The CORE Problem

El Problema CORE

Andrew Bailey
Cambridge University, England
Systems Analyst, Cray Research UK 1989-1993
andy@hazlorealidad.com

Recibido para revision 15 de Noviembre de 2007, Aceptado 19 de Mayo de 2008, Version final 30 de Mayo de 2008

Abstract—In the following paper an analysis of the current trends of
the computer industry related to multi core processors is presented
with its implications on software architecture and design. We also
discuss a Space Based Architecture currently being developed by
Hazlorealidad.com.

Keywords—Moore’s Law, Amdahl’s Law, Multi Core CPU,
Concurrency, Service Oriented Architecture, Space Based
Architecture.

Resumen— En la publicaci6n se realiza un analisis de las tendencias
actuales en la industria de la informatica relacionado con
procesadores multi-core y sus implicaciones para la arquitectura
y disefio de software. Ademas discutimos una arquitectura
basada en espacios (Space Based Architecture), desarrollada por
Hazlorealidad.com.

Palabras claves—Ley de Moore, Ley de Amdahl, CPU Multiple
Core, Concurrencia, Arquitectura Orientada a Servicios (SOA),
Arquitectura Orientada a Espacios (SBA)

1. LAPTOP SUPERCOMPUTERS

he Cray-2 computer system was introduced by Cray

Research in 1983. The Cray documentation states “The
CRAY-2 Computer System sets the standard for the next
generation of supercomputers. It is characterized by a large
Common Memory (256 million 64-bit words), four Background
Processors, a clock cycle of 4.1 nanoseconds (4.1 billionths of a
second) and liquid immersion cooling.” Therefore the Cray-2
had a quad core, 250MHz clock and 2GB RAM, characteristics
that you can now find on todays laptops™ , apart from the liquid
immersion cooling!

I Introducing the CRAY-2 Computer System http://archive.computerhistory.
org/resources/text/Cray/Cray.Cray2.1985.102646185.pdf

II. MOORE’S LAW

In 1965, Intel co-founder Gordon Moore predicted that the
number of transistors on a chip doubles about every two years,
a statement now popularly known as Moore’s Law.

transistors
10,000.000,000
Dual-Core Intel* taniur 2Processor
’ 1,000,000,000
MOORE'S LAW Inted* ltankum® 2 Processor -
Intel Ranium® ’I“t‘ilﬁ“
Intel" Pentium* 4 Processor 100,000,000
Intel* Pentiur’ Bl Processor
Intel* Pentium® Il Processor 10,000,000
Intel* Pentium* Processor
Intel486™ Fmassor‘
- 1.000.000
Intel385" Pmmsw.l‘ -
286
o 100,000
Bou.ﬁ a
8080 10,000
8008, a
4004 &
1,000
1970 1975 1980 1985 19390 1995 2000 2005 2010

Figure 1. Moore’s law h

This exponential growth of processor potential explains how
it is possible that a supercomputer of 25 years ago has been
outpaced by a laptop.

1T First quad-core laptop hits U.S. August 17, 2007 http://www.news.com/8301-
10784 _3-9761814-7.html
111 Graph courtesy Intel Corporation

Revista Avances en Sistemas e Informatica, Vol.5 No.2, Junio de 2008, Medellin, ISSN 1657-7663

110

Revista Avances en Sistemas e Informatica, Vol.5 No.2, Junio de 2008, Medellin, ISSN 1657-7663

Chip makers have been doubling the transistor density every
two years and for the next few years the trend is set to continue,
Intel started production of 65nm in 2005, 45nm in 2007 and are
on target to produce 32nm in 2009. For reference the diameter
of a Silicon atom is 0.24nm, so the transistors width is now of
the order of a 100 atoms.

“Continuing to deliver innovation to make the
predictions of Moore’s Law a reality means shrinking
the nominal size of the devices that populate the silicon.
Skeptics in the industry have believed that going down
that path of decreasing transistor sizes would be more
and more difficult since, as transistors shrink in size,
they consume less power (they scale in voltage), but
their leakage current (the continued flow of current even
when transistors are “off”’) increases. The more transistors
there are on a chip, the more power is wasted. Also, as
transistor density and speed increase, the chip as a whole
consumes more power and generates more heat. Thus,
the efficiency of cooling techniques must also increase
to dissipate the heat from the increases in device density
and current leakage.”"v

