Automatic detection of phenological stages in Rosa spp.
using YOLOv8 convolutional neural networks
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ABSTRACT

This study evaluated the performance of YOLOv8 convolu-
tional neural network models for the automatic detection of
phenological stages in greenhouse-grown cut roses (Rosa spp.).
Image acquisition was conducted in a commercial greenhouse
in Tocancipa, Colombia, using a ground-based mobile platform
equipped with RGB cameras, thereby avoiding the operational
limitations of unmanned aerial vehicles (UAVs) in enclosed en-
vironments. Images were collected during five sampling periods
using a Nikon camera mounted on the mobile platform across
tive hydroponic benches, each divided into five 6.4-m plots, for
a total of 25 plots. In total, 2,000 images and 4,653 annotated
objects were obtained across 9 classes (8 phenological and 1
multipurpose). Model performance was evaluated using preci-
sion, recall, F1-score, mAP50, and mAP50-95. Individual mod-
els outperformed the multipurpose model, with the C_stage
model achieving an F1-score of 0.87 in validation and 0.84 in
testing. The multipurpose model required extending training
to 200 epochs to achieve convergence, resulting in improved
performance (F1-score = 0.75 and Precision = 0.78 in validation;
Fl-score and Precision = 0.72 in testing), indicating its poten-
tial for simultaneous multi-stage detection under greenhouse
conditions. Correlation analysis showed that object size was the
main factor influencing model performance (r > 0.90). At the
same time, the number of labeled samples per class had only a
weak relationship with the metrics. This explained the higher
accuracy in phenological stages with larger and more distinctive
floral structures (C_stage, S_color) and the lower performance
in early stages (rice, chickpea), whose buds occupied less than
0.3% of the image area.

Keywords: computer vision, deep learning, artificial intelligence
in agriculture, plant phenology, greenhouse crops.

Este estudio evalu¢ el desempeio de modelos de redes neuro-
nales convolucionales YOLOVS para la deteccién automatica
de estados fenolégicos en rosas de corte (Rosa spp.) cultivadas
bajo invernadero. La captura de imagenes se realizé en un
invernadero comercial en Tocancipd, Colombia, utilizando
una plataforma mévil terrestre equipada con caimaras RGB,
evitando asi las limitaciones operativas del uso de vehiculos
aéreos no tripulados (VAT) en espacios cerrados. Las imagenes
se obtuvieron durante cinco periodos de muestreo, empleando
una camara Nikon montada en la plataforma alo largo de cinco
bancos hidroponicos, cada uno dividido en cinco parcelas de 6,4
m, para un total de 25 parcelas. En total, se recolectaron 2.000
imagenes y 4.653 objetos etiquetados en nueve clases (8 feno-
logicasy 1 clase multipropoésito). El desempeno de los modelos
se evalud mediante precision, exhaustividad (recall), F1-score,
mAP50 y mAP50-95. Los modelos individuales superaron al
modelo multipropésito, destacandose C_stage, que alcanzd
un F1-score de 0,87 en validacion y 0,84 en prueba. El modelo
multipropdsito requiri6 extender el entrenamiento hasta 200
épocas paralograr la convergencia, obteniendo un mejor desem-
peno (F1-score = 0,75y Precisiéon = 0,78 en validacion; F1-score
y Precision = 0,72 en prueba), lo que indico su potencial para
la deteccién simultanea de multiples etapas fenoldgicas bajo
condiciones de invernadero. El analisis de correlacion mostrd
que el tamaio del objeto fue el principal factor que determiné
el desempefio del modelo (r = 0,90), mientras que el nimero de
etiquetas por clase present6 una relacion débil con las métricas.
Esto explicd el mejor rendimiento en etapas con estructuras
florales mas grandes (C_stage, S_color) y el desempeiio limitado
en etapas tempranas (rice, chickpea), cuyos botones ocuparon
menos del 0,3% del area de la imagen.

