUMEN

Bulb onion (Allium cepa L.) is a globally consumed vegetable, 
and as the global population increases, demand for this crop is 
continuously rising. Unfortunately, production is significantly 
reduced—up to 40%—due to Fusarium wilt, a fungal disease 
caused by the Fusarium genus. In Boyacá, Colombia, one of 
the central onion-producing regions, chemical control is the 
primary method for controlling this disease despite the nega-
tive impact of chemicals on soil health and their decreasing 
efficacy. One alternative management strategy is resistance 
induction through microorganisms, which has been tested with 
the Trichoderma genus but not with native populations of ar-
buscular mycorrhizal fungi (AMF). This study aims to evaluate 
the resistance-inducing effect of a consortium of native AMF 
from Boyacá on the bulb onion. Fusarium oxysporum pathogens 
and native AMF were isolated from A. cepa L. crops in Boyacá 
and tested under greenhouse conditions for 18 weeks in a com-
pletely randomized design. The study evaluated the effects of 
the pathogen and AMF consortium on leaf number, average 
leaf area, and bulb growth. It found resistance-induction and 
growth promotion effects, as well as the adverse effects of the 
pathogen and the combined effects of both microorganisms. 
The findings suggest that native AMF consortia from Boyacá 
exerted a protective impact against Fusarium wilt, improving 
plant productivity under sterile soil conditions.

La cebolla de bulbo (Allium cepa L.) es una hortaliza consumi-
da a nivel global y con el crecimiento poblacional mundial su 
demanda se hace cada vez más grande. Desafortunadamente su 
producción disminuye hasta un 40% debido al marchitamiento 
por Fusarium, enfermedad causada por hongos del género Fu-
sarium. En Boyacá, Colombia, una de las principales regiones 
productoras de cebolla, el control químico es el principal método 
contra esta enfermedad, aunque presenta impactos negativos 
en la salud del suelo y su eficacia ha disminuido. Una de las 
alternativas de manejo es la resistencia inducida por microor-
ganismos, como se ha probado con hongos del género Tricho-
derma, pero no con poblaciones nativas de hongos micorrízicos 
arbusculares (HMA). El objeto del presente trabajo fue evaluar 
el efecto inductor de resistencia al marchitamiento por Fusarium 
utilizando un consorcio de HMA nativos de Boyacá en cebolla 
de bulbo. Se realizaron aislamientos del patógeno Fusarium 
oxysporum y de HMA a partir de cultivos de A. cepa L. nativos de 
Boyacá, y se realizaron pruebas en condiciones de invernadero 
durante 18 semanas con un diseño completamente al azar. Se 
evaluaron los efectos del patógeno y del consorcio de HMA sobre 
el número de hojas, el área foliar promedio y el crecimiento del 
bulbo. Se encontraron efectos de inducción de resistencia y de 
promoción de crecimiento; también se observaron los efectos 
adversos del patógeno, así como efectos conjuntos de ambos 
tipos de microorganismos. Se concluyó que los consorcios de 
HMA de Boyacá promovieron un efecto protector contra el 
marchitamiento por Fusarium, mejorando la productividad de 
la planta en condiciones de esterilidad del suelo.

Keywords: infection prevention, inoculation time, mycorrhizal 
consortium, sanitary status.

Palabras clave: prevención de infección, tiempo de inoculación, 
consorcio micorrízico, estado sanitario.
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Introduction

The global human population reached 8,000 million 
in 2022 and is expected to increase to 9,000 million by 
2050 (ONU, 2019; 2022), requiring more efficient food 

production. Intensive agriculture and chemical inputs have 
increased the prevalence of diseases and insect pests while 
negatively impacting soil microbiota (Rojas Rodríguez & 
Ortuño, 2007). This, along with acquired resistance to some 
pathogens, highlights the need to explore mechanisms 
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aligned with natural dynamics (Islam et al., 2024; Yin et 
al., 2023).

Boyacá leads onion production in Colombia, accounting for 
41% of the total output with 260,970 t in 2023 (MinAgri-
cultura, 2024). Colombia’s bulb onion production systems 
operate within diverse biophysical, socio-ecosystem, and 
socioeconomic environments. Despite this variability, they 
can sustain and strengthen their supply, ensuring a steady 
provision for local and national markets throughout the 
year. However, they are impacted by imports from neigh-
boring countries.

