
Revista Avances en Sistemas e Informática, Vol.8 No.1, marzo de 2011 - Medellín. ISSN 1657-7663

Tartarus – Una estrategia para construir y expresar
Arquitecturas Empresariales

Tartarus – A MDE Strategy to build and express Enterprise
Architectures

Recibido para revisión 22 de septiembre de 2010, aceptado 03 de enero de 2011, versión  nal 09 de febrero de 2011

Resumen— Las compañías emplean importantes esfuerzos
en establecer diagnósticos empresariales y planes estratégicos
de inversión, para lograr y/o mantener lugares competitivos en
el mercado. El profundo análisis organizacional requerido para
tal  n, debe ser idealmente apoyado en metodologías para el
levantamiento, depuración y comunicación de la información.
Los exhaustivos resultados que emergen de un estudio a nivel
empresarial, son susceptibles a la ambigüedad, inconsistencia
y mala interpretación, dificultando la importante tarea de
transmitir hechos relevantes para el mejoramiento de la empresa.
En este artículo, presentamos un conjunto de estrategias para la
construcción de modelos empresariales, que permiten describir
la realidad organizacional y obtener artefactos consistentes para
comunicarla. Dichos modelos son de nidos a través de un meta-
modelo, que abarca los principales conceptos empresariales,
abstraídos de algunos de los marcos arquitecturales que gozan de
mayor reconocimiento en el mercado. Adicionalmente, ofrecemos
un ejemplo, para ilustrar el modelado de un fragmento de la
arquitectura empresarial de una organización  nanciera, con la
motivación de derivar artefactos que propicien su divulgación.

Palabras Clave— Meta-Modelo, Ontología, Marco Arquitectural,
Lenguaje Especí co de Dominio

Abstract— Companies devote considerable efforts to establish
business assessments and strategic investment plans in order to
attain and/or maintain a competitive spot in the market. The
thorough organizational analysis required for this endeavor should
be ideally supported by information capture and communication
methodologies. The comprehensive results that emerge from a
company-wide study are susceptible to ambiguity, inconsistencies
and misinterpretation, thus hindering the important task of
communicating relevant data that could be used for company
improvement. In this article, we present a set of strategies used to

Mario Elkin Rodríguez Alarcón, Esp1., Francisco Alexander Murcia Bermúdez, Esp2. & Darío Ernesto Correal Torres, Ph.D.
1. Esp. Construcción de Software. Est. Maestría en Ingeniería de Sistemas y Computación.

2. Esp. Construcción de Software. Est. de Maestría en Ingeniería de Sistemas y Computación.
3. Ph.D en Ingeniería. Profesor Asistente – Universidad de los Andes.

Universidad de los Andes.
me.rodriguez373@uniandes.edu.co, marioera@gmail.com; fa.murcia68@uniandes.edu.co, cycomantis@gmail.com;

dcorreal@uniandes.edu.co.

build business models that can describe the organizational reality
as well as attain consistent ways of describing it. These models are
de ned through a Meta-Model that encompasses fundamental
business ideas, taken from some of the most recognized architectural
frameworks in the market. In addition to the aforementioned, we
provide an example to illustrate the modeling of a fragment of
a  nancial company's enterprise architecture in order to obtain
artifacts that foster its dissemination.

Keywords— Meta-Model, Ontology, Architectural Framework,
Domain Speci c Language

I. INTRODUCTION

Managing the complexity of an enterprise, because of the
diversity of processes, services, policies, technological

resources and other challenges, has brought about the evolution
of Enterprise Architecture (EA) over the last two decades. The
experience acquired by organizations in this  eld, expressing
reality through documents, models and other artifacts, has
produced sets of patterns and guidelines that are clustered in
well-known Architectural Frameworks (AF), like Zachman[30],
TOGAF [27], FEA [4] [3], DoDAF [28], E2AF [13], among
others. Each AF has been built on a set of different fundamental
principles (functional decomposition, modularization,
standardization [27] and ef cient use of resources [4], etc.),
which has derived different forms of organizing and structuring
the artifacts that make up an EA.

