Transparent API

API Transparente

Luis Garreta' y Sandra Roa?
1. Universidad del Valle, Colombia.
2. Universidad del Cauca, Colombia
lgarreta@univalle.edu.co; smroa@unicauca.edu.co

Recibido para revision 11 de Marzo de 2008, Aceptado 19 de Mayo de 2008, Version final 23 de Mayo de 2008

Resumen— Este articulo presenta un enfoque para un API
Transparente basado en Lentes Magicas. Los lentes magicos son
filtros méviles que se desplazan sobre un area de trabajo de una
aplicacion y muestran nuevas vistas de los objetos sobre los que
se superponen. E1 API Transparente propuesto es un mecanismo
de visualizacién que se caracteriza por: no obstruir la visiéon de
los objetos del area de trabajo, uso de elementos comunes de
interaccion con el usuario de inter faces tradicionales, proceso activo
de datos, y la posibilidad de usarlo como un elemento adicional en
alguna interfaz grafica de usuario (GUI).

Palabras Clave:Interfaz Gréfica de Usuario, Lentes Magicas,
Interfaz de Usuario Transparente.

Abstract—This paper describes an approach for a Transparent API
(Application Programming Interface) based in Magic LensTM.
Magic Lenses are movable filters that displace over an application
work area and show new views of objects viewed through that
area. The transparent API proposed is a visualization mechanism
that have tools distinguished by: unobstructed view of the objects
in the working area, use of typical interaction elements with user
of traditional inter faces, active process of data, and the possibility
to use it as an additional element in any graphic user interface
(GUI).

Keywords: Graphic User Interface, Magic Lenses, Transparent
User Interface.

I.INTRODUCTION

he bases for development of the transparent interfaces was

made for Xerox at its Xerox-Parc Laboratory. Some of
the features include: the transparent interface does not prevent
the direct visualization over working applications, neither it
takes permanent screen space; its tools move over working
objects and can be configured in a way that shows new views
of the objects [1].

The transparent API includes Magic Lens and ToolGlassTM
widgets, that are used in an application work area. Magic Lens
shows modified views of objects viewed through it. Instead,
ToolGlass widgets float over the application work area without
interfering with direct views of the objects place underneath
the ToolGlass, and also they show options to interact with the
user.

In spite of the advantages, the transparent interface and its
tools are not common in the real GUISs yet [8] [3]. One of the
reasons is that changing from screen windows toward transparent
interfaces is a step too complex, instead, the introduction of
some tools from transparent interfaces could be done easily in
progressive steps.

Our focus in this paper is the introduction of some of these
tools as an active visualization and interaction mean inside
real graphic interfaces. As part of this work, we have built an
application that use Magic Lens as visualization tools and a
transparent API to interact with the user. The API includes
typical elements of an interface, such as buttons, toolbars,
checkboxes, etc.

This paper is organized as follows. The next section describes
the transparent interface and its operation. The following section
describes the basic principles of Magic Lens operation and
the last section describes the transparent API including tools
interaction, some details of its implementation and use inside
an application. Finally we present our conclusions and reference
material.

II. TRANSPARENT INTERFACES

The See-Through interface is defined as a set of semi-
transparent interactive tools that appear on a virtual sheet
of transparent glass called a Toolglass sheet, between the
application and a traditional cursor. The set of tools that belongs
to the see-through interface is called Toolglass widgets. These
widgets are used over an application work area and may provide
a customized view of the application underneath them, using
viewing filters called Magic Lens filters. [1] [9]

A Transparent Interface Operating

Basic operation of the interface begins when the user positions
a toolglass sheet over a desired object in an application and
then points with a mouse through the widget that appear in the
toolglass sheet, letting the widget perform its operation. Results
are presented in the same widget area and they are the outcome
of applying a filter or an operation configured in advance over
the objects placed underneath the widget.

Revista Avances en Sistemas e Informatica, Vol.5 No.2, Junio de 2008, Medellin, ISSN 1657-7663

156

Revista Avances en Sistemas e Informatica, Vol.5 No.2, Junio de 2008, Medellin, ISSN 1657-7663

The toolglass sheet placed between screen and application
intercepts the user’s inputs modifying them and giving them to
the application. Likewise, the toolglass sheet intercepts display
requests from the application, modifying them and showing
them in the user screen. [2]

When an operation is accomplished in an interface tool, four
steps are followed: trigger, movement, action, and appearance.
The user triggers an event; the tool specifies an action based on
the event and performs that action; when the action is performed
an appearance is fixed to display the tool and the application
underneath it; finally, the tool moves over the application objects
and in each movement a new appearance of the objects is shown
through the tool selected.

B. Transparent Interface Operating

Magic Lenses constitutes an interface tool that combine an
arbitrarily shaped region with an operator (filter) that changes
the view of objects viewed through that region [5]. These tools
employ an attractive metaphor based on physical lenses; the
user select a lens, he places the lens over the application area
and he sees the new view that is produced by the lens [4]. The
context is kept, in other words, the region outside the lens is
kept unmodified, also lenses overlap showing composition of
their effects. Figure 1 shows a part of the map from the city of
Cali, Colombia. Over the map we have placed two lenses that
show detail from the city blocks. The user can move the lens
over any region, at each movement the lens dynamically gets
the block information and shows it in the same region of the
lens. The context outside the lens is kept unmodified, in this
way we can see the block information without losing sight of
the districts around the lens.

