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R e su m e n : Este articulo es sobre el modelamienlo de “reglas de decisión” como componentes fundamentales de 
los modelos de simulación y una de las mas difíciles tarcas en modelamicnto y análisis. Las reglas de decisión en 
modelos de dinámica de sistemas siguen el método científico, en donde el científico (en este caso, el modelador) liace 
un esfuerzo en construir adecuadam ente el mundo real (en este caso, la representación de decisiones humanas en 
modelos de dinámica de sistemas). Consecuentemente, este artículo esta organizado siguiendo el método científico. 
Las reglas de decisión deberían estar basadas de acuerdo con el propósito del modelo y con una teoría de tom a de 
decisiones. Personalmente, creo en que las decisiones humanas fallan en satisfacer la mayoría de las suposiciones 
de la teoría de selección racional. Por lo tanto, si se desea que los modelos representen sistemas reales, la teoría 
de racionalidad lim itada es una mejor aproximación para la representación de decisiones humanas. Se presentan 
algunas técnicas para el modelamicnto de reglas de decisión de la dinámica de sistemas y de otras escudas de 
modelamiento.

P a la b ra s  C lave: Reglas de Decisión, Dinámica de Sistemas, Modelamienlo

A b s t ra c t :  This paper focuses on modelling decision rules, fundamental components of simulation models and 
one of the most difficult tasks in modelling and analysis. Modelling decision rules in system dynam ics models 
follows the process described by the Scientific Method, by which scientists (in this case, modellers) make an efTort 
to  construct an accurate representation of the world (in this case, representations of human decisions in systems 
dynamics models). Consequently, the paper is organized in the light of the scientific method. Decision rules 
should be shaped by the purpose of the model and be bastid on a  theory of human decision making. I believe th a t 
human decision fail to satisfy most of the assumptions of the rational choice theory. This leads to  persistent and 
systematic deviations from the prediction of the rational choice theory. Therefore, if there is an agreement th a t 
models should represent reality, the use of bounded rationality theory is a  better approximation to  model human 
decisions. Techniques for building decision rules from system dynamics and other modelling schools are presented.

K ey w o rd s: Decision Rules, System Dynamics, Modelling

Science is best defined as a careful, disciplined, logical 
starch  fo r  knowledge about any and all aspects of the 

universe, obtained by exam ination o f the best available 
evidence and always subject to  correction and 

im provem ent upon discovery o f  better evidence. W hat's 
left is m agic. A nd it doesn't work.

-  Jam es Iiandi

1 IN TR O D U CTIO N

This paper focuses on m odelling decision rides, one of 
th e fundam ental com ponents o f sim ulation models. De­
cision rules represent human decisions in formal models,

and arc o f key im portance for the behaviour o f dynam ic 
system s. The formulation of decision rules is one o f the 
most difficult tasks in m odelling and analysis [Mass and  
Scnge (1978)]. T he purpose o f th is essay is to survey  
the literature on this challenging topic and explore the  
available m ethods to formulate decision rules in System  
Dynamics models.

Modelling decision rules in system  dynam ics m odels 
follows the process described bv the Scicntific Method, 
by which scientists (in th is case, m odellers) make an ef­
fort to construct an accurate representation o f the world 
(in this case, representations o f  human decisions in sys­
tems dynam ics m odels). Consequently, the paper is or-
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ganized in the light o f the scientific m ethod. There are 
five basics according to  wikipedia1 , which are Observa­
tion, H ypothesis/Pred iction , Experim entation, Conclu­
sion and Evaluation, and R epetition. Thus, the paper 
provides th e appropriate information for the modeller 
to  build the decision rules based on those fundamental 
steps.

First I present som e formal definitions o f decision  
rules. Second, I present theories on m odelling decision 
rules of human decisions. Third, I present various m e­
thods to establish the decision rules, where both prin­
ciples and techniques from various disciplines are consi­
dered. Fourth, issues on  structure validation and para­
meter estim ation are presented, followed by a discussion  
and som e personal com m ents.

2 D EFINITIO N  OF DECISIO N RULE

A large number of m odelling schools have appeared 
based on the scientific m ethod, the advances o f com­
puters, and the m athem atical m odels [Meadows (1976)]. 
Each school liase created their own needs, methods  
and languages. In particular, sim ulation m odels of dy­
namic system s constitu te a subset of computer m odelling 
m ethodologies. They represent reality in term s of mul­
tiple non-linear differential equations. Simulation mo­
dels of dynam ic system s have tw o basic building blocks: 
Stocks (sta te variables) and ¡lows  (rate variables). Flows 
represent th e  rate o f change in stocks and stocks accu­
mulate flows. Thus, flows ore the derivatives o f stocks.

Flows describe not only natural processes but can  
also represent human decisions. In general, flows are 
the variables that control all system  states. Examples 
o f flows arc valves in chemical plants, the birth rate o f a 
population, and the acquisition o f  equipment. W hile the 
flows that represent natural process are generally clearly 
established by physical laws; human decision making 
does not have a unified theory for its representation. The  
representation of hum an decisions by the use o f m athe­
m atical functions is often referred to as decision rules in 
sim ulation m odels.

