Arbuscular mycorrhizae induce resistance against
Fusarium wilt in onion in Boyaca, Colombia

Micorrizas arbusculares inducen la resistencia contra marchitamiento
por Fusarium en cebolla en Boyacd, Colombia
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ABSTRACT

Bulb onion (Allium cepa L.) is a globally consumed vegetable,
and as the global population increases, demand for this crop is
continuously rising. Unfortunately, production is significantly
reduced—up to 40%—due to Fusarium wilt, a fungal disease
caused by the Fusarium genus. In Boyaca, Colombia, one of
the central onion-producing regions, chemical control is the
primary method for controlling this disease despite the nega-
tive impact of chemicals on soil health and their decreasing
efficacy. One alternative management strategy is resistance
induction through microorganisms, which has been tested with
the Trichoderma genus but not with native populations of ar-
buscular mycorrhizal fungi (AMF). This study aims to evaluate
the resistance-inducing effect of a consortium of native AMF
from Boyacd on the bulb onion. Fusarium oxysporum pathogens
and native AMF were isolated from A. cepa L. crops in Boyaca
and tested under greenhouse conditions for 18 weeks in a com-
pletely randomized design. The study evaluated the effects of
the pathogen and AMF consortium on leaf number, average
leaf area, and bulb growth. It found resistance-induction and
growth promotion effects, as well as the adverse effects of the
pathogen and the combined effects of both microorganisms.
The findings suggest that native AMF consortia from Boyaca
exerted a protective impact against Fusarium wilt, improving
plant productivity under sterile soil conditions.

Keywords: infection prevention, inoculation time, mycorrhizal
consortium, sanitary status.

La cebolla de bulbo (Allium cepa L.) es una hortaliza consumi-
da a nivel global y con el crecimiento poblacional mundial su
demanda se hace cada vez mas grande. Desafortunadamente su
produccion disminuye hasta un 40% debido al marchitamiento
por Fusarium, enfermedad causada por hongos del género Fu-
sarium. En Boyacd, Colombia, una de las principales regiones
productoras de cebolla, el control quimico es el principal método
contra esta enfermedad, aunque presenta impactos negativos
en la salud del suelo y su eficacia ha disminuido. Una de las
alternativas de manejo es la resistencia inducida por microor-
ganismos, como se ha probado con hongos del género Tricho-
derma, pero no con poblaciones nativas de hongos micorrizicos
arbusculares (HMA). El objeto del presente trabajo fue evaluar
el efecto inductor de resistencia al marchitamiento por Fusarium
utilizando un consorcio de HMA nativos de Boyaca en cebolla
de bulbo. Se realizaron aislamientos del patégeno Fusarium
oxysporumy de HMA a partir de cultivos de A. cepa L. nativos de
Boyacd, y se realizaron pruebas en condiciones de invernadero
durante 18 semanas con un diseflo completamente al azar. Se
evaluaron los efectos del patdgeno y del consorcio de HMA sobre
el nimero de hojas, el area foliar promedio y el crecimiento del
bulbo. Se encontraron efectos de induccién de resistencia y de
promocion de crecimiento; también se observaron los efectos
adversos del patdgeno, asi como efectos conjuntos de ambos
tipos de microorganismos. Se concluyd que los consorcios de
HMA de Boyacd promovieron un efecto protector contra el
marchitamiento por Fusarium, mejorando la productividad de
la planta en condiciones de esterilidad del suelo.

Palabras clave: prevencion de infeccion, tiempo de inoculacion,
consorcio micorrizico, estado sanitario.

Introduction

The global human population reached 8,000 million
in 2022 and is expected to increase to 9,000 million by
2050 (ONU, 2019; 2022), requiring more efficient food
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production. Intensive agriculture and chemical inputs have
increased the prevalence of diseases and insect pests while
negatively impacting soil microbiota (Rojas Rodriguez &
Ortuilo, 2007). This, along with acquired resistance to some
pathogens, highlights the need to explore mechanisms
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aligned with natural dynamics (Islam et al., 2024; Yin et
al., 2023).

Boyaca leads onion production in Colombia, accounting for
41% of the total output with 260,970 t in 2023 (MinAgri-
cultura, 2024). Colombia’s bulb onion production systems
operate within diverse biophysical, socio-ecosystem, and
socioeconomic environments. Despite this variability, they
can sustain and strengthen their supply, ensuring a steady
provision for local and national markets throughout the
year. However, they are impacted by imports from neigh-
boring countries.