Palabras clave: vision computacional, aprendizaje profundo,
inteligencia artificial aplicada a la agricultura, fenologia de
plantas, cultivos bajo invernadero.
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Introduction

The cultivation of cut roses (Rosa spp.) is one of the most
important agricultural export sectors in Colombia, repre-
senting a strategic component of the country’s exports and
recognized for its high level of specialization in agronomic
management under controlled greenhouse conditions.
Currently, Colombia is the leading flower exporter in Latin
America and the second worldwide (ICA, 2024). One of
the main challenges for producers is accurately estimating
the phenological stage of stems and projecting harvests,
tasks traditionally carried out through manual field walks,
stem-by-stem counting, and physical data recording. This
process, in addition to being time-consuming and labor-
intensive, is prone to human error and lacks the immediacy
required to feed predictive models. Therefore, the automa-
tion of phenological monitoring through computer vision
tools emerges as a promising alternative.

In recent years, multiple successful applications of deep
learning models have been documented for counting
and classifying structures in agricultural crops. In soy-
bean, for example, the effectiveness of YOLO-X models is
demonstrated for the automatic counting of reproductive
structures such as pods, achieving an accuracy greater than
96% (R*> = 0.967), MAE of 4.18, MAPE of 10%, and RMSE
of 6.48, even in scenarios with high density and overlap,
validating their applicability as an alternative to manual
methods (Xiang et al., 2023). In blueberry and lingonberry,
YOLOVS5 is used for the automatic detection of fruits at
different phenological stages (flowering, green fruits, and
ripe fruits), reaching a precision of 0.6 and a recall of 0.55,
demonstrating its feasibility for optimizing harvest density
estimation processes, despite some limitations in detecting
individual flowers (Pajula, 2022).

Additionally, in peach orchards (Prunus persica), where
images exhibit high floral density, background interfer-
ence, and severe occlusion, a recent study evaluates YOLO
architectures (v5, v7, and v8) alongside a density-map ap-
proach based on a multi-column deep neural network. The
density-map model achieves the best counting performance
(MAE = 39.13; RMSE = 69.69; %Err = 9.98), substantially
outperforming detection-based methods, among which
YOLOv7xyields the highest accuracy (MAE = 152.7; RMSE
=212.9; %Err =29.7). This research highlights the challeng-
es posed by densely populated floral scenes for detection
algorithms and underscores the potential of deep learning
models to enhance phenological monitoring in fruit crops
(Estrada et al., 2024). In cotton (Gossypium barbadense),
the use of YOLOVS (extra-large) achieves an accuracy of
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99.81%, with high recall and F1-score values, validating its
capacity for automatic counting of dense fruits from images
and integrating it into web applications aimed at precision
agriculture (Ballena et al., 2025).

Recent advances demonstrate the potential of computer
vision and deep learning for phenological and floral moni-
toring across various crops and ecosystems. In rapeseed
(Brassica napus L.), Li et al. (2023) integrate YOLOV5 +
CBAM on UAV imagery, achieving an R* > 0.96 for flower
counting and mAP > 92% for localization, while also re-
porting a positive correlation between detected inflores-
cences and crop yield. In an ecological context, John et al.
(2024) combine crowd-sourced images with deep learning
models such as Mask R-CNN, RetinaNet, and YOLOV5 to
estimate floral species richness in alpine meadows, with
Mask R-CNN reaching the highest performance (mAP
= 0.67). In fruit crops, Wang et al. (2021) develop Deep-
Phenology, based on VGG-16, to estimate apple flower
distribution, achieving average Kullback-Leibler (KL)
divergences of 0.23-0.27 and outperforming YOLOVS.
Similarly, Mann et al. (2022) automate flower phenology
monitoring in Arctic species using time-lapse cameras
and CNNs, achieving precision = 0.918 and recall = 0.907,
while Qi et al. (2021) propose Fusion-YOLO, a lightweight
model capable of detecting chrysanthemum flowering
stages under complex field conditions. Finally, Zhou et
al. (2023) introduce S-YOLO, a transformer-based IoT-
integrated model for apple flowering monitoring, reaching
an accuracy of up to 91.95%.

Collectively, these studies highlight the growing adoption
of advanced detection architectures—from traditional
CNNs s to transformer-based models—for automated analy-
sis of flowering and phenology, consolidating computer
vision as a key tool for precision agriculture and digital
ecology.