Since each AF supports and tends to satisfy certain principles,
the artifacts that constitute it are designed and organized so

Revista Avances en Sistemas e Informática, Vol.8 No.1, marzo de 2011 - Medellín. ISSN 1657-7663
62

as to favor particular qualities [19]. Therefore, an enterprise
architect must review different AFs and take from them the
guidelines and suggestions necessary for a complementary set
of components needed when building an EA. For example,
it is common practice to use Zachman's guide to categorize
artifacts and to be guided by their creation process, proposed
by TOGAF [25]. However, despite the complementarity of
AFs, right now there is no common knowledge environment
in EA. Each AF has and de nes its own glossaries of terms,
deliverables and structure, hindering not only the neutral and
objective construction of an EA, but the simple and consistent
integration of artifacts.

Enterprise architects invest great amounts of time and
expenditure in work related to the coherent integration of
an EA's various components, which are built on the basis of
different guidelines, depending on the AF used. The degree
of inconsistency and ambiguity that can penetrate an EA
jeopardizes the accuracy with which the architects want to
communicate the corporate vision, even more considering the
inherent propensity of the language to be misinterpreted. The
potential consequences for a company because of mistakes
in its EA's consistency and expression could result in poorly
focused and improperly justi ed investments, to the detriment
of its improvement and competitive position in the market.

With the intent of overcoming the dif culty stated herein,
this article presents a strategy based on the principles of Model-
Driven Engineering (MDE) and Ontologies that we have called
Tartarus, which will assist the task of an enterprise architect
when he is ready to model and communicate a company's actual
status, opening the possibility of obtaining architectural artifacts
in terms of one or more speci c AFs. As an example, the article
also presents a fragment of a  nancial institution's EA, modeled
and expressed through Tartarus, which can develop architectural
artifacts in terms of particular AFs.

The rest of the article is organized as follows: Section 2
describes the context that frames the problem stated herein;
section 3 describes fundamental aspects of the proposal and
its construction process. Section 4 details sub-sections of the
strategy through a scenario. Section 5 presents some related
work and the conclusions reached.

II. CONTEXT

An Enterprise Architecture (EA) can be understood as the
logical process of coherently organizing business processes
and technological infrastructure to describe the relationships
between applications and systems, with the business objectives
and motivators of an organization. An EA can be visualized as
strategic plan and faithful regulator of the enterprise's principles,
which encompasses the organization, processes, data and
technology [17][16].

Our Tartarus proposal seeks to provide different mechanisms
to de ne and model EAs. This objective is achieved through the
coordinated use of several technologies and strategies. Among
the most relevant are the use of ontologies and domain speci c
languages. The following section describes the main concepts
and ideas regarding these technologies. Section 4 provides a
detailed explanation of how these technologies are used to
support the process of EA modeling and analysis.

A. Domain Ontologies
A Domain Ontology is a formal description of a set of

concepts and its relationships in a speci c domain [9]. They are
widely used to aid the capacity to communicate by establishing
a common vocabulary. At present, there are standards for the
expression of ontologies, as well as languages to perform
knowledge derivation queries and operations pertaining to them,
such as Web Ontology Language (OWL) [29].

Different methodologies have been proposed for building
an ontology. In this work, we adopted Methontology [5] [8],
which establishes a sequence of steps that go from building a
glossary of terms and a conceptual taxonomy to de ning the set
of binary relationships between the concepts, as well as their
attributes, axioms and norms. Clear, structured and supported
in processes of knowledge acquisition, integration, evaluation,
documentation, control and quality: the result is an ontology
that is made correctly in the chosen knowledge domain.

B. Model-Driven Engineering (MDE)
MDE is based on the use of a set of standards formulated

by the Object Management Group (OMG) that seek, from a
holistic perspective, to improve the life cycle of speci cation,
architecture, design, development, deployment, maintenance
and integration of information technologies through models
[10]. One of its basic premises is the capacity of expressing,
in platform-independent terms, the fundamental concepts of a
problem through the use of models (diagrams, rules, restrictions)
which disconnect it from the technological complexity needed
to solve said problem. The use of models results in detailed
analyses and more cohesive designs, enabling the derivation
and automatic generation of platform-independent artifacts
(even executable code) [23].

