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ABSTRACT RESUMEN

This study evaluated the performance of YOLOv8 convolu-
tional neural network models for the automatic detection of 
phenological stages in greenhouse-grown cut roses (Rosa spp.). 
Image acquisition was conducted in a commercial greenhouse 
in Tocancipá, Colombia, using a ground-based mobile platform 
equipped with RGB cameras, thereby avoiding the operational 
limitations of unmanned aerial vehicles (UAVs) in enclosed en-
vironments. Images were collected during five sampling periods 
using a Nikon camera mounted on the mobile platform across 
five hydroponic benches, each divided into five 6.4-m plots, for 
a total of 25 plots. In total, 2,000 images and 4,653 annotated 
objects were obtained across 9 classes (8 phenological and 1 
multipurpose). Model performance was evaluated using preci-
sion, recall, F1-score, mAP50, and mAP50–95. Individual mod-
els outperformed the multipurpose model, with the C_stage 
model achieving an F1-score of 0.87 in validation and 0.84 in 
testing. The multipurpose model required extending training 
to 200 epochs to achieve convergence, resulting in improved 
performance (F1-score = 0.75 and Precision = 0.78 in validation; 
F1-score and Precision = 0.72 in testing), indicating its poten-
tial for simultaneous multi-stage detection under greenhouse 
conditions. Correlation analysis showed that object size was the 
main factor influencing model performance (r ≥ 0.90). At the 
same time, the number of labeled samples per class had only a 
weak relationship with the metrics. This explained the higher 
accuracy in phenological stages with larger and more distinctive 
floral structures (C_stage, S_color) and the lower performance 
in early stages (rice, chickpea), whose buds occupied less than 
0.3% of the image area.

Este estudio evaluó el desempeño de modelos de redes neuro-
nales convolucionales YOLOv8 para la detección automática 
de estados fenológicos en rosas de corte (Rosa spp.) cultivadas 
bajo invernadero. La captura de imágenes se realizó en un 
invernadero comercial en Tocancipá, Colombia, utilizando 
una plataforma móvil terrestre equipada con cámaras RGB, 
evitando así las limitaciones operativas del uso de vehículos 
aéreos no tripulados (VAT) en espacios cerrados. Las imágenes 
se obtuvieron durante cinco periodos de muestreo, empleando 
una cámara Nikon montada en la plataforma a lo largo de cinco 
bancos hidropónicos, cada uno dividido en cinco parcelas de 6,4 
m, para un total de 25 parcelas. En total, se recolectaron 2.000 
imágenes y 4.653 objetos etiquetados en nueve clases (8 feno-
lógicas y 1 clase multipropósito). El desempeño de los modelos 
se evaluó mediante precisión, exhaustividad (recall), F1-score, 
mAP50 y mAP50–95. Los modelos individuales superaron al 
modelo multipropósito, destacándose C_stage, que alcanzó 
un F1-score de 0,87 en validación y 0,84 en prueba. El modelo 
multipropósito requirió extender el entrenamiento hasta 200 
épocas para lograr la convergencia, obteniendo un mejor desem-
peño (F1-score = 0,75 y Precisión = 0,78 en validación; F1-score 
y Precisión = 0,72 en prueba), lo que indicó su potencial para 
la detección simultánea de múltiples etapas fenológicas bajo 
condiciones de invernadero. El análisis de correlación mostró 
que el tamaño del objeto fue el principal factor que determinó 
el desempeño del modelo (r ≥ 0,90), mientras que el número de 
etiquetas por clase presentó una relación débil con las métricas. 
Esto explicó el mejor rendimiento en etapas con estructuras 
florales más grandes (C_stage, S_color) y el desempeño limitado 
en etapas tempranas (rice, chickpea), cuyos botones ocuparon 
menos del 0,3% del área de la imagen.

Keywords: computer vision, deep learning, artificial intelligence 
in agriculture, plant phenology, greenhouse crops.
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inteligencia artificial aplicada a la agricultura, fenología de 
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Introduction

The cultivation of cut roses (Rosa spp.) is one of the most 
important agricultural export sectors in Colombia, repre-
senting a strategic component of the country’s exports and 
recognized for its high level of specialization in agronomic 
management under controlled greenhouse conditions. 
Currently, Colombia is the leading flower exporter in Latin 
America and the second worldwide (ICA, 2024). One of 
the main challenges for producers is accurately estimating 
the phenological stage of stems and projecting harvests, 
tasks traditionally carried out through manual field walks, 
stem-by-stem counting, and physical data recording. This 
process, in addition to being time-consuming and labor-
intensive, is prone to human error and lacks the immediacy 
required to feed predictive models. Therefore, the automa-
tion of phenological monitoring through computer vision 
tools emerges as a promising alternative.