These studies demonstrate that convolutional neural
networks (CNNs) enable the automatic detection and
classification of objects from images without the need for
manual selection of explanatory variables. However, their
application to highly specialized crops such as greenhouse-
grown cut roses remains incipient, particularly for stem
phenological stages. In the specific case of rose cultivation,
previous studies mainly focus on nutritional monitoring
using VIS-NIR spectroscopy (Franco Montoya & Mar-
tinez Martinez, 2024) and multivariate models (Franco
Montoya & Martinez Martinez, 2025) to predict foliar
nutrient concentrations, such as manganese. Nonethe-
less, the application of computer vision techniques for the
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automatic detection of stem phenological stages represents
a novel approach with the potential to improve efficiency
in agronomic and logistical processes within the sector.
This advancement, however, posed considerable techni-
cal challenges, as image acquisition in greenhouse crops
is constrained by the production system’s infrastructure,
including plastic coverings, metal structures, wooden
frames, wires, and other physical barriers that hinder the
use of Unmanned Aerial Vehicles (UAVs).

For this reason, a ground-based mobile platform was
chosen, enabling the circumvention of these restrictions
and facilitating the systematic acquisition of field data.
Although producers have adopted UAV-based technologies,
no prior studies have examined their implementation in
greenhouse systems, which reinforces the relevance and
innovation of the adopted solution.

This study makes a novel contribution by demonstrating,
for the first time, the application of YOLOVS to the auto-
matic detection of phenological stages in cut roses grown
under greenhouse conditions—an ornamental crop of high
commercial value for which no previous studies of this
kind are reported. The findings provide a methodological
foundation for integrating computer vision systems into
the productive management of ornamental crops, promot-
ing process automation and data-driven decision-making.
Based on this context, the objective of this research was to
evaluate the performance of YOLOv8 models trained on
RGB images for the automatic detection of phenological
stages in cut rose stems, comparing both individual models
for each stage and a multipurpose model. This approach
aimed to identify the most accurate and operationally
feasible alternative to support harvest estimation processes
under real greenhouse production conditions.

Materials and methods

Study area

The study was conducted in a greenhouse located in To-
cancipa, Cundinamarca, Colombia, at an altitude of 2,605
m a.s.l. (4°5840.1” N, 73°59°06.6” W). The plant material
consisted of Rosa spp. (cv. Freedom) grown under a fully
mechanized production system, with standardized agro-
nomic management practices typical of the floriculture
sector for greenhouse-grown crops.

Image sampling design
Although this work did not aim to evaluate agronomic
treatments, the images used for model training and

validation were organized in a randomized complete block
design (RCBD). A total of 25 plots (five per block) were
used as spatial reference units. In addition, five temporal
sampling campaigns were conducted throughout the flo-
ral cycle to ensure representation of all nine phenological
classes. This structure allowed capturing the spatial and
temporal variability present within the greenhouse, thereby
enhancing the robustness of model training and evaluation.

Image capture

The images were captured using a portable platform
equipped with an RGB camera (Nikon) with sensors in the
blue, green (550 nm), and red (660 nm) bands. The camera
was mounted on a mobile structure that moved along the
hydroponic benches via a motorized rail system, maintain-
ing a constant height of 1.2 m above the plant canopy and
uniform movement. The longitudinal overlap between
images was 60%, ensuring complete coverage of each plot
without loss of relevant information (Fig. 1).

We collected a total of 2,000 RGB images and 4653 anno-
tated objects, corresponding to nine phenological classes
of Rosa spp. under greenhouse conditions. The distribution
of labeled objects per class was as follows: Rice (n = 147),
chickpea (n = 461), D_Chickpea (n = 1014), S_Color (n =
1650), S_Opening (n = 381), S_Sepals (n = 365), C_Stage
(n = 298), and T_Bud (n = 337). This class distribution
reflects the natural imbalance typical of commercial rose
production, in which early and intermediate phenological
stages are more frequent than advanced harvest stages. The
phenological stage description is given in Table 1.

We captured images between 10:00 a.m. and 2:00 p.m. un-
der natural light conditions inside the greenhouse, taking
advantage of the most stable lighting of the day. The Nikon
cameras were set to automatic shooting mode, capturing
one image every 0.4 m. A uniform number of pictures per
plot was ensured, maintaining an even distribution among
replicates and guaranteeing adequate spatial representation
of the data throughout the experiment.