The models have to be in line with an archetype (Meta-Model)
on which it is possible to de ne transformations that contribute
to the automatic derivation of new models that propitiate its
evolution and expression. The relationship between a Meta-
Model and a Model is similar to the one between UML and a
particular class diagram. It is said that the diagram is in line
with UML, just like a Model is in line with its Meta-Model.

In MDE, the tasks consist then, in the de nition of Meta-
Models, which express the language and rules to create models.
These models can be transformed and analyzed to obtain a
new model that can be expressed in a particular technology or
programming language. Following the same principle, Domain-

Tartarus – Una estrategia para construir y expresar Arquitecturas Empresariales – Rodríguez et al
63

Speci c Modeling, proposes the use of models to represent the
concepts of a particular domain and their relations. Differing
from general MDE strategies, models in DSM are not intended
to be for general purpose use. For example, a model could be
constructed to represent the tasks associated to a project. In
general, a project has tasks and responsible persons associated to
them, and also deadlines and products associated to those tasks.
With the concepts expressed, any project could be described
in a general view at the model level. However, in a DSM, the
concepts become more speci c. Following our example, we
could talk about software projects. In this case we have analysis,
design, codi cation, implementation and testing tasks. These
concepts are now used in the model to identify in a more exact
way and using domain speci c terms, fundamental concepts
of the problem solution.

C. Domain-Specific Languages
Domain-Speci c Languages (DSL) make the comprehension

of programming code more easy for the persons with expertise
on a particular domain but that not necessarily have informatics
knowledge. The idea is not that the  nal user programs using
a DSL, a task that will probably will continue to be carried out
by a programming expert. The idea is that the  nal user can
easily understand the produced code semantics by seeing as
part of the application elements that belong to his domain [20].

Different types of DSL exist, particularly two of them are
commonly used. The  rst ones are the graphical DSLs, in which
the user expresses his requirements using typographic elements
with an unambiguous semantic. The second type, are the ones
oriented to textual use, in which user requirements are expressed
by using a simple text editor. Never the less, it is possible to
have combinations like DSLs that integrate both the graphical
and textual interface.

III. TARTARUS-EAMM: A META-MODEL FOR ENTERPRISE
ARCHITECTURES

This section describes the building of the Tartarus proposal,
which began with the definition of an EA ontology that
establishes a detailed, homogeneous conceptual framework.
Using the conceptual debugging found in the ontology, a Meta-
Model was built which gives the Enterprise Architect greater
capacity for expression. This model can be used for modeling
architectural views independently of any AF, which in turn
can give a neutral perspective of the problem, the organization
and its multiple components. EA models pursuant to the Meta-
Model presented can be used in accordance with the principles
offered by MDE, to be transformed, derived, processed and even
validated. The model's inherent properties help to facilitate the
traceability and integrity of each modeled concept, providing
artifacts that are consistent and adaptable to change.

A. Step 1- Defining an Enterprise Architecture
 Ontology

Following the guidelines of the methodology selected to
build Ontologies, Methontology, the  rst step is to prepare and
debug an EA concepts glossary. This glossary is abstracted from
multiple sources, such as vocabularies from some of the most
attractive and best known AFs in the market (Zachman [30],
TOGAF [27], FEA [4] [3], DoDAF [28], E2AF [13]), standards
and guides (IEEE [12], ITIL [14], Carnegie Mellon [18], OASIS
[21]) and informational resources from organizations and
academies (ICH [11], ACM [1]), among others.

The glossary obtained is used as the main input component in
preparing the EA Ontology, which constitutes a comprehensive
and rigorous conceptual model populated with individuals
that represent basic parts of the selected sources to validate its
integrity. Each concept is then listed and de ned in accordance
with its meaning in the aforementioned sources, showing
that different AFs use slightly different words to refer to the
same concept. For this reason, it is necessary to group some
de nitions in a way that is semantically consistent.

To continue with the steps established in Methontology,
we decided to make a mental map that allowed us to see the
distribution of the terms selected in their entirety, to try to  nd
hierarchies that would infuse synergy to the work done, and
therefore constitute the base conceptual taxonomy on which
to build the ontology.

B. Step 2- Obtaining an EA Meta-Model
Based on the work accomplished in creating the ontology,

 ve (5) fundamental concept groups were identi ed: Enterprise,
Environment, Management, Continuum, and Architecture.