Worldwide, Fusarium species are the primary fungal soil 
pathogens affecting onion crops (Delgado-Ortiz et al., 2016; 
Montes-Belmont et al., 2003), leading to Fusarium wilt. It is 
essential to note that the plant’s phenological stage can in-
crease susceptibility to pathogens; the susceptibility can be 
increased or reduced in mature or nursery plants (Frare et 
al., 2019). In onion bulbs, Fusarium spp. fungi can initially 
cause leaf yellowing, followed by wilting, leaf curling, rot, 
root breakage, and eventually plant death (Gardezi et al., 
2001; Martínez-Salgado et al., 2021). If infection occurs late, 
symptoms may not appear until storage (Cramer, 2000).

Economically significant Fusarium species include F. pro-
liferatum, F. solani, and F. oxysporum, which can reduce 
crop yields by up to 40% (Betancourth García et al., 2020; 
Martínez-Salgado et al., 2021). Fusarium wilt control in 
onion crops heavily relies on chemical inputs (Naeini et al., 
2010; Navarro et al., 2021; Vergel et al., 2016), overlooking 
alternatives like biological control with Trichoderma spp. 
(Delgado-Oramas, 2020), endophytes (Abdelrahman et 
al., 2016), resistance induction by extracts or microorgan-
isms (Fontana et al., 2021), and exposure to UV radiation 
(Winona et al., 2025).

Among the three plant defense mechanisms—physical, 
chemical, and induced (Couto & Zipfel, 2016)—plants 
activate induced responses when they detect pathogen-as-
sociated molecules, triggering pattern-induced resistance. 
In response to specific microbial effectors, this leads to 
effector-triggered immunity or acquired resistance, often 
resulting in the hypersensitive response characterized by 
localized cell death (Jones & Dangl, 2006).

In recent decades, interest in using arbuscular mycorrhizal 
fungi (AMF) for food production and plant disease control 
has increased (Whipps, 2004). AMF are microorgan-
isms that play a crucial role in plant-associated biological 
processes, enhancing growth, yields, and biochemical 
components that strengthen defense capacities against 
pathogens such as fungi and bacteria (Amin & Ahmed, 

2023; Błaszczyk et al., 2014). Plants respond favorably to 
AMF interactions, improving growth and increasing re-
sistance to abiotic stressors such as drought, temperature 
fluctuations, salinity, heavy metal toxicity, and nutrient 
deficiency or excess (Datta & Kulkarni, 2012; Gardezi et al., 
2001; Rivera Méndez et al., 2014; Wilches Ortiz et al., 2019).

The AMF also contribute to maintaining the structural 
stability of soils, whether in forest or crop conditions, by 
secreting glomalin, mucilages, and hydrophobins through 
their hyphae: these contribute to soil aggregation (Rashid 
et al., 2016) by generating hyphal networks that trap and 
bind soil particles, providing cohesion to the particles and 
stability to the aggregates (Leifheit et al., 2014; Schütz et al., 
2022). The inductive defense effect of arbuscular mycor-
rhizal fungi is recognized in plants such as Elymus nutans 
(Zhang et al., 2022), Solanum lycopersicum (Badrbani et al., 
2024; Saha et al., 2022), Plantago lanceolata (Qu et al., 2021), 
and other plant species such as Poncirus trifoliata (Liu et 
al., 2024) and Zea mays (Hao et al., 2012). This mechanism 
is used to control plant pathogens (Dey & Ghosh, 2022). 
The defensive effect of AMF extends beyond the root level. 
These fungi also mediate in the control of fungal foliar 
diseases (Kashyap et al., 2024). Plant defenses are induced 
not only by arbuscular mycorrhizal fungi but also by an 
adequate supply of nutrients (Stratton et al., 2022).

Regarding bulb onions, there are positive references. 
Agudelo Becerra and Casierra-Posada (2004) find that 
undefined AMF in field conditions increase resistance to 
F. oxysporum, inhibiting pathogen growth, reducing bulb 
damage, and mitigating salinity effects; after that, Jaime et 
al. (2008) report a reduction of about 50% in the incidence 
of white rot in field conditions using Glomus intraradices. 
Yağmur et al. (2024) found up to a 73% reduction in the 
severity of basal wilt expression using Funneliformis mos-
seae against F. oxysporum in greenhouse conditions. Stud-
ies on Rhizophagus irregularis-inoculated A. cepa crops 
demonstrate positive effects on growth, quality, and yields, 
driven by increased chlorophyll content and improved 
nutritional properties (El-Sherbeny et al., 2022; Rozpądek 
et al., 2016). However, Ghanbarzadeh et al. (2016) report 
that the simultaneous inoculation with F. mosseae and T. 
harzianum stimulated onion growth but partially inhibited 
F. mosseae colonization.