Image processing and training environment

The images were organized, classified, and manually la-
beled using the LabelMe software, identifying in each case
the different phenological stages of the stems as categories
of interest for model training. Subsequently, we converted
the annotations into the format required by YOLOvS
using the labelme2yolov8 package. All images, initially
captured at 4000x3000 pixels, were resized to 640x640
pixels to standardize the dataset and meet the YOLOVS
model requirements.
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FIGURE 1. Workflow of convolutional neural networks and image acquisition: A) CNN workflow, B) plots (RCBD), C) motor providing traction to the
platform, D) platform with adapted cameras, and E) diagram of image capture inside the greenhouse.

We trained in a virtual environment configured with
Python 3.9 (64-bit), using the following versions: torch
2.0.1+cull7, ultralytics, numpy 1.24.4, and opencv-python
4.7.0.72, all compatible with each other. The labelme2yolov8
package was used for annotation conversion.

Training and model definition

For automatic classification of phenological stages, models
were trained for each stage, and a multipurpose model
combining all stages. The training images were previously
labeled, ensuring the correct phenological assignment to
each visible stem (Fig. 2).

The individual models enabled analysis of each stage, while
the multipurpose model aimed to simulate a real-world
joint classification. Each model was assigned an abbreviated
identifier (Tab. 1) to facilitate tracking in the results section.

To contextualize the scale of the detected objects, the
average size of floral structures was estimated based on
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TABLE 1. Models used for the automatic detection of phenological sta-
ges in Rosa spp.

Phenological _—
Model stage Stage description
Rice rice Small-sized floral bud, completely closed
Chickpea chickpea Gllobose bud, beginning to show expansion,
still closed
. Double . -
D chickpea chickpea Larger bud, multiple layers of petals visible
S color Scratch color  Petals begin changing color
S opening Sep_al Sepals begin to open, without fully exposing
- opening the flower
S sepals Straight Sgpals fully open and straight, the flower is
- sepals still not completely opened
T bud Tight bud Flower about to open but still closed; ready
for near-term cutting
) Ideal commercial stage for harvest, petals
C _stage Cutting stage partially open
Multiphen Multipurpose Multipurpose model capable of identifying

the nine phenological stages
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FIGURE 2. Representative examples of the eight phenological classes of Rosa spp. used for model training. A) Rice, B) Chickpea, C) D_chickpea,
D) S_color, E) S_opening, F) S_sepals, G) T_bud, H) C_stage, and |) Multipurpose model, which integrates all phenological classes into a single

detection task.

the dimensions of the bounding boxes relative to the total
image area (4000x3000 pixels). On average, the objects ac-
counted for 0.2% and 2.6% of the total area, depending on
the phenological class. Additionally, the mean diameters
measured directly in the field from a top-view perspective
were 0.75 cm (rice), 1.2 cm (chickpea), 2.2 cm (Double
chickpea), 2.75 cm (Scratch Color), 2.95 cm (Sepal Open-
ing), 3.2 cm (Straight Sepals), 3.6 cm (Tight Bud), and 4.2
cm (Cutting Stage). These values provide context on the
spatial scale variability of the objects analyzed within the
dataset.

For automatic phenological stages, we used the YOLOvS
(nano) architecture. This model, based on convolutional
neural networks (CNNs), was trained independently for
each RGB image. We split the dataset into 70% for train-
ing, 15% for validation, and 15% for testing, ensuring an
adequate balance during training.

Model training, configuration, and evaluation

Model training was performed in the PyCharm 2023.2
development environment using Python 3.9. The YOLOv8
architecture was configured with 100 training epochs to

balance between processing capacity and learning stability.
Training was performed on a workstation equipped with
an NVIDIA GeForce GTX 960M GPU (4 GB VRAM), us-
ing a batch size of 4, adjusted to the available memory to
ensure stable convergence.

The YOLOv8 models were trained using the default hy-
perparameter configuration provided by Ultralytics 2023
(Ultralytics Inc.). The optimizer was stochastic gradient
descent (SGD) with a learning rate of 0.01, momentum of
0.937, and weight decay of 0.0005. The input image size was
640 x 640 px, and the confidence threshold (conf-thres) and
intersection over union value for non-maximum suppres-
sion (JToU NMS) were set to 0.25 and 0.45, respectively. No
additional data augmentation techniques were applied, as
the dataset already captured natural variability derived
from different sampling dates and illumination conditions
within the greenhouse.