Enterprise, encompasses the concepts that describe the
organization whose architecture will be modeled: mission,
vision, value chain, capacity, business motivators and
stakeholders that participate, affect and motivate the preparation
of the EA. Figure 1, presents these components and their
relationships.

Environment represents a set of conditions and statuses
where the EA unfolds. Including, but not limited to: Human
capital, Organizational Culture, Processes and Technology
under which the architecture is raised, nurtured and developed.
Management is the common thread of the EA, which marks the
set of strategies that watch the appropriate use and evolution
of the architecture's inherent artifacts. Continuum refers to the
evolutionary, staggered and continuous process of maturation,
development and implementation of the EA in the organization.
Architecture is made up of the concepts that constitute the means
to describe an organization in terms of business, information,
technology and applications, and the way to validate quality
attributes and scenarios, as presented in Figure 2. The
architecture is expressed through views and descriptions that
include deliverables (Documents, Models and other artifacts).

Revista Avances en Sistemas e Informática, Vol.8 No.1, marzo de 2011 - Medellín. ISSN 1657-7663
64

Figure 1. Enterprise Architecture Meta-Model

Figure 2. Architecture Meta-Model

Tartarus – Una estrategia para construir y expresar Arquitecturas Empresariales – Rodríguez et al
65

One of the basic pillars of this last category is made up of
Architectural Domains that can break down the company's
complexity into specialized and interrelated views. Architectural
domains are concepts commonly found in different AFs, which
provide an overall vision of the company's physical, logical and
structural make up. As a result of the conceptual debugging,
several domains were identi ed, including:

 --The Technology and Applications domain: Provides
a vision of the infrastructure that supports the company's
foundations. It is an overarching vision of the company's IT
resources, which includes everything from the hardware to the
services provided by software applications. It also shows how

the aforementioned infrastructure is related to the company's
business processes.

The Business domain de nes the company's inherent business
processes, which largely determine the business vertical the
company is under and differentiate it from its peers. Figure
3, shows the basic concepts and relationships de ned in the
Meta-Model that describe business processes. It highlights the
composition of a process by BusinessEntities, which represent
the business players (Company, Areas, etc.), and which through
Participants carry out activities (ProcessElements) linked by
Connections. The Meta-Model encompasses different types of
activities, events and  ows derived from the BPMN nomenclature.

Figure 3. Business Domain Meta-Model

IV. TARTARUS-EADL: A DOMAIN-SPECIFIC LANGUAGE FOR
ENTERPRISE ARCHITECTURES

In today's world, it is ever more common to see the use of
specialized languages in the de nition of Software Architecture
(ADL) as a mechanism to describe relevant components of
solution architecture and its relationships. However, there
are few languages to de ne and analyze EAs in a business
environment.

Tartarus gives the enterprise architect a set of tools to build,
analyze and re ne EAs. Additionally, Tartarus makes it possible
to generate artifacts according to a speci c AF. All of this is
possible because of the Model-based focus used to build this
tool.

To facilitate the de nition and analysis of an EA model,
Tartarus provides a speci c language domain called Enterprise
Architecture Description Language (EADL). Using EADL,
enterprise architect is able to de ne the architecture's main

Revista Avances en Sistemas e Informática, Vol.8 No.1, marzo de 2011 - Medellín. ISSN 1657-7663
66

elements and their relationships, using terms and concepts
inherent to the EA domain, without having to worry about
particular details imposed by an AF.

The objective is therefore to provide a speci c domain
language (EADL) that facilitates the definition of EAs
independently of any AF. These de nitions are subsequently
analyzed and processed to build models according to Tartarus-
EAMM. The models obtained provide an abstraction of the
organization in terms of its EA. And  nally, the architect can
derive artifacts for the preferred EA, based on the EA model.
As we have already mentioned, AFs are regularly used together
to complement each other, so that based on the EA model, the
architect can generate the artifacts required by TOGAF and
Zachman and thus enrich his business vision. Below is a detailed
description of each step discussed herein, with examples of
how they can be used.