Worldwide, Fusarium species are the primary fungal soil
pathogens affecting onion crops (Delgado-Ortiz et al., 2016;
Montes-Belmont et al., 2003), leading to Fusarium wilt. It is
essential to note that the plant’s phenological stage can in-
crease susceptibility to pathogens; the susceptibility can be
increased or reduced in mature or nursery plants (Frare et
al.,2019). In onion bulbs, Fusarium spp. fungi can initially
cause leaf yellowing, followed by wilting, leaf curling, rot,
root breakage, and eventually plant death (Gardezi et al.,
2001; Martinez-Salgado et al., 2021). If infection occurs late,
symptoms may not appear until storage (Cramer, 2000).

Economically significant Fusarium species include F. pro-
liferatum, F. solani, and F. oxysporum, which can reduce
crop yields by up to 40% (Betancourth Garcia et al., 2020;
Martinez-Salgado et al., 2021). Fusarium wilt control in
onion crops heavily relies on chemical inputs (Naeini et al.,
2010; Navarro et al., 2021; Vergel et al., 2016), overlooking
alternatives like biological control with Trichoderma spp.
(Delgado-Oramas, 2020), endophytes (Abdelrahman et
al., 2016), resistance induction by extracts or microorgan-
isms (Fontana et al., 2021), and exposure to UV radiation
(Winona et al., 2025).

Among the three plant defense mechanisms—physical,
chemical, and induced (Couto & Zipfel, 2016)—plants
activate induced responses when they detect pathogen-as-
sociated molecules, triggering pattern-induced resistance.
In response to specific microbial effectors, this leads to
effector-triggered immunity or acquired resistance, often
resulting in the hypersensitive response characterized by
localized cell death (Jones & Dangl, 2006).

In recent decades, interest in using arbuscular mycorrhizal
fungi (AMF) for food production and plant disease control
has increased (Whipps, 2004). AMF are microorgan-
isms that play a crucial role in plant-associated biological
processes, enhancing growth, yields, and biochemical
components that strengthen defense capacities against
pathogens such as fungi and bacteria (Amin & Ahmed,
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2023; Blaszczyk et al., 2014). Plants respond favorably to
AMF interactions, improving growth and increasing re-
sistance to abiotic stressors such as drought, temperature
fluctuations, salinity, heavy metal toxicity, and nutrient
deficiency or excess (Datta & Kulkarni, 2012; Gardezi et al.,
2001; Rivera Méndez et al., 2014; Wilches Ortiz et al., 2019).

The AMF also contribute to maintaining the structural
stability of soils, whether in forest or crop conditions, by
secreting glomalin, mucilages, and hydrophobins through
their hyphae: these contribute to soil aggregation (Rashid
et al., 2016) by generating hyphal networks that trap and
bind soil particles, providing cohesion to the particles and
stability to the aggregates (Leifheit et al., 2014; Schiitz et al.,
2022). The inductive defense effect of arbuscular mycor-
rhizal fungi is recognized in plants such as Elymus nutans
(Zhanget al., 2022), Solanum lycopersicum (Badrbani et al.,
2024; Sahaet al., 2022), Plantago lanceolata (Qu et al., 2021),
and other plant species such as Poncirus trifoliata (Liu et
al., 2024) and Zea mays (Hao et al., 2012). This mechanism
is used to control plant pathogens (Dey & Ghosh, 2022).
The defensive effect of AMF extends beyond the root level.
These fungi also mediate in the control of fungal foliar
diseases (Kashyap et al., 2024). Plant defenses are induced
not only by arbuscular mycorrhizal fungi but also by an
adequate supply of nutrients (Stratton et al., 2022).

Regarding bulb onions, there are positive references.
Agudelo Becerra and Casierra-Posada (2004) find that
undefined AMF in field conditions increase resistance to
F. oxysporum, inhibiting pathogen growth, reducing bulb
damage, and mitigating salinity effects; after that, Jaime et
al. (2008) report a reduction of about 50% in the incidence
of white rot in field conditions using Glomus intraradices.
Yagmur et al. (2024) found up to a 73% reduction in the
severity of basal wilt expression using Funneliformis mos-
seae against F. oxysporum in greenhouse conditions. Stud-
ies on Rhizophagus irregularis-inoculated A. cepa crops
demonstrate positive effects on growth, quality, and yields,
driven by increased chlorophyll content and improved
nutritional properties (El-Sherbeny et al., 2022; Rozpadek
et al., 2016). However, Ghanbarzadeh et al. (2016) report
that the simultaneous inoculation with F. mosseae and T.
harzianum stimulated onion growth but partially inhibited
F. mosseae colonization.