III. QUANTUM TUNNELING

In part the leakage current is due to a Quantum Mechanical
effect known as Quantum tunneling, in which a particle, in
this case an electron, passes through a barrier that according to
classical mechanics does not have sufficient energy to do so.
Perhaps the easiest explanation is that Heisenbergs uncertainty
principal implies that if you measure one quantity you affect
another, you cannot measure an objects velocity without altering
its position and vice versa. A lesser known implication of the
Heisenberg’s uncertainty principal is that there is also an Energy-
time uncertainty principal. The product of the uncertainties in
Energy and time is of the order of 10-35 Joule-seconds, which
although for macroscopic object negligible is an important factor
on the atomic and sub atomic particles. Basically it means that
the energy of a particle varies and although its average energy is
not sufficient to cross the barrier, for a short period of time it can
have sufficient energy to do so. Hence the electrons in todays
semiconductor chips, leak across the part of the transistor called
the gate. To counteract this manufacturers are using materials
which are able to decrease the probability of electrons tunneling
through the gate without adversely affecting the transistors
performance using high-k gate dielectrics.”

Also other options are being investigated such as tri-gate
transistors, where they implement 3 gates instead of one in
order to reduce even further the leakage current. The problem
is that the transistors would not be developed layer by layer
on the silicon wafer as they are today, instead they would need
to be created in “3d” however it is a technical problem, not a

IV Moores Law, Intel Corporation http://www.intel.com/technology/magazine/
silicon/moores-law-0405.pdf

V High K Gate Dielectrics http://www.intel.com/technology/silicon/high-
k.htm

CPU Speed (GHz}
*

physical one. So it appears that Moore’s law will still hold at
least for the next 10 years.

IV.PROCESSOR SPEED

The doubling of transistor density on processors had lead
to a doubling of speed, however the first 2GHz processor was
released in August 2001, if this trend had continued processors
would have been 4GHz in 2003, 8 GHz in 2005 and 16GHz in
2007. Clearly this is not the case.

Connally

Maximum Intel CPU Speed (IA-32) vs Time ruwc somain 200

. *
0.5 4 **
. o *

g - e +*

1992 1994 1996 1998 2000 2002 2004 2006

Time (Years)

Figure 2. In the graph three trends can be observed: the exponential increase
in speed up to 2000, an almost linear region from 2000 to 2003 and a sharp
change in Cpu Speed against time at around 3GHz."' One of the reasons
for this is that “designers are now coming up against the physical, atomic
limitations of today’s materials science. Advances in power technology
are now lagging behind advances in transistor technology, making
power/thermal issues an increasingly critical design (and performance)
constraint.”V!!

In order to see the problem facing chip manufacturers we
can see from data from an 80 core Intel research chip that the
performance can be increased by 80% but only at the cost of
using 300% more power.

Table 1. Data from the Intel Teraflops 80 core Research Chip¥'™

Frequency Voltage Power Aggregate Performance
Bandwidth

316 GHz 095V 62W 1.02 Terabits/s 1.01 Teratlops

5.1GHz 12V 175W 2,61 Terabits/s 1.63 Teratlops

5.7GHz 135V 205W 2.92 Terabits/s 181 Teratlops

V.MULTICORE CPU (CHIP LEVEL MULTIPROCESSOR - CMP)

In the near future it will not be the processor speed that
doubles every two years it will be the number of cores' on a
chip. This effectively means that the throughput of the computer
will continue to grow exponentially but the raw speed will not.
A program that has a single thread of execution will see little
performance gain in the coming years.

This has serious implications for the software industry, and
hence for systems engineers, universities and companies. Up

VI http://oregonstate.edu/~barnesc/documents/cpu_speed.pdf

VII http://www.intel.com/technology/magazine/research/EPI-throttling-1005.
htm

VIII Intel Teraflops Research Chip http://techresearch.intel.com/articles/Tera-
Scale/1449.htm

111

The CORE Problem. - Bailey

till recently if a process needed to be executed faster you could
solve the problem by getting a faster processor, however now
that the processor speed has leveled out this is no longer the
case. Now programs have to be written to take advantage of the
parallel processing capabilities of modern CPUs.

To a certain extent compilers can take advantage of parallel
architectures, however there is only so much a compiler can
do, it is quite possible to write a program that turns what could
have been a parallel algorithm into a serial one, destroying any
chance of speedup on a multi core machine.

Most software on the market today is not written for multi
core processors and there are good reasons for this, subtle
errors in the software can lead to programs that work perfectly
99.9% of the time and then under certain conditions fail. This
introduces non deterministic effects in software programs, not
too far removed from Heisenberg’s uncertainty principal.

Traditionally Software design has been taught using flow
diagrams where there is a single thread of execution, and the
vast majority of engineers approach problems this way.

What is now needed is to change the mindset of software
engineers, it is no longer possible to think of problems essentially
as a serial process, the simple flowchart will change to have
around 100 simultaneous threads of execution in 5 years or so.

This raises some important questions, are Universities
teaching students these core competences (pun intended) of
concurrent programing?

