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RESUMEN

En el presente artículo se presenta el desarrollo y la solución numérica de las ecuaciones de 
un modelo hidrodinámico promediado a lo largo de la profundidad que permite la simulación 
del avance de un frente salino en aguas claras. Para obtener esta versión del modelo, las 
ecuaciones de conservación de masa, de momentum y de convección-difusión se promedian 
a lo largo de la profundidad con la ayuda de la regla de Leibniz. El efecto de la densidad 
variable (frente salino) se tiene en cuenta modificando los términos de presión en las 
ecuaciones de momentum. La ecuación de convección-difusión se resuelve para la 
concentración salina y se utiliza una ecuación empírica que relaciona esta concentración y la 
temperatura (asumida constante) con la densidad del fluido. Para mejor claridad, se incluyen 
algunos detalles en la derivación de las ecuaciones.

1. ECUACIONES DEL MODELO

Las ecuaciones del modelo hidrodinámico promediado a lo largo de la profundidad del flujo 
se obtienen a partir de las ecuaciones de Navier-Stokes y de la ecuación de conservación 
de masa para fluidos incompresibles. El proceso de integra-ción se realiza mediante la 
aplicación de la regla de Leibniz. A continuación se ilustra el proceso para la ecuación de 
conservación de masa. Detalles acerca de este proceso se encuentran en Pinder y Gray, 
1977.

La regla de Leibniz, que permite intercambiar el orden de diferenciación e integración, se 
escribe de la siguiente manera:

93.
dx

+ I« (1)
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Integrando la ecuación de conservación de masa a lo largo de la profundidad del flujo, se 
tiene para un fluido incompresible:

dv dw (2)
dz

donde u, u y w son las velocidades en las direcciones X, Y y Z respectivamente. Aplicando 
la regla de Leibniz a cada término, se llega a:

—  fu d z  + —  f v d z  + ( W-U— - V —  
dxJ( dy\ \ dx dy >

\ f d i d i) w+u—  + w—
' »1  ̂ dx dy>

(3)

Teniendo presente la condición cinemática en la superficie libre:

* l .  L  -  3  -
dt { dx dy)

(4)

y la condición de fondo impermeable:

di ( di 05Ì—  -  \w + u—  + u—  I
dt \ dx dy) j

(5)

se obtiene finalmente:

+ -?-(hU) + -̂ -(hV\ -  0 
dt dx dy

donde

U  - - f u d z
K

V  - - f v d z  ; h - r\ - %

(6)

(7)

Ahora, para un sistema cartesiano las ecuaciones de momentum en direcciones X y Y 
(plano horizontal) tienen la forma:

Momentum X
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du du du—  + u—  + tt—  +
dt dx dy

du ,  ISP 1—  « / v ----------+ —
dx p dx ft ax dy

£3»
ar

(8)

Momentum Y

dv dv dv dv ,  1 dP 1 —  + v—  + »—  + w—  -  / * ----------+ —
dt dx dy dx p dy p

dt. 3x_ a*
+ — — + — — 

L dr 6y dr
(9)

Procediendo de una manera similar que para la ecuación de conservación de masa, las 
ecuaciones de momentum en direcciones X y Y integran a lo largo de la profundidad del 
flujo como (ver detalles en Pinder y Gray, 1977):

Momentum X:

a . . . „  a 1 dP- ih U \ + — (hU Ü j + -Z-íhU V l -  fh V  + /- 
dt dx dy j  p dx

\ /
T XXV + XV

l P é f-H l P i

-  —— ftj i x  - —— f t d x  -  0
p p syí

Momentun Y:

a , , , -  a 1  a / »—fhVf + —fhVÜj + -Ü-fhWf - fhU  + f- 
dt dx dy i 9 dx

-  -  ü / v *  ■ •p dr ¿ P ÍVj

t-l

\ /
T Ty + J »

< P > » l P J

(10)

(11)

donde / e s  el coeficiente de Coriolis que depende de la latitud y de la velocidad de rotación 
de la tierra.

Asumiendo distribución hidrostática de presiones, el efecto de la densidad variable 
(p(x,y,t)) se considera en las ecuaciones de momentum al integrar los términos de presión. 
A continuación se muestra en detalle el desarrollo para el término de presión en la ecuación 
de momentum en dirección X.