A. Modeling an EA through EADL
The  rst step in de ning a company's EA is to establish the

entry point of the model. In order to do this, EADL language
can create an EnterpriseArchitecture component which becomes
the recipient of all the relevant concepts for the architecture.
An EnterpriseArchitecture component is de ned in terms
of: Enterprise, Architecture, Environment, Management and
Continuum, as explained in section 3.

Prog. 1, shows how enterprise (line 5) and architectures (line
6) concepts relate, within the main concept FinancialEnterpri
seArchitecture.

1 import "enterprise/Enterprise.eadl";
2 import "architecture/CurrentArchitecture.

eadl";
3
4 E n t e r p r i s e A r c h i t e c t u r e

FinancialEnterpriseArchitecture {
5 enterprise { FinancialCorporation };
6 architectures { CurrentArchitecture, ... };
7 };

Prog. 1, EnterpriseArchitecture.eadl - Main model de nition
 le.

Prog. 2, presents the de nition of FinancialEnterprise. In
the example we can see the de nition of a Stakeholder (line
15), along with his pertinent drivers and position within the
organization. The BusinessDriver IncreaseCreditCardSales
(line 20), shows related processes (targetProcesses) and the
quali cation (weight) given by the architect according to the
motivator's rank within organizational objectives.

1 import "Foundation.eadl";
2 import "ValueChain.eadl";
3 import "Organization.eadl";
4
5 Enterprise FinancialEnterprise {

6 drivers { IncreaseCreditCardSales, ... };
7 foundation { EnterpriseFoundation };
8 experience { FinancialValueChain };
9 chart { FinancialOrganization };
10 stakeholders { ChiefExecutiveOfficer,

ExecutiveBoard,
11 RegionalManager, BranchManager, BranchEmployee

};
12 continuum {};
13 };
14
15 Stakeholder ChiefExecutiveOf cer {
16 drivers { IncreaseCreditCardSales, ... };
17 occupies { GeneralManagement };
18 };
19
20 BusinessDriver IncreaseCreditCardSales {
21 description: "Increase in sales of credit

card products.";
22 weight: 5.0;
23 targetProcesses { CreditCardProcess, ... };
24 };

Prog. 2, Enterprise.eadl - Company's foundation de nition.

EADL operates under a composition structure. This
means that each language component is made up of simple
attributes (line 21) and complex components that refer to other
components de ned in the same  le or in imported  les (lines
7, 8 and 9).

Architecture is one of the other  ve (5) main concepts that
can be de ned within an EnterpriseArchitecture. This concept
establishes the starting point for de nition of architectural
domains explained in section 3. A Domain relates to an
architecture through a ViewPoint and a View. The viewpoint
is also related to a Description that allows the enterprise
architect to establish Deriverables (Model and/or Document)
which would be used as its representation. EADL supports the
de nition and association of several architectures, allowing the
architect to compare different solutions.

Prog. 1 - line 6 shows the relationship between the EA
and Architecture which we have called CurrentArchitecture.
The code used for this example is not listed because of space
constraints, but it is listed in the next section as the model that
resulted from the  rst transformation.

B. Transformation to Models
Once the architect has de ned the EA through EADL, the next

step is to pull these de nitions together into a model according
to the MM Tartarus-EAMM.

The EA model is obtained as a result of analyzing and
interpreting the code fragments expressed in EADL, thanks to
the tools provided by the chosen development environment:

Tartarus – Una estrategia para construir y expresar Arquitecturas Empresariales – Rodríguez et al
67

OpenArchitectureWare (OAW). In our case, EADL was de ned
through OAW, which gives us two advantages: First, an EADL
language editor, and second, an interpreter that receives EADL
programs and generates a model according to the Meta-Model
EAMM.

Figure 4. EADL graphical representation.

Figure 4, provides an example of a model obtained from
the interpretation of an EA de nition using EADL. The model
obtained corresponds to the Meta-Model and will allow the
architect to analyze, validate and re ne the organization's
architecture.