When evaluating antagonistic or suppressive effects against 
pathogens, an important aspect is the concentration at 
which the pathogen induces disease symptoms. Generally, 
the increase in F. oxysporum concentration is directly cor-
related to the severity of the symptoms. For example, in cot-
ton (Gossypium hirsutum), wilt symptoms and reductions 
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in plant growth occur at soil inoculum levels of 10³ conidia 
and become more severe at 10⁴ conidia/g and higher (Hao et 
al., 2009). In Mexican lime (Citrus x aurantifolia), severity 
steadily increases as microconidia density rose from 500 to 
8000 per g of soil (Morgan & Timmer, 1984). In chickpea 
(Cicer arietinum), maximum disease intensity is observed 
at chlamydospore densities as low as 6 to 50 per g of soil, 
depending on the race of F. oxysporum (Navas-Cortés et 
al., 2007). Similarly, in watermelon (Citrullus lanatus), wilt 
incidence is strongly linked to inoculum densities ranging 
from 100 to 1200 CFU/g (Zhou & Everts, 2003).

Even in the indirect transmission of the pathogen, such 
as laurel wilt in avocado, caused by the fungus Raffaelea 
lauricola and transmitted by the exotic ambrosia beetle 

Xyleborus glabratus, symptom severity is lower at 10² than 
at higher concentrations, and both 10² and 10³ conidia 
cause less disease than 10⁴ and 10⁵ (Hughes et al., 2015).

Evaluating the interactions of native AMF consortia in A. 
cepa crops helps expand the field research on sustainable 
alternative onion production. This study posited: (1) that 
pathogen concentration does not influence the severity 
of Fusarium wilt in A. cepa, and (2) that AMF provided a 
protective effect against Fusarium wilt, enhancing plant 
productivity. The study tested for differences among treat-
ments with varying pathogen concentrations. It established 
whether AMF-inoculated plants exhibited better growth 
and productivity.

Colombia

Boyacá

N

Samacá
Cucaita
Toca

FIGURE 1. Sampling sites in the municipalities of Cucaita, Toca, and Samacá in Boyacá, Colombia.
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Materials and methods

Sampling
Samples were collected in 2022 from three municipalities 
in Boyacá—Cucaita, Toca, and Samacá—at elevations rang-
ing from 2,641 to 2,838 m a.s.l. Two farms growing onions 
were chosen in each municipality. Ten random top-soil 
subsamples were taken from each farm and combined to 
yield approximately 1,000 g of soil (Fig. 1). Additionally, 
onions in the bulb thickening phenological phase, showing 
Fusarium wilt symptoms were collected. All samples were 
stored in labeled plastic bags and kept refrigerated until 
processed at the Zenkinoko SAS laboratory in Cucaita.

Extraction of AMF spores
The AMF spores were extracted by wet sieving and decan-
tation following Sieverding (1984). Ten grams of soil were 
processed through a series of mesh sieves with openings 
of 2000, 500, 250, 120, and 45 µm. The material retained 
in the smaller sieves was subjected to sucrose gradient 
centrifugation (70-80%). The spores were examined using a 
ZEISS Stemi 305 stereomicroscope. They were subsequently 
extracted with a syringe fitted with a yellow micropipette 
tip and stored in refrigeration at 2-4°C in 2 ml conical tubes 
containing 100 µl of distilled water, at a rate of 40 spores 
per tube. For experiments, only the three most abundant 
species were selected.

Only spores that appeared viable (based on visual assess-
ment and the presence of cytoplasmic content), not parasit-
ized, broken, or perforated, were selected. Morphospecies 
or higher taxonomic classification was determined based 
on morphological characteristics, including spore and 
hyphal coloration, presence or absence of a shield, number 
of walls and layers, shape and attachment of the subtend-
ing hypha, presence, absence, and position of the septum, 
presence of scars, presence of a sacculus, ornamentation, 
whether spores were solitary or clustered, the type of ag-
gregation, and reaction to Melzer’s reagent. Genus-level 
identification was performed according to the existing 
literature. Species-level identification was conducted where 
possible by comparing morphological traits with data 
from the International Culture Collection of Arbuscular 
and Vesicular-Arbuscular Mycorrhizal Fungi (INVAM) 
(https://invam.wvu.edu), Professor Sidney Stürmer’s col-
lection (https://sites.google.com/site/cicgfma/home), and 
Professor Janusz Blaszkowski’s Glomeromycota collection 
(http://www.zor.zut.edu.pl) (Blaszkowski, 2012), as well as 
recently described species up to December 2023.