The performance of the models was evaluated using stan-
dard object detection metrics: precision, recall, F1-score,
mAP50, and mAP50-95.
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Results and discussion

Figure 3 shows the evolution of Fl-score and precision
across representative phenological classes, revealing dis-
tinct learning dynamics among the models. A general
stabilization trend was observed around epoch 40, indicat-
ing that the main spatial and spectral features were already
being captured. Peak performance for the single-class
models occurred between epochs 80 and 100. In contrast,
the multipurpose model (Multiphen) required additional
training to achieve convergence.

The C_stage model achieved the highest stability and ac-
curacy (Fl-score = 0.89; precision = 0.94), reflecting the
larger object size and higher visual distinctiveness of fully
developed flowers. The S_sepals model also showed early
convergence (epoch 40), with moderate but consistent per-
formance (F1-score = 0.61; precision = 0.54).

In contrast, the Multiphen model, which initially reached F1
=0.61 and precision = 0.73 after 100 epochs, still showed a
positive loss gradient—indicating incomplete convergence.
Therefore, the training was extended to 200 epochs, leading
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to a marked improvement in all metrics (F1 = 0.75; and
precision = 0.78). This confirms that the model retained
learning potential and required additional iterations due
to the complexity of handling nine phenological classes
simultaneously.

These results highlight that model performance was in-
fluenced not only by dataset imbalance but also by the
intrinsic learning dynamics of multi-class architectures.
Training under real production conditions, with natural
variability in floral stages (1,650 labels for S_color vs. 147
for rice), provided a realistic scenario that strengthened
the practical applicability of the models for greenhouse
phenological monitoring.

Figure 4 summarizes the average performance of YOLOV8
models trained for single and multipurpose tasks, evaluated
using Fl-score, precision, recall, mAP50, and mAP50-95.
Models trained individually for advanced stages exhibited
the best overall performance, particularly C_stage, which
reached the highest mean scores across all metrics (FI-
score = 0.87; precision = 0.89; recall = 0.86; mAP50 = 0.89;
mAP50-95 = 0.51).

070 |
060 |
050 |

S 040 | M

£030

=
020 |

010 4

Epoch

| — Fi-score Precision |

FIGURE 3. Evolution curves of epochs for F1-score and precision: A) C_stage, B) S_sepals, C) Multiphen, and D) Chickpea.
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FIGURE 4. Performance metric distribution for detection models: A) F1-score, B) Recall, C) mAP50, D) Precision, and E) mAP50-95. Model des-

cription as in Table 1.

Models corresponding to visually distinctive and morpho-
logically stable stages (S_color and S_opening) also per-
formed well (F1 = 0.72; precision = 0.70). In contrast, early
and small-structure stages (Rice and Chickpea) achieved
lower accuracy due to their limited pixel representation and
reduced number of labeled instances, confirming the in-
fluence of both scale and class imbalance. The Rice model,
with only 147 labels, achieved F1 = 0.005 and precision =

0.003, indicating that it struggles to generalize under severe
imbalance conditions.

The Multiphen model, trained jointly across all classes, ini-
tially exhibited lower convergence at 100 epochs. However,
after extending the training to 200 epochs, its performance
improved substantially (F1 = 0.75; precision = 0.78, ap-
proaching the results of the best single-class models. This
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demonstrates that, despite its complexity, the multi-class
approach is operationally feasible and particularly suitable
for real-world production environments, where simultane-
ous identification of multiple stages reduces the need for
various models and simplifies deployment.

The observed imbalance is consistent with natural produc-
tion dynamics within the greenhouse, where intermediate
stages such as S_color (1,650 labels) and D_ chickpea (1,014)
dominate during peak harvest periods. Similar effects of
imbalance and class dominance have been reported by
Sambasivam et al. (2021) in cassava disease detection and
by Beloiu et al. (2023) in heterogeneous forest scenes, both
of which note that minority classes yield lower metrics
even under balanced training strategies. In agreement with
these studies, our results confirm that model performance
in Rosa spp. depends jointly on class representation, object
scale, and the convergence strategy.