! manzanas cEHa” ;/:\,,/.
i ; .

manzanas
m——p

CEE X

ST e I %

Figure 1. Lenses to view blocks in a Cali, Colombia area

III. TRANSPARENT API

The transparent API proposed has a set of Transparent Tools
(TT) that are interface elements placed over an application
work area that keep the object view underneath them without
changing. The TT introduce elements to the user in order that

he may interact with the application, such elements are buttons,
menus, toolbars, etc. Also, the TT allow the user to interact with
the objects through the tools, that means, the tools float over
the application and the user interacts with the objects behind

the TT as if they were not present.

Figure 2 shows two TT in form of toolbars: the upper one
presents options to be performed over the map, the right one
allows the user to check or uncheck the layers that conform the
map such as district, municipality, cycloroute, perimeter, blocks
and geological aspects of the region.

] Comandos
Acercar |Alejar

Wt

|¥] barrios
V| comunas
j ciclovias

2 et

Figure 2. Transparent Tools with options to apply over the map

A. Interaction with the tools from the transparent AP/

Provided that one of the principal objectives of the transparent
tools is to allow the interaction -in a transparent way- with the
objects placed underneath the tools, then, the way to access them
change slightly. Once we access a TT, the interaction with the
TT is similar to the way we interact with the traditional tools.

Two hands can be used to operate a See-Through Interface
[1]. Each hand operates a different input device, the dominant
hand positions a cursor from a mouse while at the same time
the non-dominant hand uses a trackball. Thus, the TT could
be accessed by the trackball that the non-dominant hand could
move it, while with the other hand -operating the mouse we
could perform individual actions that are inside the tool [7].
Although, this two-handed operation works well with the s-
through interface, in the real window interfaces this method
is not the appropriate one, because the principal input devices

- and most of time the only one - is a mouse.

For that matter, we proposed an alternative way that use only
the mouse to access and perform actions inside the TT. For
that, we use the concept of the two-handed operation from the
see-through interface translated to the buttons in the mouse. If
the mouse have two buttons, it is use as follows: to access the

157

Transparent API - Garreta y Roa

TT we press the alternate button of the mouse (usually the right
one) and to perform an action we press the principal button
(usually the left one).

Therefore, if a user does not press the alternate button to
access the TT and he presses the principal button in the mouse,
the actions are performed over the objects placed underneath
the tool and they are not executed over the elements that TT
contain.

B. Architecture of the transparent tools

The TT that appears models under the architecture MVCL
(Model-View-Controller-Lenses). In this architecture the
Model represents the data of the the problem domain; the Vista
presents/displays graph or textually to the Model; the lenses are
located on the Views and change the appearance of the objects
located in her; finally the Controller, coordinates to the previous
elements, centralizes the communication and handles the logic
of the application[6].

In the MVCL, the actions they are captured by the interaction
elements that offer to the views and the lenses, if these
actions deal with the logic of the application, then the element
sends them controller to its so that it makes them. All this
communications diagram becomes by means of the contract
mechanism, where an element declares the actions that can
capture but that it cannot solve them. The controller who is
going to handle to the element, must fulfill the contract.

C. Implementation of the transparent APl

The Transparent API proposed to be used as a TT, was
implemented using JAVA as a programming language. The
transparent API uses the most high level classes of Abstract
Window Toolkit (AWT) that came with the JAVA language and
from the components SWING are derived.

Figure 3 shows a diagram of one part of the TT
Transparent API that contains the transparent toolbar
options (BarraOpcionesTransparente). This class contains
one or more transparent buttons (BotonTransparente) that
constitute the available options. The class declares a contract
(ContratoBarraOpcionesTransparente) with the options that
can get from the common buttons: (MouseClicked) and with
the options that can get from the checkboxes (opcionSeleccio
nada,opcionDeseleccionada).

The high level class Container offers the basic structure to
accomplish an object container and above all, it allows the
possibility to overwrite its display method paint in such a way
that when this method is executed only the outline is painted,
in other words, text and background are not painted. Likewise
happens with the high level class Component, the method paint
is overwritten to paint outline and text only.

PanelTransparents

| PanelbovilTansparente |

A

| BamaOpeionesTransparents |<> topoion

AT

Boton Transparents

uitiliza

<<Intaface=x>

Contrato Bama OpcionesTranparents | Bt R el g R T At I

miouse Clicked()
opcionSeleccionadal
opcionDeseleccionadal)

Figure 3. Diagram of classes for the element BarraOpcionesTransparente.

Figure 4 shows a part of the Class Diagram in UML
that presents the options toolbar inside a GUI. The options
toolbar declares in a contract the actions that capture but not
resolve. Instead, the controller that guides the options toolbar
accomplish (implement) the actions. Otherwise, the options
toolbar contains a reference to the controller through a reference
in the contract that it declares.