Isolation of Fusarium spp. strains
The isolation of Fusarium spp. followed the methodology 
described by Hernández et al. (2019). Onion root segments 
(~2 cm) from sick plants were cleaned with distilled water 
to remove soil residues, surface-sterilized with 2% sodium 
hypochlorite for three minutes, rinsed with distilled water, 
immersed in 70% ethanol for one minute, and subsequently 
rewashed with distilled water. The roots were dried on filter 
paper and plated (4 fragments per Petri dish) on potato 
dextrose agar (PDA) without antibiotics or antimycotics. 
A total of 40 plates were incubated at 28°C until visible 
colonies appeared, within 1 week.

Of 57 colonies obtained, the 20 that exhibited cotton-like 
growth and characteristic pink, red, or white Fusarium 
pigmentation (Duarte et al., 2016) were selected. Using 
a mycological loop, mycelial tip fragments were subcul-
tured onto PDA by puncture and incubated at 28°C for 7 
d. Among these, 15 purified Fusarium spp. strains were 
retained for further identification. To preserve isolates, 
mycelial fragments were transferred to inclined agar tubes 
(Montesinos et al., 2015), incubated at 28°C for 7 d, and 
stored at 4°C.

Identification of Fusarium spp.
For Fusarium species identification, carnation leaf agar 
(CLA) at 2% was used to promote the formation of both 
macroconidia and microconidia (Duarte et al., 2016). Au-
toclaved carnation leaves (in five fragments) were added to 
2% water agar and refrigerated for one day at 4°C. The 15 
fungal isolates were inoculated by puncture and incubated 
at 28°C for 7 d. Conidial observations were conducted 
using traditional slide mounts, employing a mycological 
handle, a lactophenol blue stain, and a Primo Star ZEISS 
microscope, following the species descriptions of Leslie 
and Summerell (2006).

Fusarium spp. inoculum mass-production
The previously identified strains were tested for growth 
rate in PDA at 28°C, and the two isolates with the highest 
growth rate were selected for assays. For pathogen mass 
production, the methodology of Jarek et al. (2018) was fol-
lowed. A test tube containing the isolate was supplemented 
with 1 ml of sterile distilled water and a drop of Tween 80. 
The fungal mycelium was scraped from the medium us-
ing a round inoculation handle and transferred to another 
tube. A 100 μl aliquot of the suspension was spread onto 
PDA plates using a Drigalski spatula in a spiral pattern. 
Five replicates were prepared and incubated at 28°C for 7 d.
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Onion seed sowing
Sterilized peat (2 kg, autoclaved at 121°C for 1 h) was used 
as a substrate and placed in 72-cavity germination trays, 
which were isolated from the soil surface by a plastic-
covered table. Onion seeds were surface-treated with 2% 
sodium hypochlorite for 1 min, followed by three rinses 
with distilled water. Then, using surface-sterile forceps, 
two seeds were sown in each tray cavity.

One month after germination, seedlings were transplanted 
into pots containing a mixed substrate (1:1 soil:sand) that 
had been double-sterilized in an autoclave at 121°C for 1 h. 
The peat substrate was gently removed from the roots with a 
spatula to minimize damage during transplant. Depending 
on the treatment, the fungal pathogen, the AMF, or both 
were placed in the center of the pot before transplanting 
the seedlings. Each pot contained a single seedling, and 
additional substrate was added to cover the roots without 
burying the foliage.

Experimental design
A completely randomized design was used with six treat-
ments and ten plants per treatment (five per dosage), re-
sulting in a total of 60 plants. The inhibitory effect of AMF 
on Fusarium-induced disease was evaluated based on bulb 
growth (mm), leaf length average (cm), and leaf count over 
18 weeks. The treatments were performed as in Table 1.

TABLE 1. Fusarium and arbuscular mycorrhiza inoculation treatments on 
A. cepa plants in greenhouse conditions.