The Business viewpoint de nition is displayed in Figure 4.
It is related to two components called BusinessDescription
and BusinessView. The first one defines the deliverables
associated to the viewpoint. In this case, we can see a
Model CreditCardProcessModel that provides guidelines for
generating the artifact needed for the CreditCardProcessModel,
found in the BusinessView. The view represents the viewpoint
matching the corresponding BusinessDomain. As we saw
in the EADL that de nes the business motivators (line 23 –
Prog. 2), the CreditCardProcess is related to the motivator
IncreaseCreditCardSales. The MM lets the user establish

Figure 5. TOGAF Stakeholder map matrix.

relationships between concepts de ned in different categories,
giving an integrated perspective of the organization's business,
technological and strategic aspects.

C. Artifact refinement and derivation
The models obtained from the transformation of EADL code

artifacts are conformant with the MM EAMM. They enjoy
inherent re nement qualities sought by MDA, which allows
us to outline a new transformation with the goal of obtaining
architectural artifacts as per the selected AFs.

Revista Avances en Sistemas e Informática, Vol.8 No.1, marzo de 2011 - Medellín. ISSN 1657-7663
68

For example, included in TOGAF guidelines are a large
number of artifacts related to each phase. For Phase A,
Architecture Vision, TOGAF has the Stakeholder Map
Matrix artifact which describes the stakeholders, indicates
their positions in the organization and also their concerns
and business motivators they pursue. In Prog. 2 - line 15, the
architect de ned a stakeholder called ChiefExecutiveOf cer.
Figure 5 shows an example of how this Stakeholder and his
attributes are transformed to be part of the artifact suggested
by TOGAF.

Figure 6. TOGAF Value chain diagram.

The MM helps to de ne deliverables generated from the
de ned components, thanks to the Deliverable de nition. These
can be speci ed as static and/or dynamic diagrams, catalogs,
charts, matrices, etc. It is even possible to specify the export
format; for example, the matrix in Figure 5, could be exported
to a spreadsheet or as a PDF report.

Another diagram specified in TOGAF Phase A is the
value chain. In Prog. 2 - line 8, the architect related the
FinancialEnterprise with its ValueChain using the experience
attribute. Figure 6, shows how the concept is transformed to
the artifact, clearing differentiating the CoreActivity from the
SupportActivity.

Artifacts in different AFs can be de ned in the same way for
complementation. The architect can create as many Deliverable
as he deems necessary.

Together with the artifacts already de ned for TOGAF,
he can add de nitions used by Zachman, such as Process
Identi cation which is a catalog of the organization's processes,
or Organization Con guration, which lists roles or positions
along with job responsibilities within the organization in a
matrix, etc.

V. RELATED WORK

Many efforts to consolidate ontological approaches in EA
have been outlined in recent years (See [22], [15], [24], [26],
[7], [2]).

The degree of AF complementary is illustrated in [25], with a
case study, to determine how four AF (Zachman, TOGAF, FEA
and Gartner) would address it, with a resulting comparison table
by criteria which shows the major differences existing in the
approximations. However, the conclusion recommends a mix of
the different AFs, given the degree of complementarity among
them, and to take advantage of this scenario for the needs of the
company. Tartarus encompasses a set of mechanisms that enable
the AFs' synergy, facilitating the work of enterprise architects
by providing tools derived from a comprehensive ontological
study to express and communicate EAs consistently.

Mechanisms to effectively build business models have been
postulated in recent years. In particular, we point out interesting

contributions made by MEMO (Multi Perspective Enterprise
Modeling) [6], which has, among other elements, a set of
visual languages aimed at building interrelated models that
describe various aspects of a company (Business processes,
organizational structure, etc.).

The tool de ned in Tartarus (EADL), unlike MEMO, allows
the construction of text models based on concepts that emerged
from the EA ontology. Models built with EADL (in accordance
with Tartarus EAMM) are transformed to be expressed in terms
of particular AFs, and could even be derived to be expressed
in terms of MEMO to be able to get visual perspectives of
interrelationship between business models.

VI. CONCLUSION

The set of contributions that we are offer the community,
which is the Tartarus proposal, is made up of the following:

--A comprehensive conceptual debugging of the terminology
inherent to the EA knowledge domain, built on multiple sources
of information that have good market recognition and standing.

--The EA Ontology is built following strict methodological
and procedural norms. This Ontology is the mechanism
which helped to outline a semantic agreement to reduce the
conceptual ambiguity surrounding EA, thus setting solid bases
of knowledge for the other elements of or Tartarus proposal.