When evaluating antagonistic or suppressive effects against
pathogens, an important aspect is the concentration at
which the pathogen induces disease symptoms. Generally,
the increase in F. oxysporum concentration is directly cor-
related to the severity of the symptoms. For example, in cot-
ton (Gossypium hirsutum), wilt symptoms and reductions
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in plant growth occur at soil inoculum levels of 10° conidia
and become more severe at 10* conidia/g and higher (Hao et
al., 2009). In Mexican lime (Citrus x aurantifolia), severity
steadily increases as microconidia density rose from 500 to
8000 per g of soil (Morgan & Timmer, 1984). In chickpea
(Cicer arietinum), maximum disease intensity is observed
at chlamydospore densities as low as 6 to 50 per g of soil,
depending on the race of F. oxysporum (Navas-Cortés et
al.,2007). Similarly, in watermelon (Citrullus lanatus), wilt
incidence is strongly linked to inoculum densities ranging
from 100 to 1200 CFU/g (Zhou & Everts, 2003).

Even in the indirect transmission of the pathogen, such
as laurel wilt in avocado, caused by the fungus Raffaelea
lauricola and transmitted by the exotic ambrosia beetle

Xyleborus glabratus, symptom severity is lower at 10* than
at higher concentrations, and both 10* and 10° conidia
cause less disease than 10* and 10° (Hughes et al., 2015).

Evaluating the interactions of native AMF consortia in A.
cepa crops helps expand the field research on sustainable
alternative onion production. This study posited: (1) that
pathogen concentration does not influence the severity
of Fusarium wilt in A. cepa, and (2) that AMF provided a
protective effect against Fusarium wilt, enhancing plant
productivity. The study tested for differences among treat-
ments with varying pathogen concentrations. It established
whether AMF-inoculated plants exhibited better growth
and productivity.

Colombia

[ Samaca
M Cucaita
= Toca

FIGURE 1. Sampling sites in the municipalities of Cucaita, Toca, and Samaca in Boyaca, Colombia.
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Materials and methods

Sampling

Samples were collected in 2022 from three municipalities
in Boyaca—Cucaita, Toca, and Samaca—at elevations rang-
ing from 2,641 to 2,838 m a.s.l. Two farms growing onions
were chosen in each municipality. Ten random top-soil
subsamples were taken from each farm and combined to
yield approximately 1,000 g of soil (Fig. 1). Additionally,
onions in the bulb thickening phenological phase, showing
Fusarium wilt symptoms were collected. All samples were
stored in labeled plastic bags and kept refrigerated until
processed at the Zenkinoko SAS laboratory in Cucaita.

Extraction of AMF spores

The AMF spores were extracted by wet sieving and decan-
tation following Sieverding (1984). Ten grams of soil were
processed through a series of mesh sieves with openings
of 2000, 500, 250, 120, and 45 um. The material retained
in the smaller sieves was subjected to sucrose gradient
centrifugation (70-80%). The spores were examined using a
ZEISS Stemi 305 stereomicroscope. They were subsequently
extracted with a syringe fitted with a yellow micropipette
tip and stored in refrigeration at 2-4°C in 2 ml conical tubes
containing 100 pl of distilled water, at a rate of 40 spores
per tube. For experiments, only the three most abundant
species were selected.

Only spores that appeared viable (based on visual assess-
ment and the presence of cytoplasmic content), not parasit-
ized, broken, or perforated, were selected. Morphospecies
or higher taxonomic classification was determined based
on morphological characteristics, including spore and
hyphal coloration, presence or absence of a shield, number
of walls and layers, shape and attachment of the subtend-
ing hypha, presence, absence, and position of the septum,
presence of scars, presence of a sacculus, ornamentation,
whether spores were solitary or clustered, the type of ag-
gregation, and reaction to Melzer’s reagent. Genus-level
identification was performed according to the existing
literature. Species-level identification was conducted where
possible by comparing morphological traits with data
from the International Culture Collection of Arbuscular
and Vesicular-Arbuscular Mycorrhizal Fungi (INVAM)
(https://invam.wvu.edu), Professor Sidney Stiirmer’s col-
lection (https:/sites.google.com/site/cicgfma/home), and
Professor Janusz Blaszkowski’s Glomeromycota collection
(http://www.zor.zut.edu.pl) (Blaszkowski, 2012), as well as
recently described species up to December 2023.