Figure 5 presents the normalized confusion matricerices
of the segmentation models, including the multipurpose
model (A) and the individual models C_stage, S_opening,
S_color, and Rice (B-E). The multipurpose model showed
strong consistency across classes, especially in S_color,
T _bud, and C_stage, with diagonal values > 0.80, indicating
high agreement between predictions and reference anno-
tations. These classes correspond to larger, more visually
contrasting floral structures, which facilitates their detec-
tion and localization by the neural network.

A
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In contrast, the classes D_chickpea, Chickpea, and S_sepals
had higher confusion rates with adjacent stages or with the
background, suggesting that the model had difficulty dis-
tinguishing morphologically similar structures, especially
those occupying less than 0.2% of the image area. This
confusion coincides with the influence of object size and
the low representation of lower classes. These factors limit
the discriminative ability of deep detectors.

In the individual models (B-E), there was better separa-
tion between the target class and the background, with
accuracies above 0.90, indicating that specialization by
class improves delimitation and reduced false positives.
However, although these models achieved greater accuracy,
their operational implementation was less efficient. In pro-
ductive environments such as greenhouses, a single model
capable of detecting multiple phenological stages—such as
Multiphen retrained up to 200 epochs—represents a more
scalable and economically viable alternative, even with
moderate metrics. This trade-off between accuracy and
applicability is also reported by Beloiu et al. (2023) in het-
erogeneous forest environments, highlighting the relevance
of multi-class models for dynamic agricultural systems.

Table 2 summarizes the results obtained on the test set.
Although a slight decrease in metrics is observed com-
pared to the validation stage, the hierarchy among models
remained consistent, confirming the stability and gener-
alization capacity of the trained architectures. The model
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FIGURE 5. Confusion matrix for the models: A) Multiphen, B) C_stage, C) S_opening, D) S_color, and E) Rice.
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corresponding to the C_stage retained the best overall
performance (F1-score = 0.84, Precision = 0.85, Recall =
0.77), followed by S_color, S_opening, and T _bud, with
F1-scores close to 0.70.

These results indicated that the models effectively general-
ize to new, unseen data, especially in the more morphologi-
cally defined floral stages. The Multiphen model achieved
competitive performance (Fl-score = 0.72, Precision =
0.72), reinforcing its potential for operational use in real
greenhouse scenarios where simultaneous multi-class
detection is desirable.

In contrast, Chickpea, D_chickpea, and especially Rice ex-
hibited poor performance (F1 < 0.50), indicating the most
significant classification difficulty. This behavior is mainly
associated with the small size and subtle morphological
features of early floral stages, which occupy less than 0.1%
of the image area and are visually indistinguishable from
the surrounding background. These limitations reflected
real production conditions and highlighted the need for
enhanced training strategies and improved imaging setups
for early-stage detection.

The correlation analysis (Fig. 6) demonstrated that object
size was the main factor influencing model performance.
At the same time, the number of labeled samples per class
had a weak relationship with both Fl-score and mAP50-
95. Specifically, object diameter in pixels was strongly
correlated with Fl-score (r = 0.90, R? = 0.81) and mAP50-
95 (r = 0.94, R* = 0.89), whereas the number of labeled
instances showed low correlations (r = 0.32, R = 0.10; r =
0.09, R? = 0.01, respectively). These results indicated that
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TABLE 2. Performance of the models by phenological class in the test
set.

Model F1-score Precision Recall mAP50 mAP50-95
C _stage 0.84 0.85 0.77 0.88 0.48
Multiphen 0.72 0.72 0.68 0.55 0.34
S _color 0.70 0.69 0.71 0.72 0.27
S _opening 0.69 0.67 0.71 0.72 0.27
S sepals 0.54 0.39 0.7 0.45 0.24
T bud 0.54 0.68 0.78 0.71 0.24
D _ chickpea 0.48 0.48 0.44 0.44 0.15
Chickpea 0.24 0.17 0.20 0.12 0.04
Rice 0.00 0.00 0.02 0.00 0.00

variation in model accuracy across phenological stages of
Rosa spp. was primarily determined by the spatial scale
and visual distinctiveness of the floral structures, rather
than by class imbalance. Detecting early stages, such as rice
and chickpea, which occupied less than 0.3% of the image
area, proved considerably more challenging than identify-
ing fully developed flowers with larger spatial footprints.