--The de nition of an EA Meta-Model, built on the Ontology.
This Meta-Model is the archetype of in nite EAs which can
express fundamental aspects of a Company, its Architecture,

Tartarus – Una estrategia para construir y expresar Arquitecturas Empresariales – Rodríguez et al
69

Views, Domains, Processes, Information, and Resources
through models, without introducing particular in uences
inherent to AFs. The models based on the EA Meta-Model
do not tend to favor intrinsic aspects of any AF, giving the
enterprise architect the chance to build a neutral EA, without
any particular tendencies, and which re ects the organization's
implicit reality.

--A set of transformations between models, which enable the
derivation of architectural artifacts in terms of particular AFs,
with a view to facilitating communication and transmission of
an EA. The enterprise architect can then take advantage of the
AF's complementarity, deriving models that are consistent with
the de ned EA and the AFs chosen to express it.

--The de nition of a DSL to build EAs, which we have called
EADL. This language can be used to quickly build architectural
models with a broad capacity for expression, using the terms
found in the Ontology and which make up the Meta Model
proposed in Tartarus.

A validation of the proposal was made in a limited scenario
which is common to  nancial institutions. The validation
showed the coherence of the models created by Tartarus to
express an EA, by changing to consistently express subsections
of the organization's business domain in terms of particular AFs.

The components that comprise Tartarus are only the beginning
of a set of proposals that we are currently conceptualizing
and developing. We want to take advantage of the models'
capacity for expression to capture a business vertical according
to the EA Meta-Model and to build a model-guided product
line (MD-SPL) in the EA's knowledge domain. This MD-
SPL could manage business motivators, market restrictions,
external forces, etc., as variables that allow the introduction of
modi cations to the modeled business vertical, resulting in EAs
that satisfy organizational idiosyncrasies or particulars. The EAs
generated could serve as a baseline for enterprise architects to
perform automatic variations for enterprise studies and analysis
on architectural artifacts expressed in models.

Other possible uses and specializations for Tartarus involve
the introduction of elements to resolve situations that come up
on a daily basis, whereby, despite efforts to ensure consistency
of an EA's artifacts, documents inevitably lose validity at
breathtaking speeds. By having the EA expressed in models, it is
possible to perform veri cations and analyses of the consistency
between its components.

Countless scenarios can emerge from Tartarus or other MDE
approximations to solve everyday problems in the areas of EA
administration, derivation and analysis, which are becoming
more demanding and require innovative solutions very quickly.

REFERENCES

[1] ACM., 2009. The ACM digital library. Available: http://portal.
acm.org/portal.cfm

[2] EAS Enterprise architecture solutions., 2000. The essential project.
Available:

http://www.enterprise-architecture.org
[3] FEA-PMO., 2006. Federal transition framework metamodel

reference version 1.0. Available:
http://georgewbush-whitehouse.archives.gov/omb/egov/documents/

FTF_Metamodel_Reference_Pilot_Final_December_2006.pdf
[4] FEA-PMO., 2007. FEA consolidated reference model document

version 2.3. Available:
http://www.whitehouse.gov/omb/assets/fea_docs/FEA_CRM_v23_

Final_Oct_2007_Revised.pdf
[5] Fernández-López M.; Gómez-Pérez A. y Juristo N., 1997.

Methontology: from ontological art towards ontological
engineering. En: Proc. Symposium on Ontological Engineering
of AAAI.

[6] Frank U., 2002. Multi-perspective enterprise modeling (MEMO) -
Conceptual framework and modeling languages. En: HICSS 2002:
Proceedings of the 35th Annual Hawaii International Conference
on System Sciences (HICSS'02), Vol. 3.

[7] Franke U.; Hook D.; Konig J.; Lagerstrom R.; Narman P.; Ullberg
J.; Gustafsson P. and Ekstedt M., 209. EAF2- a framework for
categorizing enterprise architecture frameworks. En SNPD 2009:
Proceedings of the 2009 10th ACIS International Conference on
Software Engineering, Arti cial Intelligences, Networking and
Parallel/Distributed Computing, Washington, DC, USA, IEEE
Computer Society, pp. 327-332.