4

Isolation of Fusarium spp. strains

The isolation of Fusarium spp. followed the methodology
described by Hernandez et al. (2019). Onion root segments
(~2 cm) from sick plants were cleaned with distilled water
to remove soil residues, surface-sterilized with 2% sodium
hypochlorite for three minutes, rinsed with distilled water,
immersed in 70% ethanol for one minute, and subsequently
rewashed with distilled water. The roots were dried on filter
paper and plated (4 fragments per Petri dish) on potato
dextrose agar (PDA) without antibiotics or antimycotics.
A total of 40 plates were incubated at 28°C until visible
colonies appeared, within 1 week.

Of 57 colonies obtained, the 20 that exhibited cotton-like
growth and characteristic pink, red, or white Fusarium
pigmentation (Duarte et al., 2016) were selected. Using
a mycological loop, mycelial tip fragments were subcul-
tured onto PDA by puncture and incubated at 28°C for 7
d. Among these, 15 purified Fusarium spp. strains were
retained for further identification. To preserve isolates,
mycelial fragments were transferred to inclined agar tubes
(Montesinos et al., 2015), incubated at 28°C for 7 d, and
stored at 4°C.

Identification of Fusarium spp.

For Fusarium species identification, carnation leaf agar
(CLA) at 2% was used to promote the formation of both
macroconidia and microconidia (Duarte et al., 2016). Au-
toclaved carnation leaves (in five fragments) were added to
2% water agar and refrigerated for one day at 4°C. The 15
fungal isolates were inoculated by puncture and incubated
at 28°C for 7 d. Conidial observations were conducted
using traditional slide mounts, employing a mycological
handle, a lactophenol blue stain, and a Primo Star ZEISS
microscope, following the species descriptions of Leslie
and Summerell (2006).

Fusarium spp. inoculum mass-production

The previously identified strains were tested for growth
rate in PDA at 28°C, and the two isolates with the highest
growth rate were selected for assays. For pathogen mass
production, the methodology of Jarek et al. (2018) was fol-
lowed. A test tube containing the isolate was supplemented
with 1 ml of sterile distilled water and a drop of Tween 80.
The fungal mycelium was scraped from the medium us-
ing a round inoculation handle and transferred to another
tube. A 100 pl aliquot of the suspension was spread onto
PDA plates using a Drigalski spatula in a spiral pattern.
Five replicates were prepared and incubated at 28°C for 7 d.
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Onion seed sowing

Sterilized peat (2 kg, autoclaved at 121°C for 1 h) was used
as a substrate and placed in 72-cavity germination trays,
which were isolated from the soil surface by a plastic-
covered table. Onion seeds were surface-treated with 2%
sodium hypochlorite for 1 min, followed by three rinses
with distilled water. Then, using surface-sterile forceps,
two seeds were sown in each tray cavity.

One month after germination, seedlings were transplanted
into pots containing a mixed substrate (1:1 soil:sand) that
had been double-sterilized in an autoclave at 121°C for 1 h.
The peat substrate was gently removed from the roots with a
spatula to minimize damage during transplant. Depending
on the treatment, the fungal pathogen, the AMF, or both
were placed in the center of the pot before transplanting
the seedlings. Each pot contained a single seedling, and
additional substrate was added to cover the roots without
burying the foliage.

Experimental design

A completely randomized design was used with six treat-
ments and ten plants per treatment (five per dosage), re-
sulting in a total of 60 plants. The inhibitory effect of AMF
on Fusarium-induced disease was evaluated based on bulb
growth (mm), leaflength average (cm), and leaf count over
18 weeks. The treatments were performed as in Table 1.

TABLE 1. Fusarium and arbuscular mycorrhiza inoculation treatments on
A. cepa plants in greenhouse conditions.

Treatment AMF Fusarium Time of inoculation
T0 - - -
T X - Initial
T2 - X Initial
T3 X X Fusarium 7 d after AMF
T4 X X AMF 7 d after Fusarium
75 X X Initial and simultaneous

Conventions: - = No inoculation, x = inoculation.