In recent years, multiple successful applications of deep 
learning models have been documented for counting 
and classifying structures in agricultural crops. In soy-
bean, for example, the effectiveness of YOLO-X models is 
demonstrated for the automatic counting of reproductive 
structures such as pods, achieving an accuracy greater than 
96% (R² = 0.967), MAE of 4.18, MAPE of 10%, and RMSE 
of 6.48, even in scenarios with high density and overlap, 
validating their applicability as an alternative to manual 
methods (Xiang et al., 2023). In blueberry and lingonberry, 
YOLOv5 is used for the automatic detection of fruits at 
different phenological stages (flowering, green fruits, and 
ripe fruits), reaching a precision of 0.6 and a recall of 0.55, 
demonstrating its feasibility for optimizing harvest density 
estimation processes, despite some limitations in detecting 
individual flowers (Pajula, 2022).

Additionally, in peach orchards (Prunus persica), where 
images exhibit high floral density, background interfer-
ence, and severe occlusion, a recent study evaluates YOLO 
architectures (v5, v7, and v8) alongside a density-map ap-
proach based on a multi-column deep neural network. The 
density-map model achieves the best counting performance 
(MAE = 39.13; RMSE = 69.69; %Err = 9.98), substantially 
outperforming detection-based methods, among which 
YOLOv7x yields the highest accuracy (MAE = 152.7; RMSE 
= 212.9; %Err = 29.7). This research highlights the challeng-
es posed by densely populated floral scenes for detection 
algorithms and underscores the potential of deep learning 
models to enhance phenological monitoring in fruit crops 
(Estrada et al., 2024). In cotton (Gossypium barbadense), 
the use of YOLOv8 (extra-large) achieves an accuracy of 

99.81%, with high recall and F1-score values, validating its 
capacity for automatic counting of dense fruits from images 
and integrating it into web applications aimed at precision 
agriculture (Ballena et al., 2025).

Recent advances demonstrate the potential of computer 
vision and deep learning for phenological and floral moni-
toring across various crops and ecosystems. In rapeseed 
(Brassica napus L.), Li et al. (2023) integrate YOLOv5 + 
CBAM on UAV imagery, achieving an R² > 0.96 for flower 
counting and mAP > 92% for localization, while also re-
porting a positive correlation between detected inflores-
cences and crop yield. In an ecological context, John et al. 
(2024) combine crowd-sourced images with deep learning 
models such as Mask R-CNN, RetinaNet, and YOLOv5 to 
estimate floral species richness in alpine meadows, with 
Mask R-CNN reaching the highest performance (mAP 
= 0.67). In fruit crops, Wang et al. (2021) develop Deep-
Phenology, based on VGG-16, to estimate apple f lower 
distribution, achieving average Kullback-Leibler (KL) 
divergences of 0.23-0.27 and outperforming YOLOv5. 
Similarly, Mann et al. (2022) automate flower phenology 
monitoring in Arctic species using time-lapse cameras 
and CNNs, achieving precision = 0.918 and recall = 0.907, 
while Qi et al. (2021) propose Fusion-YOLO, a lightweight 
model capable of detecting chrysanthemum flowering 
stages under complex field conditions. Finally, Zhou et 
al. (2023) introduce S-YOLO, a transformer-based IoT-
integrated model for apple flowering monitoring, reaching 
an accuracy of up to 91.95%.

Collectively, these studies highlight the growing adoption 
of advanced detection architectures—from traditional 
CNNs to transformer-based models—for automated analy-
sis of flowering and phenology, consolidating computer 
vision as a key tool for precision agriculture and digital 
ecology.