La condición de presiones hidrostáticas se escribe como:
»i

/■(*) - g ¡Pdx + P^  (12)
I

el gradiente de presiones se escribe, entonces, como:
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Asumiendo Patm constante y utilizando la regla de Leibniz, ecuación (1), se obtiene:

J J P  m g 
p dx p

/ * £ * -  p ÊH + p *
v { dx "dx ' dx

(14)

pero p(x,y,t), luego

±dP _ £  
p dx p

Ê P  . p ÜL
dx . 'd x

(15)

dzdonde el término —  se ha despreciado (dominios horizontales). Así evaluando la
djr

integral se obtiene finalmente:

(14)

Ahora, se integra este término a lo largo de la profundidad:

f —— dx - f — —  h  - - — p j  — dz 
{pa* { p a r  p \ dx

(15)

j l^ d z  g^ - ¡dx
i  p dx o dx { dx tp dx

(16)

y finalmente:

hi ì P
dx

.a n (17)

De manera análoga, el gradiente de presiones en la ecuación de momentum Y se integra a 
lo largo de la profundidad como:
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/ 1 ^ . 4 £ ì [ * 2̂ ì
{ P d y  2 U M  &  )  &

( 1 8 )

Reemplazando los términos de presión (ecuaciones (17) y (18)), aplicando la ecuación de 
conservación de masa a los términos convectivos y dividiendo por la profundidad del 
flujo, las ecuaciones de momentum, ecuaciones (10) y (11), se reducen a:

Momentum X:

B L  * v—  * u—  - f V t L
dt dx dy 2

H]xjz - jihdz -0

dx

/  \ f \
X X .XI + «

Tp\  r j hp\ v

(19)

Momentum Y:
✓ \ / \

,dV ,,dV
-  + o i l  - f U  * 1
dt dx dy 2

-L iL ír  dz - - I *  f xdz  -  0 
pü x{ ** p ^ y{ ”

Y W  + _

[ p  f i y

r  \ r  \
Xn + n

C
l

z*n h p
\  r  / *•5

(20)

Ahora, los términos de fricción en la superficie libre (acción del viento) se simulan 
mediante una ecuación empírica de la forma (Pinder y Gray, 1977):

—  I -  C„ W_ 
P

(21)

(22)
»-n

donde C0 es una constante de calibración, y Wx y Wy son las velocidades del viento 10 
m. por encima de la superficie libre. Los términos de fricción en el fondo se simulan 
mediante una forma cuadrática:
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donde C es el coeficiente de fricción de Chezy, coeficiente que se expresa en función de la 
rugosidad equivalente a arenas de Nikuradse, como:

C - 1S log10
12 h
K• /

(25)

donde Ks es la rugosidad equivalente a arenas de Nikuradse.

Las tensiones de Reynolds integradas a lo largo de la profundidad se expresan en función 
del coeficiente de turbulencia como:

f x j iz  - h

•i

b -  h t

.  2 E —  
dx

E í  ^  +
{ dy dx )

(26)

(27)

yr dy
(28)

donde Et es el coeficiente de turbulencia, el cual se obtiene mediante la fórmula:

E, - Cjpv *h ; (29)

donde c¡ es un coeficiente de calibración, u es la velocidad de cizalladura y x0 es la 
fricción en el fondo calculada de las ecuaciones (23) y (24).

Para el cálculo de la concentración salina, C, se utiliza la ecuación de convección-difusión 
promediada a lo largo de la profundidad. Su forma final después de simplificaciones es (ver

100 AVANCES EN RECURSOS HIDRAULICOS- Número 3,1995



—  + ^-(CUI + -?-(CVI - —  
df dr dy dr

Pinder y Gray, 1977):

, d rj ctvl 'd y j
(30)

donde Rx y Ry son los coeficientes de difusión. Los coeficientes de difusión Rx y Ry se 
expresan en función del coeficiente de turbulencia, Et, mediante una función del número de 
Richardson, R, propuesta por Bloss et al, 1988 para modelos tridimensionales y adaptada 
para el caso bidimensional. La relación entre los coeficientes de dispersión y el de 
turbulencia se expresa, entonces, como:

R , - E. {1 + 3R "̂J ; Ry -  B, (1 + 3R}S

Los números de Richardson se estiman de la siguiente manera:

(31)

i l í l )

s r  • i s r

R_ - -

Q. , d y ) (32)
BU

dy)
dv]
dy)

Finalmente, la densidad del fluido se obtiene mediante una función empírica que la 
relaciona con la concentración salina C, en partes por mil, y la temperatura (asumida 
constante en este modelo) del fluido, de la forma (ver Bloss et al, 1988):

p - p#(l - [7^ - r0) - 750(^10^

donde p0 = 999.972 Kg m 3 es la densidad del agua clara a la temperatura T0 = 4 C

(33)

2. SOLUCION NUMERICA DE LAS ECUACIONES

La solución numérica de las ecuaciones arriba descritas se obtiene mediante la aplicación de 
la técnica del elemento eficiente, desarrollada en la Universidad de Mississippi.