Few systems engineering students today leam to program using
mutexes, cyclic barriers, latches and semaphores, but this is precisely
what they will need to do after graduating in a few years.

Are companies taking into account the changing environment
of computing in their Requests for Proposals? After all it is very
possible that the software purchased today will be running on
a computer with 100 core within 10 years, if it was written
as a single threaded program it will only be using 1% of the
computers potential.

VI. AMDAHL’S LAW

This law relates to the parallelism of the algorithm to the
speed of execution running on multiple processors. There will
always be a percentage of code that has to execute in series, on
asingle processor, and a percentage that can operate in parallel,
on multiple processors. The parallel part with an infinite number
of processors will take zero time and in the serial part of the
algorithm all of the processors except one will be idle waiting
for the single processor to complete the task. If the mix is 10%
in series and 90% in parallel, the maximum speed up we can see
is 10 times the original speed. If the program is 25% in series
and 75% in parallel then the maximum speedup is of 4.

The graph below shows the decrease of throughput per
processor against number of processors for varying percentages
of serial code in an algorithm.

1 A core essentially is one of multiple cpus on a single chip.

Throughput per Processor

= 0.10%
= 0.50%

1.00%
= 200%
- 3.00%
- 4,00%
- 5.00%
— 10.00%
— 2000%

30.00%

040

020

14 7 1013 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97
Number of Processors

Figure 3. MultiCore processor

The diagram shows that although in a multi core processor the
potential speedup is linear, this only applies in the case that the
problem is completely parallel, ie each task is unrelated. This
means that although the number of cores is set to double every
two years, the increase in throughput will tail off, depending
on how parallel the code is.

VII. WEB APPLICATIONS

There are also certain tasks that are inherently parallel, for
example web applications for a long time have had to deal
with concurrency issues and in a traditional web application,
there is little information flow between the various users, this
avoids one of the main problems of concurrent programs the
coordination and sharing of information between different
threads of execution. However, the database is likely to be the
main bottleneck of a web application.

Enterprise Application Servers

Many enterprise applications, run on application servers with
architectures designed for parallelism, such as Java Enterprise
Edition, however, it is often the case that in todays computers
that the processor is not being occupied 100% of the time. There
are delays due to I/O, thread synchronization and locking, also
in many architectures there are certain operations that need to
wait for a database transaction to be committed, or that need
to share state with other computers in a cluster.

Also in many systems all of the application state is stored
persistently in a database, so that in the event of a system failure
the process can be continued by another computer. However, in
a typical enterprise architecture the database is the part that is
the most difficult to scale. Also due to the possibility of failure
of the database, normally the database is replicated to at least
another machine, however, there is a high overhead in the
synchronization of data to more than a few databases. And also
the storage of the whole of the application state to the database
introduces a bottleneck, if memory is considered slow by todays
cpu speeds then disk speed is still in a prehistoric era, it can
take 15 million cpu cycles just to access the disk.

Relative access frequencies of current hardware:

112
Revista Avances en Sistemas e Informatica, Vol.5 No.2, Junio de 2008, Medellin, ISSN 1657-7663

Table 2. Frecuencies of the system, it could participate as a service in an enterprise

SOA, or each space could be replicated in a cluster of
commodity hardware.

Hardware Frequency Period CPU Cycles

(approximatc)

cry 3Ghz 0.3ns ! The basic principal is to have a shared space, common to

Memory (DDR3) 800 Mhz 1.25n5 4 multiple processors, where messages can be passed. This
LAN Latency 500 bz s {estimate) 6,000.000 implements a form of high speed memory to memory message
Disk Seek 200 Hz Sms 15,000,000

We can see that the most likely bottleneck in an application
is the disk, followed by network access.

VIII SERVICE ORIENTED ARCHITECTURE (SOA)

Many companies have separate systems to realize their
activities, however, in the majority of cases they are from
different vendors and do not interact resulting in the manual
reprocessing of information taking data from one system and
entering it into another. In some companies they have taken
steps to automate this process, creating specialized software
to interface one system with another. One of the potential
problems lies with the number of interfaces created, if there
are N different systems that all interact then N2 interfaces
need to be written. SOA is a way of designing systems taking
into account the services that each one provides and also the
services that each one requires. The goal is for the services to
be connected together with a minimum of effort. For example
an accounting service offers the service of realizing financial
transactions and report generation, the CRM offers the service
of consulting the customers details, instead of duplicating the
data within the accounting package.

The ultimate goal is to obtain the seamless flow of information
through every enterprise process, having access to the data at
any instant for analyze and decision making.