Three fertilization events were conducted using a 13-40-
13 (NPK) formulation, following standard fertilization
schedules for the onion crop. Additionally, plant mortality
due to disease and phenotypic traits such as chlorosis and
wilting was recorded.

For AMF inoculation, 250 pl of distilled water was added
to each conical tube containing 40 AMF spores. Each tube
suspension was then applied directly onto the roots per
pot using a micropipette under a stereomicroscope, ensur-
ing proper adhesion of the spores to the root surface. For

Fusarium inoculation, mass culture conidia suspensions
were adjusted to 1 x 10° conidia ml" using a Neubauer
chamber. According to the treatment, two pathogens at
both concentrations (75 pl and 420 ul) were applied directly
to the roots, along with a control without conidia. Five
plants per concentration were used per Fusarium treatment.

Data analysis

Normality and homoscedasticity tests were performed
before statistical analysis. All analyses were conducted us-
ing SPSS v.27. Figures were generated with SigmaPlot v.12.
A two-way ANOVA (weeks and pathogen concentration)
was performed to assess the effect of Fusarium concentra-
tion (0, 75, 420 pl) on the evaluated variables and whether
differences persisted over time. A post hoc Bonferroni test
was applied at a 5% significance level if significant differ-
ences were detected.

A two-way ANOVA (weeks and treatment) was con-
ducted to evaluate differences among AMF and Fusarium
treatments over time. When significant differences were
observed, a post-hoc Bonferroni test was applied (5% sig-
nificance level). The interaction between time and treat-
ment effects was also analyzed to determine the persistence
of treatment effects over time.

Results

On each farm, 7 to 16 arbuscular mycorrhizal fungal spe-
cies were identified, with the three most abundant being
Racocetra sp., Acaulospora sp., and Acaulospora morrowiae,
which were used in the consortium. Meanwhile, the phy-
topathogenic fungus used in the experiment corresponds
to Fusarium oxysporum Schltdl.

We observed that the two pathogen concentrations did
not differ in their effects on bulb growth and leaf number.
However, significant differences arose when comparing
these concentrations with those in the treatment in which
the pathogen was absent from the soil. Additionally, no in-
teractions between concentrations and time were detected
(Fig. 2A and B).

However, when evaluating the interaction between average
leaflength and the week of evaluation, a differential effect
of Fusarium strain concentration was observed, where
the absence of the pathogen resulted in shorter leaves.
In the treatment inoculated exclusively with the AMF
consortium, a differential resource allocation effect was
observed, where plants allocate more carbon to the my-
corrhizal symbiosis and root development (Smith & Read,
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2008; Zheng et al., 2015). This finding is consistent with
previous observations (Jakobsen et al., 2003; Smith et al.,
2009), and that AMF colonization can temporarily reduce
shoot growth while the hyphal network is established and
the root system is reinforced. Moreover, concentration
interaction was detected only at the 17th week (Fig. 2C).

Leaf number increased precisely at the onset of bulb
thickening (approximately at week 7), whereas the average
leaf length did not follow the same trend; nevertheless,
the mycorrhizal inoculation generally resulted in greater
bulb diameter, leaf number, and leaflength than any other
treatment (Fig. 3).

Although mycorrhizal and Fusarium inoculation did not
exhibit an overall protective effect across treatments, after
18 weeks, bulb diameter and leaf number were similar
among treatments with mycorrhizae and those where
Fusarium and mycorrhizae were applied simultaneously
(Fig. 3A and B).

Leaf number was significantly higher during the first 10
weeks following mycorrhizal application alone, a level that
was eventually reached by the mycorrhizae + Fusarium
treatment at 11 weeks (Fig. 3B). The treatment with AMF
alone showed a gradual decrease in foliar parameters that
became more noticeable as bulb size increased, and its be-
havior was similar to that of other therapies; however, in the
last week, it showed an abrupt increase. Apparently, when
A. cepa is inoculated only with AMF, without any other
microorganism, physiological responses are faster and
more pronounced during this final period (Fig. 3B and C).