These studies demonstrate that convolutional neural 
networks (CNNs) enable the automatic detection and 
classification of objects from images without the need for 
manual selection of explanatory variables. However, their 
application to highly specialized crops such as greenhouse-
grown cut roses remains incipient, particularly for stem 
phenological stages. In the specific case of rose cultivation, 
previous studies mainly focus on nutritional monitoring 
using VIS-NIR spectroscopy (Franco Montoya & Mar-
tínez Martínez, 2024) and multivariate models (Franco 
Montoya & Martínez Martínez, 2025) to predict foliar 
nutrient concentrations, such as manganese. Nonethe-
less, the application of computer vision techniques for the 
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automatic detection of stem phenological stages represents 
a novel approach with the potential to improve efficiency 
in agronomic and logistical processes within the sector. 
This advancement, however, posed considerable techni-
cal challenges, as image acquisition in greenhouse crops 
is constrained by the production system’s infrastructure, 
including plastic coverings, metal structures, wooden 
frames, wires, and other physical barriers that hinder the 
use of Unmanned Aerial Vehicles (UAVs).

For this reason, a ground-based mobile platform was 
chosen, enabling the circumvention of these restrictions 
and facilitating the systematic acquisition of field data. 
Although producers have adopted UAV-based technologies, 
no prior studies have examined their implementation in 
greenhouse systems, which reinforces the relevance and 
innovation of the adopted solution. 

This study makes a novel contribution by demonstrating, 
for the first time, the application of YOLOv8 to the auto-
matic detection of phenological stages in cut roses grown 
under greenhouse conditions—an ornamental crop of high 
commercial value for which no previous studies of this 
kind are reported. The findings provide a methodological 
foundation for integrating computer vision systems into 
the productive management of ornamental crops, promot-
ing process automation and data-driven decision-making. 
Based on this context, the objective of this research was to 
evaluate the performance of YOLOv8 models trained on 
RGB images for the automatic detection of phenological 
stages in cut rose stems, comparing both individual models 
for each stage and a multipurpose model. This approach 
aimed to identify the most accurate and operationally 
feasible alternative to support harvest estimation processes 
under real greenhouse production conditions.

Materials and methods

Study area
The study was conducted in a greenhouse located in To-
cancipá, Cundinamarca, Colombia, at an altitude of 2,605 
m a.s.l. (4°58’40.1” N, 73°59’06.6” W). The plant material 
consisted of Rosa spp. (cv. Freedom) grown under a fully 
mechanized production system, with standardized agro-
nomic management practices typical of the floriculture 
sector for greenhouse-grown crops.

Image sampling design
Although this work did not aim to evaluate agronomic 
treatments, the images used for model training and 

validation were organized in a randomized complete block 
design (RCBD). A total of 25 plots (five per block) were 
used as spatial reference units. In addition, five temporal 
sampling campaigns were conducted throughout the flo-
ral cycle to ensure representation of all nine phenological 
classes. This structure allowed capturing the spatial and 
temporal variability present within the greenhouse, thereby 
enhancing the robustness of model training and evaluation.

Image capture
The images were captured using a portable platform 
equipped with an RGB camera (Nikon) with sensors in the 
blue, green (550 nm), and red (660 nm) bands. The camera 
was mounted on a mobile structure that moved along the 
hydroponic benches via a motorized rail system, maintain-
ing a constant height of 1.2 m above the plant canopy and 
uniform movement. The longitudinal overlap between 
images was 60%, ensuring complete coverage of each plot 
without loss of relevant information (Fig. 1).

We collected a total of 2,000 RGB images and 4653 anno-
tated objects, corresponding to nine phenological classes 
of Rosa spp. under greenhouse conditions. The distribution 
of labeled objects per class was as follows: Rice (n = 147), 
chickpea (n = 461), D_Chickpea (n = 1014), S_Color (n = 
1650), S_Opening (n = 381), S_Sepals (n = 365), C_Stage 
(n = 298), and T_Bud (n = 337). This class distribution 
reflects the natural imbalance typical of commercial rose 
production, in which early and intermediate phenological 
stages are more frequent than advanced harvest stages. The 
phenological stage description is given in Table 1.

We captured images between 10:00 a.m. and 2:00 p.m. un-
der natural light conditions inside the greenhouse, taking 
advantage of the most stable lighting of the day. The Nikon 
cameras were set to automatic shooting mode, capturing 
one image every 0.4 m. A uniform number of pictures per 
plot was ensured, maintaining an even distribution among 
replicates and guaranteeing adequate spatial representation 
of the data throughout the experiment.