Mediante esta técnica, el dominio de cálculo se discretiza en cuadriláteros de 9 nodos. Las 
variables (independientes y dependientes) se aproximan en cada cuadrilátero mediante unas 
funciones de interpolación (funciones híbridas). Una vez interpoladas las variables, el error de 
aproximación se minimiza localmente (método de la colocación) y el conjunto original 
de ecuaciones diferenciales parciales se transforma en un conjunto de ecuaciones diferenciales
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ordinarias cuya única variable independiente es la coordenada temporal. La integración en el 
tiempo se realiza mediante el esquema de Lax-Wendroff modificado. Una descripción 
detallada de esta técnica se presenta en Toro, 1994.

Finalmente, la solución del campo de concentraciones (ecuación de convección-difusión se 
realiza aplicando la misma técnica. Las ecuaciones del flujo y de salinidad se resuelven 
acopladamente, pero aprovechando el hecho de que el proceso difusivo es más lento que el 
hidrodinámico, se utilizan escalas de tiempo diferentes para cada uno de ellos.

3. EJEMPLOS DE APLICACIÓN DEL MODELO 2D

A manera de ilustración se presentan los resultados de aplicar el modelo a la simulación del 
avance de una cuña salina en una bahía rectangular. Debido a la falta de datos experimentales, 
los resultados del modelo se deben entender desde el punto de vista cualitativo. Los datos 
experimentales se utilizarían para la calibración, especialmente en lo referente a los parámetros 
de turbulencia y a los coeficientes de difusión.

Caso 1: Laguna Rectangular sin Viento.

En este caso se corrió el modelo 2-D en una laguna rectangular (4 km en di-rección Oeste - 
Este y 3 km en dirección Sur - Norte). Esta laguna se discretizó en elementos rectangulares tal 
como se muestra en la Figura 1. El flujo a simular consiste en tres canales que aportan agua 
salada a la laguna y ésta desagua por un canal en el extremo Este del dominio. Los canales de 
aporte se encuentran localizados en los extremos Oeste, Sur y Norte de la laguna (el ancho de 
los canales es de 120 m), y cada uno de ellos aporta un caudal constante de 120 mVs.

Para correr este ejemplo, se utilizaron los siguientes parámetros:

Coeficiente c, en ecuación (29).
Relación entre intervalo de cálculo en la ecuación de 
convección-difusión y el hidrodinámico.
Coeficiente C0 en la ecuación (22).
Velocidad del viento en dirección X (Oeste-Este).
Velocidad del viento en dirección Y (Sur-Norte).
Concentración salina (en partes por mil) aportada por los 
canales. Se asume un perfil de concentraciones constante 
en la vertical.

DT= 2.0 Intervalo de cálculo (s.) para modelo hidrodinámico,

El modelo se "calentó" partiendo de un campo arbitrario de velocidades hasta que se logró 
obtener el estado permanente. En las Figuras 2 y 3 se muestran el campo de velocidades 
y las líneas de contorno de la superficie libre, respectivamente, para el estado permanente. Los 
chorros de los canales descargando en la bahía se aprecian claramente, preservando la simetría

CTUR= 0.1
TSCALE= 3.0

CWIND = 0.0
WINDX = 0.0
WINDY = 0.0
C0= 10
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Este estado permanente de velocidades se utilizó para correr el caso del avance del frente 
salino producido por los aportes de los tres canales mencionados anteriormente. En la Figura 
4 se muestran las isolíneas de concentración salina después de 60 horas de simulación; en la 
Figura 5 se muestran las isolíneas de concentración salina después de 120 horas de simulación; 
en la Figura 6 se muestra el campo de velocidades después de 192 horas de simulación y en 
la Figura 7 se muestran las isolíneas de concentración salina después de 192 horas de 
simulación. Obsérvese el perfecto mezclado en las cercanías del canal de salida y las zonas de 
bajo mezclado en los extremos Norte-Oeste y Sur-Oeste.

Caso 2: Laguna Rectangular con Viento.