ControladorBama Opeiones Transparents
mouzellicked)) contmla

opeioneSeleccionadal)
apsionbeselcocianadal

BarraOpcionesTransparante
controlador : Contrato BamaOpeionesTransparente

declara

<2Interface s>
ContratoBamaOpcionesTranpanents

monze Clicked()
opcionSeleccionadar)
opeionDezeleccionadal)

Figure 4. Transparent options toolbar inside a GUL.

D. Display of maps using the transparent API

An outline of an application that use the transparent API is
shown in Figure 5. In this figure appears four views, the view
to select the layers, the view to select the commands (Zoom
in, Zoom out, etc.), the view to select the lenses and the view
to display the maps. Note that lenses are applied over the
maps view.

158

Revista Avances en Sistemas e Informatica, Vol.5 No.2, Junio de 2008, Medellin, ISSN 1657-7663

| Acercar || Alejar || Feuhicar || Info |

7 Aana
[Fgepat Lente &
EGanaT Lente ¥
[R Lente &

Figure 5. Outline of the transparent interface to view maps

Figure 6 shows the transparent API with the magic lenses
interacting as elements of active visualization to display
multiples and simultaneous floating views inside the same
interface. Note that not all of the interacting elements are now
transparent (element placed at the left of figure), this is other
property from the transparent API. Additionally, the transparent
API allows the user to make visible the interacting elements
he wishes to make it appears, define the transparency level of
the interacting elements, and to manipulate properties of lenses
such as: sizes, processing ways and initial conditions.

(WTzpa: [ECemandes TR

= | Acercar AIe'aJ Reubicar Infa

|| omunaz | GOmUnas H /‘J‘

j ciclovias \

|_| barios

|Z] manzanas ?

- | B Lentes JATY]
comunas

] cicloviaz

vias
barriaz
manzanas
perimetro
geologia

Figure 6. Features of use for the transparent API

IV. CONCLUSIONS

The Transparent API proposed is a feasible alternative to be
used in graphical interfaces, such alternative allows to provide
the user with a set of active tools for processing data that not
interfere with the visualization.

Changing from the classical windows interface to the
transparent interface at any moment is something unthinkable.
The Transparent Interface is still a novel approach and there
is not a commercial application that include it yet. But we
can integrate some elements from these interfaces inside the

real windows interfaces and thus, we can get a cohabit of the
two interfaces that take advantage of the best features of each
one.

In most applications, the toolbar tools occupy a region on
the screen that can be best use for the application as a working
area. Instead, the transparent tools do not waste this space away,
since these tools are placed over the same areas but they do not
prevent the visualization and interaction with the objects place
underneath them because of their transparency feature.

Due to its features, the transparent tools can be used on
tiny displays, such as notebook computers or personal digital
assistants, cellular phones and a big variety of handheld and
pocket devices that each day are becoming more common.

Also, the transparent tools can be used on big sized displays,
such as wall-sized displays, where a fixed control panel might
be physically out of reach from some screen positions. In
this case, these tools can move with the user to stay close at
hand and they do not interfere with the objects views placed
underneath them.

REFERENCES

[1] BIER, A. Eric, STONE, C. Maureen, PIER, Ken, BUXTON,
William and DEROSE D. Tony. (1993) Toolglass and Magic
Lenses: The Transparent Interface. In: Proceedings of Siggraph ‘93
(Anaheim, August), Computer Graphics Annual Conference
Series, ACM, p. 73-80.

[2] BIER, A. Eric, STONE, C. Maureen, FISHKIN, Ken, BUXTON,
William an BAUDEL, Thomas . A. (1994). Taxonomy of
Transparent Tools. In: CHI Conference Proceedings. p. 358.

[3] BURBECK, Steve. (1992). Applications Programming in
Smalltalk-80: How to use Model-View-Controller (MVC).
Available in: http://st/www.cs.uiuc.edu/users/march/st-docs/mvc.
ht ml

[4] FOX, David (1998). Composing Magic Lenses. In: CHI Conference
Proceedings. p. 25-32.

[51GAONA, Mauricio (1998). “Magic Lens”. In: “Segundo Encuentro
de Ingenieria de Sistemas”. ICESI.

[6] GARRETA, Luis (2001). “Arquitectura de Visualizacion
Activa MVCL”. In: Proceedings of the XXVII Conferencia
Latinoamericana de Informatica, p. 107.

[717HARRISON, Beverly L., KURTENBACH, Gordon and VICENTE,
Kim J. (1995). An experimental evaluation of transparent user
interface tools and information content. In: Proceedings of the
8th ACM symposium on User interface and software technology,
p- 81-90.

[8] HUDSON, E. Scott, RODENSTEIN, Roy and SMITH, lan.(1997).
Debugging Lenses: A New Class for Transparent Tools for User
inteface Debugging. In: Proceedings of the ACM Symposium on
User Interface Software and Technology, p. 179-187.

[9] STONE, C. Maureen, FISHKIN, Ken, BIER, A. Eric.(1994)
The Movable Filter as a User Interface Tool. In CHI Conference
Proceedings. p. 306.