Similar patterns are reported in other crops and ecosys-
tems. Li et al. (2023) achieve a mean average precision
above 92% when counting rapeseed inflorescences with
YOLOV5 + CBAM, yet note that small floral targets were
the main limitation for precise localization. Likewise, John
et al. (2024) find that flower abundance and small object
size constrain detection accuracy in alpine meadows when
using Mask R-CNN, RetinaNet, and YOLOVS5. In line
with those studies, our results confirmed that, even under
relatively homogeneous greenhouse conditions, object
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FIGURE 6. Relationship between model performance and object characteristics in Rosa spp. A) Correlation between performance metrics (F1-score
and mAP50-95) and the number of labeled instances per class, B) correlation between metrics and average object size (diameter in pixels).
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scale remained the dominant constraint for convolutional
network performance in phenological stage detection of
Rosa spp.

The quantitative results presented in Table 2 were comple-
mented by visual examples from the test set. Figure 7 illus-
trates different scenarios in which the system detects and
classifies the phenological stages of the stems, including
cases with multiple objects per image and variations in
lighting, leaf density, and flower position. These repre-
sentations allowed us to appreciate how performance, as
reflected in metrics such as Fl-score, precision, and recall,
translated into the visual identification of the different
stages under real greenhouse conditions.

Overall, the results showed that individually trained models
outperformed the multipurpose model across most metrics,
with C_stage standing out for its consistency in validation
and testing. However, the multipurpose model demon-
strated stable performance and applicability in real green-
house production environments. The detailed analysis by
phenological stage highlighted challenges, including class
imbalance and the physical limitations of image capture
under greenhouse conditions, which were overcome using
amobile platform. These findings confirmed the potential
of computer vision to optimize agronomic and logistical
processes in rose production.

‘D_Chickpea

. AEE D hickpea

L5

3 D_Chickp
ke hickpea
. gChickp 5

FIGURE 7. Detection by the trained convolutional neural network (CNN) in the test sites: A) RGB image; B) Manual identification of stages; C) Multi-
phen model; D) S_sepals model; E) Rice model; F) Test site image for illustrative purposes.
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Conclusions

The implementation of YOLOv8 convolutional models
for the automatic detection of phenological stages in
greenhouse-grown roses demonstrated the feasibility of
applying computer vision to complex ornamental produc-
tion systems. The best results were obtained for advanced
phenological stages such as C_stage, S_color, and S_open-
ing, where larger, morphologically well-defined floral
structures facilitated feature extraction and consistent
model learning. In particular, the C_stage model achieved
an Fl-score of 0.87 on validation and 0.84 on test, confirm-
ing both robustness and stability across training.

In contrast, early stages such as rice and chickpea exhibited
limited performance, mainly due to the tiny size of floral
buds (less than 0.1% of the image area) and the low number
oflabeled instances. The correlation analyses indicated that
object size exerts a stronger influence on model perfor-
mance than class imbalance, highlighting a critical factor
for future optimization efforts.

The multipurpose (Multiphen) model initially showed
moderate metrics; however, after extending training to
200 epochs, its performance improved substantially, dem-
onstrating the relevance of training depth in multi-class
architectures. Although its precision remains lower than
that of individual models, its operational versatility makes
it a practical tool for simultaneous detection of multiple
phenological stages under real greenhouse conditions.

From an applied perspective, this research provided a
reference framework for integrating deep-learning-based
phenological detection into production monitoring systems
for ornamental crops. Future research should explore (i)
new YOLO versions and alternative deep-learning archi-
tectures, (ii) optimization of hyperparameters to improve
convergence and class separation, and (iii) innovative
image acquisition strategies, including the use of mobile
phones, panoramic or fixed cameras for block scanning,
mobile ground platforms, or even UAV-based systems
where feasible.

This study established a scientific and technological prec-
edent for the use of deep learning in greenhouse floricul-
ture, paving the way for scalable, non-destructive, and
real-time phenological monitoring systems applicable to
other ornamental and high-value crops.
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