Between weeks 16 and 17, a decline in both leaf number
and length was observed across all treatments. In contrast,
no such increase in bulb thickness was observed. This
suggested a possible redistribution of energy resources to-
ward the bulb rather than maintaining the photosynthetic
area. Before this decline, an increase in average leaflength
followed a consistent trend over time, progressing more
rapidly in the control treatment than in the arbuscular
mycorrhizae treatment, and finally in the simultaneous
mycorrhizae + Fusarium treatment, compared to other
treatments. However, this increase was followed by a sub-
sequent decline after reaching its peak (Fig. 3C).

Treatments 2 (Fusarium sp.) and 4 (Fusarium sp. day 1 +
Mycorrhizae day 7) lost one sample unit by week 5 due
to the pathogenic fungus. Additionally, these treatments,
along with treatment 3 (Mycorrhizae day 1 + Fusarium sp.
day 7), exhibited symptoms of disease, such as progressive
leaf chlorosis after 12 weeks.
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FIGURE 2. Effect of Fusarium sp. strain concentration on growth para-
meters and productivity of bulb onion (A. cepa) over 18 weeks. Bars
correspond to the standard error. A) Bulb diameter, B) number of leaves,
C) average leaf length. Uppercase letters within the labels correspond
to the Bonferroni post hoc test for each strain concentration in each
evaluated variable. The vertical dotted lines indicate fertilization events.
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FIGURE 3. Effect of Fusarium sp. and arbuscular mycorrhizal treatments
on bulb onion (A. cepa) growth parameters and the productivity over
18 weeks. Bars correspond to the standard error. A) Bulb diameter,
B) number of leaves, C) average leaf length. Uppercase letters within
the labels correspond to the Bonferroni post-hoc test for each strain
treatment in each evaluated variable. The vertical dotted lines indicate
fertilization events.

Discussion

Previous studies related to some AMF, such as Glomus,
Rhizophagus, and Funneliformis, show effects against F.
oxysporum wilt in onion. However, only Hu et al. (2010)
and Tanwar et al. (2013) report the positive impact of Acau-
lospora spp against this disease. Evidence for Racocetra
remains scarce and seems to be associated with mixed-
species inoculum rather than effects specific to the genus.

There is a wide range of experiments aimed at reducing
the impact of Fusarium spp. on different crops, including
onions. These range from the use of one single antagonistic
species, the use of known bacteria, fungi, or both groups of
organisms in a synthetic consortium (such as the present),
to the use of amendments (Habte & Dobo, 2025), plant ex-
tracts (Hegazy et al., 2024), or the use of undefined micro-
organism mixtures as in efficient microorganisms (Guigui
et al.,2024). In the last-mentioned, the authors explore the
antagonistic, suppressive, or resistance-inducing effects of
products with different attributed properties, such that the
set of components (in most cases undefined) can, simply
or synergistically, contribute to controlling pathogenic
microorganisms.

This study tested two hypotheses. The first proposed that
pathogen concentration influences the level of Fusarium
wilt severity in A. cepa plants, requiring an individual anal-
ysis of the evaluated parameters. Regarding bulb size and
leaf number, all treatments inoculated with F. oxysporum
showed similar averages over time regardless of pathogen
concentration (Fig. 2A and B). All F. oxysporum-inoculated
treatments displayed chlorosis and wilting symptoms, with
two treatments also showing plant mortality (one at 75 pl
and another at 420 pl). This indicated that Fusarium sp.
concentrations did not significantly differ in their effect on
Fusarium wilt severity, as assessed by measuring bulb size
and leaf number. Both concentrations used likely exceeded
the unknown minimum infectious dose of F. oxysporum for
A. cepa, as evidenced by the appearance of disease symp-
toms. Similar results are reported by Manasa et al. (2017)
working with carnations. Consequently, increasing the
concentration does not significantly affect disease severity
(Biswal et al., 2020; Wright et al., 1997) when evaluating
by leaf number or bulb diameter.

For leaf length, an inverse relationship was observed be-
tween pathogen concentration and average leaf length,
suggesting that pathogen concentration affects the plant’s
photosynthetic capacity. However, this effect was mitigated
after 14 weeks, when the leaflength reached its maximum
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average in infected plants (Fig. 2C). Several authors have
reported the severity of different Fusarium species in vari-
ous crops, such as bean (Phaseolus vulgaris), where it affects
plant growth and development (Biswal et al., 2020), or soy-
bean (Glycine max), where it reduces productivity without
significantly affecting other variables (Freitas et al., 2016).