[8] Gómez-Pérez A.; Fernández-López M. and Corcho-Garcia O.,
2003. Ontological Engineering with examples from the areas of
Knowledge Management, e-Commerce and the Semantic Web.
New York: Springer-Verlag Inc., Secaucus, ISBN: 1852335513.

[9] Gruber T.R., 1993. A translation approach to portable ontology
speci cations. En: Knowledge Acquisition. Vol. 5(2), pp. 199-220.

[10] Guttman M. y Parodi J., 2006. Real-Life MDA: Solving Business
Problems with Model Driven Architecture (The OMG Press). San
Francisco: Morgan Kaufmann Publishers Inc.

[11] ICH., 2009. ICH architecture resource center. Available: http://
www.ichnet.org

[12] IEEE., 2000. IEEE recommended practice for architectural
description of software-intensive systems. IEEE Technical report.

[13] IFEAD., 2006. Extended enterprise architecture framework
essentials guide, version 1.5. Available:

http://www.enterprise-architecture.info/Images/E2AF/ExtendedEnter
priseArchitectureFrameworkEssentialsGuidev1.5.pdf

[14] ITIL., 2006. ITIL open guide. Available: http://www.itlibrary.org
[15] Kang D.; Lee J.; Choi S. y Kim K., 2010. An ontology-based

enterprise architecture. En: Expert Syst. Appl, Vol. 37(2), pp.
1456-1464.

[16] Land M.; Proper E.; Waage M.; Cloo J. and Steghuis C., 2008.
Enterprise Architecture: Creating Value by Informed Governance.
Springer Publishing Company, Incorporated.

[17] Lankhorst M., 2005. Enterprise Architecture at Work: Modelling,
Communication and Analysis. Springer.

[18] Lewis G.; Comella-Dorda S.; Place P.; Plakosh D. y Seacord R.,
2001. An enterprise information system data architecture guide.
Available: http://www.sei.cmu.edu/reports/01tr018.pdf

Revista Avances en Sistemas e Informática, Vol.8 No.1, marzo de 2011 - Medellín. ISSN 1657-7663
70

[19] Martin R. y Robertson E. L., 2003. A comparison of frameworks
for enterprise architecture modeling. En: Conceptual Modelling,
Vol. 2813 of Lecture Notes in Computer Science, Springer, pp.
562-564.

[20] Mernik M.; Heering J. y Sloane A.M., 2005. When and how to
develop domain-speci c languages. En: ACM Comput. Surv,
Vol.37(4), pp. 316-344.

[21] OASIS., 2010. Oasis wiki. Available: http://wiki.oasis-open.org
[22] Ohren O. P., 2005. An Ontological Approach to Characterizing

Enterprise Architecture Frameworks. En: Knowledge Sharing in
the Integrated Enterprise. Springer Boston.

[23] OMG., 2003. MDA guide v1.0.1. Available: http://www.omg.org/
cgi-bin/doc?omg/03-06-01

[24] OMG., 2008. OMG-SBVR: Documents associated with semantics
of business vocabulary and business rules. Available: http://www.
omg.org/spec/SBVR/1.0/

[25] Sessions R., 2007. A comparison of the top four enterprise
architecture methodologies. Available:

http://www.objectwatch.com/whitepapers/4EAComparison.pdf
[26] Tang A.; Han J. and Chen P., 2004. A comparative analysis of

architecture frameworks. En: APSEC 2004 Proceedings of the
11th Asia-Paci c Software Engineering Conference, Washington,
DC, USA, IEEE Computer Society, pp. 640-647.

[27] TOGAF., 2009. The open group architecture framework - version
9. Available:

 http://www.opengroup.org/architecture/togaf9-doc/arch/index.html
[28] US-DOD., 2007. Department of defense architecture framework

version 1.5. Available:
http://cio-nii.defense.gov/docs/dodaf_volume_i.pdf.
[29] W3C., 2004. Owl Web Ontology Language guide. Available:

http://www.w3.org/TR/owl-guide/.
[30] Zachman J. A., 1987. A framework for information systems

architecture. En: IBM Systems Journal, Vol. 26(3), pp. 276-292.