En este ejemplo, se corrió el modelo con las mismas características del caso anterior, excepto 
que se consideró la presencia de viento actuando en la superficie libre. Los parámetros de la 
acción del viento para este caso son:

CWIND= 1.0E-05 
WINDX= 1.0 m/s 
WINDY= 1.0 m/s

Este ejemplo utilizó el mismo campo inicial utilizado en el ejemplo anterior (ver Figuras 2 y 
3). A partir de ese instante, se incluyó el efecto de viento y se impusieron los perfiles de 
concentraciones en los canales de entrada a la bahía. En las Figuras 8 y 9 se muestran las 
isolíneas de concentración salina después de 60 y 120 horas de simulación, respectivamente. 
En las figuras 10,11 y 12 se muestran el campo de velocidades, las isolíneas de concentración 
salina, y las isolíneas de la superficie libre después de 192 horas de simulación, 
respectivamente. Obsérvese la asimetría producida por la acción del viento (viento con 
dirección 45° con respecto al eje Oeste-Este).

de problema.

4. CONCLUSIONES

Se han mostrado las capacidades del modelo para la simulación del avance de cuñas salinas 
en una bahía. La falta de información experimental no permitió la verificación del modelo. 
Desde el punto de vista cualitativo, se observa que el modelo produce resultados consistentes. 
La etapa de verificación quedará pendiente.

La solución numérica de las ecuaciones hidrodinámicas y de transporte, se realiza de forma 
acoplada, especificando intervalos de cálculo diferentes para las ecuaciones hidrodinámicas 
y la de transporte. Esta metodología se justifica asumiendo que el proceso de mezclado es más 
lento que el proceso hidrodinámico.

Las fórmulas empíricas utilizadas para los coeficientes de difusión, ecuaciones (31) y (32);
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para los esfuerzos inducidos por el viento, ecuaciones (21) y (22), y para el coeficiente de 
turbulencia, ecuación (29), se tomaron de la literatura especializada. Su validez para casos 
particulares es cuestionable. Su aplicación a casos particulares requiere de un estudio y análisis 
de sensibilidad. Esto se realiza durante la etapa de verificación del modelo.

Observando detalladamente las gráficas presentadas, se observa que el modelo presenta 
problemas de difusión numérica (campo de concentraciones). Este problema se encuentra en 
la actualidad en estudio a través de un proyecto de investigación que se presentó a 
COLCIENCIAS.
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Figura 2 Campo de Velocidades para el Estado Permanente sin Salinidad.
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Figura 3 Isolíneas de la Superficie Libre para el Estado Permanente sin Salinidad
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Figura 4 Isolíneas de Concentración Salina para T = 60 Horas. Caso sin Viento
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Figura 5 Isolíneas de Concentración Salina para T = 120 Horas. Caso sin Viento
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Figura 6 Campo de Velocidades para T = 192 horas. Caso sin Viento.
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Figura 7 Isolíneas de Concentración Salina para T = 192 Horas. Caso sin Viento.
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Figura 8 Isolíneas de Concentración Salina para T = 60 Horas. Caso con Viento.
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Figura 9 Isolíneas de Concentración Salina para T — 120 Horas. Caso con Viento.
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Figura 10 Campo de Velocidades para T = 192 horas. Caso con Vienlo.
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Figura 11 Isolíneas de Concentración Salina para T = 192 Horas. Caso con Viento.
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Figura 12 Isolíneas de la Superficie Libre para T = 192 Horas. Caso con Viento.
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FE DE ERRATAS

¡ P AG C OL REN G LO N DICE D EB E  DECIR

„ 9 1 14
= P v¡r1 - Pr,!r, yP*i-,J - Ip íí '/  = pvfa - pF.V,

120 2 2 y 2 y ;

121 1 6 y energía críticos. y energía en forma adimensional, digamos por 
unidad de momentum y energía críticos.

121 2 8 S vse s vs e

121 2 12 4 2

e = 1 f s + - F  3 
3 3

e = —F 3 + —F 3 
3 3

122 1 26 representar: la unidad representar estados de flujo: resaltos ondulares 
cnoidales, con F, apenas por encima de la 

unidad...

122 1 29 que son resaltos que con resaltos

126 1 2 e* eiy

126 1 20

( - £ M ‘
( ■ ? ) * •  ( - ? ) ■  —

126 2 4 - cte = cte

126 2 5 = 1/6 -1/6

126 2 16 - constante/c2h2 = constante/c2h2

126 2 23 -1  + = 1 +

127 1 3 1 /

127 1 12 O w O G w O

128 1 7 ...[lF1(k) = (lW -l)... ..[/F1(k) = (lW -/)...

128 1 8 (h-l)F,(k) = ( I w l ) . (h-OF^k) - O w / ) -

133 2 10 diedro, b) diedro, 0)