Image processing and training environment
The images were organized, classified, and manually la-
beled using the LabelMe software, identifying in each case 
the different phenological stages of the stems as categories 
of interest for model training. Subsequently, we converted 
the annotations into the format required by YOLOv8 
using the labelme2yolov8 package. All images, initially 
captured at 4000×3000 pixels, were resized to 640×640 
pixels to standardize the dataset and meet the YOLOv8 
model requirements.
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We trained in a virtual environment configured with 
Python 3.9 (64-bit), using the following versions: torch 
2.0.1+cu117, ultralytics, numpy 1.24.4, and opencv-python 
4.7.0.72, all compatible with each other. The labelme2yolov8 
package was used for annotation conversion.

Training and model definition
For automatic classification of phenological stages, models 
were trained for each stage, and a multipurpose model 
combining all stages. The training images were previously 
labeled, ensuring the correct phenological assignment to 
each visible stem (Fig. 2).

The individual models enabled analysis of each stage, while 
the multipurpose model aimed to simulate a real-world 
joint classification. Each model was assigned an abbreviated 
identifier (Tab. 1) to facilitate tracking in the results section.

To contextualize the scale of the detected objects, the 
average size of floral structures was estimated based on 
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Individual models

Rice
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Automatic detection of phenological 
states in Rosa spp.

FIGURE 1. Workflow of convolutional neural networks and image acquisition: A) CNN workflow, B) plots (RCBD), C) motor providing traction to the 
platform, D) platform with adapted cameras, and E) diagram of image capture inside the greenhouse.

TABLE 1. Models used for the automatic detection of phenological sta-
ges in Rosa spp.

Model Phenological 
stage Stage description

Rice rice Small-sized floral bud, completely closed

Chickpea chickpea
Globose bud, beginning to show expansion, 
still closed

D _ chickpea
Double 

chickpea
Larger bud, multiple layers of petals visible

S _ color Scratch color Petals begin changing color

S _ opening
Sepal 

opening
Sepals begin to open, without fully exposing 
the flower

S _ sepals
Straight 
sepals

Sepals fully open and straight, the flower is 
still not completely opened

T _ bud Tight bud
Flower about to open but still closed; ready 
for near-term cutting

C _ stage Cutting stage
Ideal commercial stage for harvest, petals 
partially open

Multiphen Multipurpose
Multipurpose model capable of identifying 
the nine phenological stages

2. Object detection with convultional 
neural networks
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FIGURE 2. Representative examples of the eight phenological classes of Rosa spp. used for model training. A) Rice, B) Chickpea, C) D_chickpea, 
D) S_color, E) S_opening, F) S_sepals, G) T_bud, H) C_stage, and I) Multipurpose model, which integrates all phenological classes into a single 
detection task.

the dimensions of the bounding boxes relative to the total 
image area (4000×3000 pixels). On average, the objects ac-
counted for 0.2% and 2.6% of the total area, depending on 
the phenological class. Additionally, the mean diameters 
measured directly in the field from a top-view perspective 
were 0.75 cm (rice), 1.2 cm (chickpea), 2.2 cm (Double 
chickpea), 2.75 cm (Scratch Color), 2.95 cm (Sepal Open-
ing), 3.2 cm (Straight Sepals), 3.6 cm (Tight Bud), and 4.2 
cm (Cutting Stage). These values provide context on the 
spatial scale variability of the objects analyzed within the 
dataset.

For automatic phenological stages, we used the YOLOv8 
(nano) architecture. This model, based on convolutional 
neural networks (CNNs), was trained independently for 
each RGB image. We split the dataset into 70% for train-
ing, 15% for validation, and 15% for testing, ensuring an 
adequate balance during training.

Model training, configuration, and evaluation
Model training was performed in the PyCharm 2023.2 
development environment using Python 3.9. The YOLOv8 
architecture was configured with 100 training epochs to 

balance between processing capacity and learning stability. 
Training was performed on a workstation equipped with 
an NVIDIA GeForce GTX 960M GPU (4 GB VRAM), us-
ing a batch size of 4, adjusted to the available memory to 
ensure stable convergence.