Treatment AMF Fusarium Time of inoculation

T0 - - -

T1 x - Initial

T2 - x Initial

T3 x x Fusarium 7 d after AMF

T4 x x AMF 7 d after Fusarium

T5 x x Initial and simultaneous

Conventions: - = No inoculation, x = inoculation.

Three fertilization events were conducted using a 13-40-
13 (NPK) formulation, following standard fertilization 
schedules for the onion crop. Additionally, plant mortality 
due to disease and phenotypic traits such as chlorosis and 
wilting was recorded.

For AMF inoculation, 250 μl of distilled water was added 
to each conical tube containing 40 AMF spores. Each tube 
suspension was then applied directly onto the roots per 
pot using a micropipette under a stereomicroscope, ensur-
ing proper adhesion of the spores to the root surface. For 

Fusarium inoculation, mass culture conidia suspensions 
were adjusted to 1 × 10⁸ conidia ml-1 using a Neubauer 
chamber. According to the treatment, two pathogens at 
both concentrations (75 μl and 420 μl) were applied directly 
to the roots, along with a control without conidia. Five 
plants per concentration were used per Fusarium treatment.

Data analysis
Normality and homoscedasticity tests were performed 
before statistical analysis. All analyses were conducted us-
ing SPSS v.27. Figures were generated with SigmaPlot v.12. 
A two-way ANOVA (weeks and pathogen concentration) 
was performed to assess the effect of Fusarium concentra-
tion (0, 75, 420 μl) on the evaluated variables and whether 
differences persisted over time. A post hoc Bonferroni test 
was applied at a 5% significance level if significant differ-
ences were detected.

A two-way ANOVA (weeks and treatment) was con-
ducted to evaluate differences among AMF and Fusarium 
treatments over time. When significant differences were 
observed, a post-hoc Bonferroni test was applied (5% sig-
nificance level). The interaction between time and treat-
ment effects was also analyzed to determine the persistence 
of treatment effects over time.

Results

On each farm, 7 to 16 arbuscular mycorrhizal fungal spe-
cies were identified, with the three most abundant being 
Racocetra sp., Acaulospora sp., and Acaulospora morrowiae, 
which were used in the consortium. Meanwhile, the phy-
topathogenic fungus used in the experiment corresponds 
to Fusarium oxysporum Schltdl.

We observed that the two pathogen concentrations did 
not differ in their effects on bulb growth and leaf number. 
However, significant differences arose when comparing 
these concentrations with those in the treatment in which 
the pathogen was absent from the soil. Additionally, no in-
teractions between concentrations and time were detected 
(Fig. 2A and B). 

However, when evaluating the interaction between average 
leaf length and the week of evaluation, a differential effect 
of Fusarium strain concentration was observed, where 
the absence of the pathogen resulted in shorter leaves. 
In the treatment inoculated exclusively with the AMF 
consortium, a differential resource allocation effect was 
observed, where plants allocate more carbon to the my-
corrhizal symbiosis and root development (Smith & Read, 
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2008; Zheng et al., 2015). This finding is consistent with 
previous observations (Jakobsen et al., 2003; Smith et al., 
2009), and that AMF colonization can temporarily reduce 
shoot growth while the hyphal network is established and 
the root system is reinforced. Moreover, concentration 
interaction was detected only at the 17th week (Fig. 2C).

Leaf number increased precisely at the onset of bulb 
thickening (approximately at week 7), whereas the average 
leaf length did not follow the same trend; nevertheless, 
the mycorrhizal inoculation generally resulted in greater 
bulb diameter, leaf number, and leaf length than any other 
treatment (Fig. 3).

Although mycorrhizal and Fusarium inoculation did not 
exhibit an overall protective effect across treatments, after 
18 weeks, bulb diameter and leaf number were similar 
among treatments with mycorrhizae and those where 
Fusarium and mycorrhizae were applied simultaneously 
(Fig. 3A and B).

Leaf number was significantly higher during the first 10 
weeks following mycorrhizal application alone, a level that 
was eventually reached by the mycorrhizae + Fusarium 
treatment at 11 weeks (Fig. 3B). The treatment with AMF 
alone showed a gradual decrease in foliar parameters that 
became more noticeable as bulb size increased, and its be-
havior was similar to that of other therapies; however, in the 
last week, it showed an abrupt increase. Apparently, when 
A. cepa is inoculated only with AMF, without any other 
microorganism, physiological responses are faster and 
more pronounced during this final period (Fig. 3B and C).