Regarding the second hypothesis, because F. oxysporum
concentration did not affect leaf number or bulb diameter
(key productivity variables), all treatments were considered
independent units, regardless of pathogen concentration.
It was hypothesized that arbuscular mycorrhizal fungi
promote a protective effect against Fusarium wilt, thereby
enhancing the plant’s productive characteristics—a detail
that warrants close examination.

When comparing the simultaneous application of both
microorganisms to the control (neither Fusarium sp. nor
mycorrhizae) and considering that both outperformed
F. oxysporum treatment alone in foliar measurements, a
protective effect against the pathogen could be observed
(Fig. 2B and C). Similar results are reported in Citrullus
sp., where Trichoderma viride effectively suppressed F.
oxysporum in Solanum lycopersicum plants (Ponsankar et
al., 2023). Additionally, biocontrol effects of Trichoderma
harzianum and Glomus mosseae against basal rot in onion
plants (Ghanbarzadeh et al., 2016) are well documented.
Comparing the control to the mycorrhiza-only treatment
revealed a stimulatory effect of mycorrhizae on both leaf
number and bulb diameter (Fig. 3A and B). This effect is
widely recognized in crop plants associated with arbuscu-
lar mycorrhizal fungi (AMF), such as oat (Avena sativa)
(Flores-Juarez et al., 2020) and banana (Musa sp.) (Bernal,
2020), among other commercially relevant species. Fur-
thermore, onions fertilized with arbuscular mycorrhizal
fungi have been reported to produce a higher quantity
of indigestible oligosaccharides, which may be linked to
protective mechanisms or potential medical applications
(Lone et al., 2015).

However, the combined use of pathogenic and beneficial
fungi reduced the individual effects of both microorgan-
isms on the plant. While pathogen severity was minimized,
productivity levels took longer to reach those observed with
mycorrhizae alone. This represents a trade-off in protective
benefit (Delgado-Oramas, 2020) and reflects the energetic
balance between production and defensive processes (Ci-
pollini & Heil, 2010; Garcia et al., 2021). A similar trend was
observed for average leaf length, with the effect becoming
evident primarily after eight weeks of treatment (Fig. 2C).
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Interestingly, although average leaf length decreased first
in the mycorrhiza treatment (week 12), this pattern was
subsequently observed in the combined biological treat-
ments and the control (week 16), once maximum average
values were reached and, while leaf length declined, bulb
diameter continued to increase (Fig. 3). This source-sink
redistribution of nutrients, in which leaves act as sources
and bulbs as sinks, is a common phenomenon across
vegetation (Azcén-Bieto & Talén, 2013), particularly in
short-cycle species like bulb onion once phenological ma-
turity is reached. What makes this particularly interesting
is that the maximum average leaf areas and the timing of
their attainment appear to be closely linked to plant health
status, being early in healthy plants and late in sick plants
(Fig. 3B and C).

Finally, the staggered inoculation treatment—applying
the mycorrhizal consortia first, followed by F. oxysporum
—produced unexpected results, yielding the lowest pro-
ductivity across all evaluated variables, even lower than F.
oxysporum alone (Fig. 3). This suggested a greater metabolic
burden that negatively impacted plant development. These
findings indicated that mycorrhizal application should be
performed preventively in pots rather than as a curative
measure once F. oxysporum wilt has been established.

According to the results of this experiment, the best time to
apply native arbuscular mycorrhizal fungi in onion crops is
at the seedling stage, when the plants are developing their
first roots, and in sterile soil conditions, without fertilizer,
until the relationship between both members is established.
In this way, the AMF application enhances productivity and
provides protection against Fusarium wilt. Considering
the potential of these AMF consortia to protect against F.
oxysporum, it is essential to evaluate their impact on other
Fusarium species that affect A. cepa. Moreover, further
research is needed to determine their effectiveness in non-
sterile conditions, where similar outcomes are expected due
to the presence of the most abundant native AMF.

Conclusions

Under greenhouse sterile soil conditions, pathogen con-
centration did not significantly affect bulb growth or leaf
number, but it negatively affected leaf length. The protec-
tive effect observed in onion plants inoculated with native
AME consortia (Acaulospora spp. and Racocetra sp.) from
Boyaca supports their role in mitigating F. oxysporum wilt.
This is the first report of Racocetra in consortia with other
AMEF as a biological control agent.
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