The YOLOv8 models were trained using the default hy-
perparameter configuration provided by Ultralytics 2023 
(Ultralytics Inc.).  The optimizer was stochastic gradient 
descent (SGD) with a learning rate of 0.01, momentum of 
0.937, and weight decay of 0.0005. The input image size was 
640 × 640 px, and the confidence threshold (conf-thres) and 
intersection over union value for non-maximum suppres-
sion (IoU NMS) were set to 0.25 and 0.45, respectively. No 
additional data augmentation techniques were applied, as 
the dataset already captured natural variability derived 
from different sampling dates and illumination conditions 
within the greenhouse.

The performance of the models was evaluated using stan-
dard object detection metrics: precision, recall, F1-score, 
mAP50, and mAP50-95.

A	 B	 C

D	 E	 F

G	 H	 I
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Results and discussion

Figure 3 shows the evolution of F1-score and precision 
across representative phenological classes, revealing dis-
tinct learning dynamics among the models. A general 
stabilization trend was observed around epoch 40, indicat-
ing that the main spatial and spectral features were already 
being captured. Peak performance for the single-class 
models occurred between epochs 80 and 100. In contrast, 
the multipurpose model (Multiphen) required additional 
training to achieve convergence.

The C_stage model achieved the highest stability and ac-
curacy (F1-score = 0.89; precision = 0.94), reflecting the 
larger object size and higher visual distinctiveness of fully 
developed flowers. The S_sepals model also showed early 
convergence (epoch 40), with moderate but consistent per-
formance (F1-score = 0.61; precision = 0.54).

In contrast, the Multiphen model, which initially reached F1 
= 0.61 and precision = 0.73 after 100 epochs, still showed a 
positive loss gradient—indicating incomplete convergence. 
Therefore, the training was extended to 200 epochs, leading 

to a marked improvement in all metrics (F1 = 0.75; and 
precision = 0.78). This confirms that the model retained 
learning potential and required additional iterations due 
to the complexity of handling nine phenological classes 
simultaneously.

These results highlight that model performance was in-
fluenced not only by dataset imbalance but also by the 
intrinsic learning dynamics of multi-class architectures. 
Training under real production conditions, with natural 
variability in floral stages (1,650 labels for S_color vs. 147 
for rice), provided a realistic scenario that strengthened 
the practical applicability of the models for greenhouse 
phenological monitoring.

Figure 4 summarizes the average performance of YOLOv8 
models trained for single and multipurpose tasks, evaluated 
using F1-score, precision, recall, mAP50, and mAP50-95. 
Models trained individually for advanced stages exhibited 
the best overall performance, particularly C_stage, which 
reached the highest mean scores across all metrics (F1-
score = 0.87; precision = 0.89; recall = 0.86; mAP50 = 0.89; 
mAP50-95 = 0.51).
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FIGURE 4. Performance metric distribution for detection models: A) F1-score, B) Recall, C) mAP50, D) Precision, and E) mAP50-95. Model des-
cription as in Table 1.

Models corresponding to visually distinctive and morpho-
logically stable stages (S_color and S_opening) also per-
formed well (F1 ≈ 0.72; precision ≈ 0.70). In contrast, early 
and small-structure stages (Rice and Chickpea) achieved 
lower accuracy due to their limited pixel representation and 
reduced number of labeled instances, confirming the in-
fluence of both scale and class imbalance. The Rice model, 
with only 147 labels, achieved F1 = 0.005 and precision = 

0.003, indicating that it struggles to generalize under severe 
imbalance conditions.

The Multiphen model, trained jointly across all classes, ini-
tially exhibited lower convergence at 100 epochs. However, 
after extending the training to 200 epochs, its performance 
improved substantially (F1 = 0.75; precision = 0.78, ap-
proaching the results of the best single-class models. This 
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demonstrates that, despite its complexity, the multi-class 
approach is operationally feasible and particularly suitable 
for real-world production environments, where simultane-
ous identification of multiple stages reduces the need for 
various models and simplifies deployment.

The observed imbalance is consistent with natural produc-
tion dynamics within the greenhouse, where intermediate 
stages such as S_color (1,650 labels) and D_chickpea (1,014) 
dominate during peak harvest periods. Similar effects of 
imbalance and class dominance have been reported by 
Sambasivam et al. (2021) in cassava disease detection and 
by Beloiu et al. (2023) in heterogeneous forest scenes, both 
of which note that minority classes yield lower metrics 
even under balanced training strategies. In agreement with 
these studies, our results confirm that model performance 
in Rosa spp. depends jointly on class representation, object 
scale, and the convergence strategy.