Between weeks 16 and 17, a decline in both leaf number 
and length was observed across all treatments. In contrast, 
no such increase in bulb thickness was observed. This 
suggested a possible redistribution of energy resources to-
ward the bulb rather than maintaining the photosynthetic 
area. Before this decline, an increase in average leaf length 
followed a consistent trend over time, progressing more 
rapidly in the control treatment than in the arbuscular 
mycorrhizae treatment, and finally in the simultaneous 
mycorrhizae + Fusarium treatment, compared to other 
treatments. However, this increase was followed by a sub-
sequent decline after reaching its peak (Fig. 3C).

Treatments 2 (Fusarium sp.) and 4 (Fusarium sp. day 1 + 
Mycorrhizae day 7) lost one sample unit by week 5 due 
to the pathogenic fungus. Additionally, these treatments, 
along with treatment 3 (Mycorrhizae day 1 + Fusarium sp. 
day 7), exhibited symptoms of disease, such as progressive 
leaf chlorosis after 12 weeks.
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FIGURE 2. Effect of Fusarium sp. strain concentration on growth para-
meters and productivity of bulb onion (A. cepa) over 18 weeks. Bars 
correspond to the standard error. A) Bulb diameter, B) number of leaves, 
C) average leaf length. Uppercase letters within the labels correspond 
to the Bonferroni post hoc test for each strain concentration in each 
evaluated variable. The vertical dotted lines indicate fertilization events.
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Discussion 

Previous studies related to some AMF, such as Glomus, 
Rhizophagus, and Funneliformis, show effects against F. 
oxysporum wilt in onion. However, only Hu et al. (2010) 
and Tanwar et al. (2013) report the positive impact of Acau-
lospora spp against this disease. Evidence for Racocetra 
remains scarce and seems to be associated with mixed-
species inoculum rather than effects specific to the genus.

There is a wide range of experiments aimed at reducing 
the impact of Fusarium spp. on different crops, including 
onions. These range from the use of one single antagonistic 
species, the use of known bacteria, fungi, or both groups of 
organisms in a synthetic consortium (such as the present), 
to the use of amendments (Habte & Dobo, 2025), plant ex-
tracts (Hegazy et al., 2024), or the use of undefined micro-
organism mixtures as in efficient microorganisms (Guigui 
et al., 2024). In the last-mentioned, the authors explore the 
antagonistic, suppressive, or resistance-inducing effects of 
products with different attributed properties, such that the 
set of components (in most cases undefined) can, simply 
or synergistically, contribute to controlling pathogenic 
microorganisms.

This study tested two hypotheses. The first proposed that 
pathogen concentration influences the level of Fusarium 
wilt severity in A. cepa plants, requiring an individual anal-
ysis of the evaluated parameters. Regarding bulb size and 
leaf number, all treatments inoculated with F. oxysporum 
showed similar averages over time regardless of pathogen 
concentration (Fig. 2A and B). All F. oxysporum-inoculated 
treatments displayed chlorosis and wilting symptoms, with 
two treatments also showing plant mortality (one at 75 µl 
and another at 420 µl). This indicated that Fusarium sp. 
concentrations did not significantly differ in their effect on 
Fusarium wilt severity, as assessed by measuring bulb size 
and leaf number. Both concentrations used likely exceeded 
the unknown minimum infectious dose of F. oxysporum for 
A. cepa, as evidenced by the appearance of disease symp-
toms. Similar results are reported by Manasa et al. (2017) 
working with carnations. Consequently, increasing the 
concentration does not significantly affect disease severity 
(Biswal et al., 2020; Wright et al., 1997) when evaluating 
by leaf number or bulb diameter.

For leaf length, an inverse relationship was observed be-
tween pathogen concentration and average leaf length, 
suggesting that pathogen concentration affects the plant’s 
photosynthetic capacity. However, this effect was mitigated 
after 14 weeks, when the leaf length reached its maximum 
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average in infected plants (Fig. 2C). Several authors have 
reported the severity of different Fusarium species in vari-
ous crops, such as bean (Phaseolus vulgaris), where it affects 
plant growth and development (Biswal et al., 2020), or soy-
bean (Glycine max), where it reduces productivity without 
significantly affecting other variables (Freitas et al., 2016).