SOA is an enterprise architecture that is commonly
implemented using web services, messaging systems and
databases. However, each of these has its drawbacks, web
services are based on the transfer of xml files, essentially text
files, which need to be created, sent over a network and then
interpreted. Message queues normally are separate processes
that also communicate using the network, and in most
enterprises are backed by persistent stores in order to guarantee
message delivery. Also most applications use databases to save
the state after every operation in order to recover from system
failure. Evey step in the process taken consumes extra cpu time
and adds latency.

IX. SPACE BASED ARCHITECTURE

“Space-Based Architecture (SBA) is a software architecture
pattern for achieving linear scalability of stateful, high-
performance applications using the tuple space paradigm” .
It is similar to the blackboard design pattern used in artificial
intelligence systems. In essence the architecture resembles a
mix between Service Oriented Architecture and Event Driven
Architecture, however the services and events are all contained
within a single operating system process with multiple threads.
This does not impose any restriction on the overall architecture

queue enabling peer to peer communications, which in turn
allows loose coupling between the software components, and
does not have the overhead of traditional message queues.

One of the key benefits of the architecture is that as each
separate task is carried out by a self contained module, and
each module interacts using a shared thread safe space, the
implications are that the software engineer can develop each
module as if it were a serial process ignoring the fact that many
modules may be executing concurrently. The developer only
needs to deal with concurrency if it is implemented within the
module.

Although as in any enterprise application there is a database,
read access to the database is minimized by using a distributed
thread safe data cache and write access is minimized by
persisting temporary state in the tuple space, with only the final
results being persisted to the database. Also wherever possible
idempotent operations are implemented so that the state does not
need to be persisted, if an idempotent operation f Moores Law,
Intel Corporation http://www.intel.com/technology/magazine/
silicon/moores-law-0405.pdf ails it can be retried without the
risk of corrupting data.

The goal is to turn enterprise applications into multiple
unrelated tasks. In this way then linear scalability can be
achieved with number of processors.

X. CONCLUSIONS

The next few years will hold many challenges not only for
the semiconductor industry, as the limits of quantum mechanics
are reached, and creative ways are found to extend the timespan
of the exponential Moore’s Law. It will also force a major
transformation in the software industry, requiring a Quantum
Leap in the mindset of software engineers, in order to design
software solutions that are able to make use of hundreds of
cores on a single chip.

Many universities have taught concurrency at the level of the
operating system, but have not addressed the problem in detail
at the level of software design. A major shift in emphasis needs
to occur in their curriculum for their graduate students to have
the competences that they will need in the coming years.

Software Engineers will need to understand issues
surrounding concurrency including: race conditions, deadlock,
livelock, starvation and priority inversion, and the software
tools to manage concurrency such as: semaphores, mutexes,
barriers and latches.

The challenges for businesses and institutions is that many
enterprise applications will not scale effectively on multi-core
hardware without re-writing for multi-threading. Today we are
facing a similar situation to the problem Y2K, which was caused

The CORE Problem. - Bailey

by the change of the millennium, programs that did not handle
the change of century had to be modified, now the problem is
that with the introduction of multi core cpus many programs
will have to be modified or even redesigned completely.

In the light of recent developments in chip manufacture a
reexamination of enterprise architecture is needed in order to
make use of the hardware efficiently. Frameworks such as that
being investigated and developed at Hazlorealidad.com can
allow organizations to implement highly-scalable business
applications well into the future, while maintaining critical
transaction and integrity requirements.

Today it is almost acceptable that a program only uses 50%
of a dual core processor, however will it be acceptable for a
program to use 1% of'a 100 core machine?

113

Universidad Nacional de Colombia Sede Medellin
Facultad de Minas

12 afos %=

Escuela de Ingenieria de Sistemas

Mision
La mision de la Escuela de Ingenieria
de Sistemas es fomentar y apoyar la
generacion o la apropiacion de
conocimiento, la innovacion y el
desarrollo tecnolégico en el drea de
ingenieria de sistemas e informdtica
sobre una base cientifica,
tecnoldgica, ética y humanistica.

Escuela de Ingenieria de Sistemas
Direccidn Postal:

Carrera 80 No. 65 - 223 Blogue M8A
Facultad de Minas. Medellin - Colombia
Tel: (574) 4255350 Fax: (574) 4255365
Email: esistema@unalmed.edu.co
http://pisis.unalmed.edu.co/

T

[
|
J

Vision
La formacion integral de profesionales
desde el punto de vista cientifico,
tecnologico y social que les permita
adoptar, aplicar e innovar conocimiento
en el campo de los sistemas e informdatica
en sus diferentes aspectos, aportando con
su organizacioén, estructuracion, gestion,
planeacion, modelamiento, desarrollo,
procesamiento, validacion, transferencia y
comunicacidon; para lograr un desempeno
profesional, investigativo y académico que
confribuya al desarrollo social, econémico,
cientifico y fecnologico del pais.

e
-