Figure 5 presents the normalized confusion matricerices 
of the segmentation models, including the multipurpose 
model (A) and the individual models C_stage, S_opening, 
S_color, and Rice (B–E). The multipurpose model showed 
strong consistency across classes, especially in S_color, 
T_bud, and C_stage, with diagonal values ≥ 0.80, indicating 
high agreement between predictions and reference anno-
tations. These classes correspond to larger, more visually 
contrasting floral structures, which facilitates their detec-
tion and localization by the neural network.

In contrast, the classes D_chickpea, Chickpea, and S_sepals 
had higher confusion rates with adjacent stages or with the 
background, suggesting that the model had difficulty dis-
tinguishing morphologically similar structures, especially 
those occupying less than 0.2% of the image area. This 
confusion coincides with the influence of object size and 
the low representation of lower classes. These factors limit 
the discriminative ability of deep detectors.

In the individual models (B–E), there was better separa-
tion between the target class and the background, with 
accuracies above 0.90, indicating that specialization by 
class improves delimitation and reduced false positives. 
However, although these models achieved greater accuracy, 
their operational implementation was less efficient. In pro-
ductive environments such as greenhouses, a single model 
capable of detecting multiple phenological stages—such as 
Multiphen retrained up to 200 epochs—represents a more 
scalable and economically viable alternative, even with 
moderate metrics. This trade-off between accuracy and 
applicability is also reported by Beloiu et al. (2023) in het-
erogeneous forest environments, highlighting the relevance 
of multi-class models for dynamic agricultural systems.

Table 2 summarizes the results obtained on the test set. 
Although a slight decrease in metrics is observed com-
pared to the validation stage, the hierarchy among models 
remained consistent, confirming the stability and gener-
alization capacity of the trained architectures. The model 
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FIGURE 5. Confusion matrix for the models: A) Multiphen, B) C_stage, C) S_opening, D) S_color, and E) Rice.
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corresponding to the C_stage retained the best overall 
performance (F1-score = 0.84, Precision = 0.85, Recall = 
0.77), followed by S_color, S_opening, and T_bud, with 
F1-scores close to 0.70.

These results indicated that the models effectively general-
ize to new, unseen data, especially in the more morphologi-
cally defined floral stages. The Multiphen model achieved 
competitive performance (F1-score = 0.72, Precision = 
0.72), reinforcing its potential for operational use in real 
greenhouse scenarios where simultaneous multi-class 
detection is desirable.

In contrast, Chickpea, D_chickpea, and especially Rice ex-
hibited poor performance (F1 < 0.50), indicating the most 
significant classification difficulty. This behavior is mainly 
associated with the small size and subtle morphological 
features of early floral stages, which occupy less than 0.1% 
of the image area and are visually indistinguishable from 
the surrounding background. These limitations reflected 
real production conditions and highlighted the need for 
enhanced training strategies and improved imaging setups 
for early-stage detection.

The correlation analysis (Fig. 6) demonstrated that object 
size was the main factor influencing model performance. 
At the same time, the number of labeled samples per class 
had a weak relationship with both F1-score and mAP50-
95. Specifically, object diameter in pixels was strongly 
correlated with F1-score (r = 0.90, R² = 0.81) and mAP50-
95 (r = 0.94, R² = 0.89), whereas the number of labeled 
instances showed low correlations (r = 0.32, R² = 0.10; r = 
0.09, R² = 0.01, respectively). These results indicated that 

variation in model accuracy across phenological stages of 
Rosa spp. was primarily determined by the spatial scale 
and visual distinctiveness of the floral structures, rather 
than by class imbalance. Detecting early stages, such as rice 
and chickpea, which occupied less than 0.3% of the image 
area, proved considerably more challenging than identify-
ing fully developed flowers with larger spatial footprints.

Similar patterns are reported in other crops and ecosys-
tems. Li et al. (2023) achieve a mean average precision 
above 92% when counting rapeseed inflorescences with 
YOLOv5 + CBAM, yet note that small floral targets were 
the main limitation for precise localization. Likewise, John 
et al. (2024) find that flower abundance and small object 
size constrain detection accuracy in alpine meadows when 
using Mask R-CNN, RetinaNet, and YOLOv5. In line 
with those studies, our results confirmed that, even under 
relatively homogeneous greenhouse conditions, object 
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FIGURE 6. Relationship between model performance and object characteristics in Rosa spp. A) Correlation between performance metrics (F1-score 
and mAP50-95) and the number of labeled instances per class, B) correlation between metrics and average object size (diameter in pixels).