Regarding the second hypothesis, because F. oxysporum 
concentration did not affect leaf number or bulb diameter 
(key productivity variables), all treatments were considered 
independent units, regardless of pathogen concentration. 
It was hypothesized that arbuscular mycorrhizal fungi 
promote a protective effect against Fusarium wilt, thereby 
enhancing the plant’s productive characteristics—a detail 
that warrants close examination.

When comparing the simultaneous application of both 
microorganisms to the control (neither Fusarium sp. nor 
mycorrhizae) and considering that both outperformed 
F. oxysporum treatment alone in foliar measurements, a 
protective effect against the pathogen could be observed 
(Fig. 2B and C). Similar results are reported in Citrullus 
sp., where Trichoderma viride effectively suppressed F. 
oxysporum in Solanum lycopersicum plants (Ponsankar et 
al., 2023). Additionally, biocontrol effects of Trichoderma 
harzianum and Glomus mosseae against basal rot in onion 
plants (Ghanbarzadeh et al., 2016) are well documented. 
Comparing the control to the mycorrhiza-only treatment 
revealed a stimulatory effect of mycorrhizae on both leaf 
number and bulb diameter (Fig. 3A and B). This effect is 
widely recognized in crop plants associated with arbuscu-
lar mycorrhizal fungi (AMF), such as oat (Avena sativa) 
(Flores-Juárez et al., 2020) and banana (Musa sp.) (Bernal, 
2020), among other commercially relevant species. Fur-
thermore, onions fertilized with arbuscular mycorrhizal 
fungi have been reported to produce a higher quantity 
of indigestible oligosaccharides, which may be linked to 
protective mechanisms or potential medical applications 
(Lone et al., 2015).

However, the combined use of pathogenic and beneficial 
fungi reduced the individual effects of both microorgan-
isms on the plant. While pathogen severity was minimized, 
productivity levels took longer to reach those observed with 
mycorrhizae alone. This represents a trade-off in protective 
benefit (Delgado-Oramas, 2020) and reflects the energetic 
balance between production and defensive processes (Ci-
pollini & Heil, 2010; García et al., 2021). A similar trend was 
observed for average leaf length, with the effect becoming 
evident primarily after eight weeks of treatment (Fig. 2C).

Interestingly, although average leaf length decreased first 
in the mycorrhiza treatment (week 12), this pattern was 
subsequently observed in the combined biological treat-
ments and the control (week 16), once maximum average 
values were reached and, while leaf length declined, bulb 
diameter continued to increase (Fig. 3). This source-sink 
redistribution of nutrients, in which leaves act as sources 
and bulbs as sinks, is a common phenomenon across 
vegetation (Azcón-Bieto & Talón, 2013), particularly in 
short-cycle species like bulb onion once phenological ma-
turity is reached. What makes this particularly interesting 
is that the maximum average leaf areas and the timing of 
their attainment appear to be closely linked to plant health 
status, being early in healthy plants and late in sick plants 
(Fig. 3B and C).

Finally, the staggered inoculation treatment—applying 
the mycorrhizal consortia first, followed by F. oxysporum 
—produced unexpected results, yielding the lowest pro-
ductivity across all evaluated variables, even lower than F. 
oxysporum alone (Fig. 3). This suggested a greater metabolic 
burden that negatively impacted plant development. These 
findings indicated that mycorrhizal application should be 
performed preventively in pots rather than as a curative 
measure once F. oxysporum wilt has been established.

According to the results of this experiment, the best time to 
apply native arbuscular mycorrhizal fungi in onion crops is 
at the seedling stage, when the plants are developing their 
first roots, and in sterile soil conditions, without fertilizer, 
until the relationship between both members is established. 
In this way, the AMF application enhances productivity and 
provides protection against Fusarium wilt. Considering 
the potential of these AMF consortia to protect against F. 
oxysporum, it is essential to evaluate their impact on other 
Fusarium species that affect A. cepa. Moreover, further 
research is needed to determine their effectiveness in non-
sterile conditions, where similar outcomes are expected due 
to the presence of the most abundant native AMF.

Conclusions

Under greenhouse sterile soil conditions, pathogen con-
centration did not significantly affect bulb growth or leaf 
number, but it negatively affected leaf length. The protec-
tive effect observed in onion plants inoculated with native 
AMF consortia (Acaulospora spp. and Racocetra sp.) from 
Boyacá supports their role in mitigating F. oxysporum wilt. 
This is the first report of Racocetra in consortia with other 
AMF as a biological control agent.
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