TABLE 2. Performance of the models by phenological class in the test 
set.

Model F1-score Precision Recall mAP50 mAP50-95

C _ stage 0.84 0.85 0.77 0.88 0.48

Multiphen 0.72 0.72 0.68 0.55 0.34

S _ color 0.70 0.69 0.71 0.72 0.27

S _ opening 0.69 0.67 0.71 0.72 0.27

S _ sepals 0.54 0.39 0.71 0.45 0.24

T _ bud 0.54 0.68 0.78 0.71 0.24

D _ chickpea 0.48 0.48 0.44 0.44 0.15

Chickpea 0.24 0.17 0.20 0.12 0.04

Rice 0.00 0.00 0.02 0.00 0.00
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scale remained the dominant constraint for convolutional 
network performance in phenological stage detection of 
Rosa spp.

The quantitative results presented in Table 2 were comple-
mented by visual examples from the test set. Figure 7 illus-
trates different scenarios in which the system detects and 
classifies the phenological stages of the stems, including 
cases with multiple objects per image and variations in 
lighting, leaf density, and flower position. These repre-
sentations allowed us to appreciate how performance, as 
reflected in metrics such as F1-score, precision, and recall, 
translated into the visual identification of the different 
stages under real greenhouse conditions.

Overall, the results showed that individually trained models 
outperformed the multipurpose model across most metrics, 
with C_stage standing out for its consistency in validation 
and testing. However, the multipurpose model demon-
strated stable performance and applicability in real green-
house production environments. The detailed analysis by 
phenological stage highlighted challenges, including class 
imbalance and the physical limitations of image capture 
under greenhouse conditions, which were overcome using 
a mobile platform. These findings confirmed the potential 
of computer vision to optimize agronomic and logistical 
processes in rose production.

FIGURE 7. Detection by the trained convolutional neural network (CNN) in the test sites: A) RGB image; B) Manual identification of stages; C) Multi-
phen model; D) S_sepals model; E) Rice model; F) Test site image for illustrative purposes.

A B C
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Conclusions

The implementation of YOLOv8 convolutional models 
for the automatic detection of phenological stages in 
greenhouse-grown roses demonstrated the feasibility of 
applying computer vision to complex ornamental produc-
tion systems. The best results were obtained for advanced 
phenological stages such as C_stage, S_color, and S_open-
ing, where larger, morphologically well-defined f loral 
structures facilitated feature extraction and consistent 
model learning. In particular, the C_stage model achieved 
an F1-score of 0.87 on validation and 0.84 on test, confirm-
ing both robustness and stability across training.

In contrast, early stages such as rice and chickpea exhibited 
limited performance, mainly due to the tiny size of floral 
buds (less than 0.1% of the image area) and the low number 
of labeled instances. The correlation analyses indicated that 
object size exerts a stronger influence on model perfor-
mance than class imbalance, highlighting a critical factor 
for future optimization efforts.

The multipurpose (Multiphen) model initially showed 
moderate metrics; however, after extending training to 
200 epochs, its performance improved substantially, dem-
onstrating the relevance of training depth in multi-class 
architectures. Although its precision remains lower than 
that of individual models, its operational versatility makes 
it a practical tool for simultaneous detection of multiple 
phenological stages under real greenhouse conditions.

From an applied perspective, this research provided a 
reference framework for integrating deep-learning-based 
phenological detection into production monitoring systems 
for ornamental crops. Future research should explore (i) 
new YOLO versions and alternative deep-learning archi-
tectures, (ii) optimization of hyperparameters to improve 
convergence and class separation, and (iii) innovative 
image acquisition strategies, including the use of mobile 
phones, panoramic or fixed cameras for block scanning, 
mobile ground platforms, or even UAV-based systems 
where feasible.

This study established a scientific and technological prec-
edent for the use of deep learning in greenhouse floricul-
ture, paving the way for scalable, non-destructive, and 
real-time phenological monitoring systems applicable to 
other ornamental and high-value crops.
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