A hum an decision is not an instantaneous process. 
It is a process that takes time and can be compared to  
cooking: you take ingredients, you m ix and boil them  
and, after a certain period of tim e, you have the result - 
hopefully, a  good meal. Human decisions are made by in­
dividuals or groups o f people in organizations, they make 
use of available inform ation, involve cognitive and social 
processes, and after a w hile there is a result -the deci­
sion. The tim e could be seconds, days, weeks, months, or 
years, according to  the type o f problem and institution  
surrounding the decision. The process o f making deci­
sions is n ot usually m odelled explicitly; the process is not

1 Wikipedia: open-content online encyclopedia 
(www.wikipedia.org).
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F ig u ra  1: Decision rule's definition in simulation of dynam ­
ical systems models

part o f the decision rule, only the end result. Since the 
final decision takes time, the decision rule may not rep­
resent the flow variable, it represents the indicated flow. 
The actual flow variable is then the indicated flow with  
a delay (thus, decision rules are m athem atical functions 
which take the available information and transform it 
with the decision rule into an indicated flow; which is 
delayed in order to  get the flow or final action in the 
m odel). Thus, the decision rule and the delay makes up 
a simplified representation o f the dynam ics of the deci­
sion process (see Figure 1).

Often, more than one single flow in a model is influ­
enced by human decisions. In that case, decision rules 
must be formulated for all those flows.

3 HOW TO FO RM ULATE TH E DECISION RULES?
AVAILABLE THEO RIES

Natural processes are norm ally m odelled according to  
the laws of physics. Similarly, human decisions should  
be m odelled according to the available theories o f hu­
man behaviour. We identify two main stream s o f theo­
ries which are in sharp contrast to each other. On the  
one hand, there is the standard neoclassical theory of 
rational choice that claims th at decision makers m axim i­
ze u tility  making use of full information about current 
stocks. An extension of th is theory even claim s that 
decision makers have unbiased expectations about the 
future [Mutli (1961); Lucas and Sargent (1981)]. On the 
other hand, there is the bounded rationality theory [Si­
mon (1979)] which proposes th at hum an’s rationality is 
limited. This theory is extended by propositions o f rules 
of thum b or heuristics [Tversky and Kahneman (1987)]. 
Quite often these heuristics lead to persistent and sys­
tem atic departures from rationality when they are appli­
ed in com plex dynam ic system s [Stennan (2000)].

R ational choice has been the dom inant theory in 
econom ics. Rational choice theory assum es perfect 
knowledge o f all the available policy alternatives, com­
plete knowledge o f  the possible results that w ill fo­
llow from all alternatives and certainty in the decision  
maker’s about present and future outcom e of these con­
sequences. The decision maker has the ability to  com­
pare those consequences, no m atter how diverse and he­
terogeneous they are. Moreover, [Muth (1961, p. 316)] 
asserts that that “expectations, since th ey are inform ed

http://www.wikipedia.org
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predictions of fu ture events, are essentially the sam e as 
the predictions o f the relevant econom ic theory".

In contrast, bounded rationality theory assumes 
th at people seek procedures that transform decision 
problems into tractable ones [Simon (1979)]. One exam ­
ple is to look for choices that are satisfactory rather 
than optim al. A nother exam ple is to replace abstract 
an d /or  global goals by tangible subgoals. Simon descri­
bes two fundamental concepts of the bounded rational­
ity theory: search and satisficing. The theory postulates 
th at “the decision m aker had form ed som e aspiration as 
to  how good an alternative he should find. /Is soon as 
he discovered an alternative fo r  choice m eeting his level 
of aspiration , he would term inate the search and choose 
that alternative"  [Simon (1979, p. 503)]. Thus, in some 
cases the decision maker has to  search for the choices 
and then make a  decision which satisfies  her desires. 
Bounded rationality theory has accumulated empirical 
evidence about its validity [Lovell (198G); Tversky and 
Kahnem an (1987); Sterman (1989a); Kainpinann (1990); 
Dwyer, W illiam s, B attalio  and Mason (1993); Levine 
(1993); Aggarwal and M ohanty (1995); Diehl and Ster- 
inan (1995); Casliin, M cDerm ott and Scott (2002)].

The decision rules em body the assum ptions about 
the degree o f  rationality o f decision makers. T he pro­
blem s addressed by the system  dynam ics discipline in­
clude dynam ic com plexity, non-linearities, and delays. It 
lias been dem onstrated that full rationality is unlikely to 
be observed in such problems [Sterman (1989a); Kamp- 
inanii (1990); Paich and Sterman (1993); Diehl and Ster- 
m an (1995); Conlisk (1996); M oxnes (2004)]. Instead, 
these experim ental tests have shown th at decision rules 
based on the bounded rationality theory are closer to 
reality [Sterman (2000)].

Bounded rationality theory includes also feedback 
concepts in social sciences as presented in [Richardson 
(1991)]. T he hierarchies in system  structure can be sum­
marized as:

Closed boundary  
Feedback loop structure 

Level and rate substructure 
Goal, observation, discrepancy, and action as 

th e sub-substructure w ithin rates
A ccording to [Forrester (1968), decisions are part of  

feedback loops:
“P r in c ip le  4 .2 - 1 .  D e c i s io n s  a lw a y s  w ith in  

fe e d b a c k  lo o p s :  E very decision is m ade within a feed­
back loop. The decision controls action which alters the 
system  levels which influence the decision. A decision  
process can be part o f more than one feedback lo o p ”

In th e sam e reference, Forrester presents also the 
foundations of m odelling decision rules based on feed­
back theory, particularly applied to system  dynamics 
m odels. In th e following quote note th at a  decision rule 
is the same concept and has the sam e m eaning as upoli-

" - v

N g
Figura 2: FetKllmck Loop

cy statem ent” or “rate equations’’ [Forrester (1968, Sec. 
4.4):

“A rute equation is a policy statement.. That is, the 
rate equation tells how a “decision s tream ’' (o r  ‘‘action  
stream ”)  is generated. “Hate equation" and “po licy’', as 
used here, have the sam e meaning. A policy describes 
how the available inform ation is used to  generate deci­
sions. “Decision stream ” and “action s tream ” are equi­
valent because, as used here, the decision and the action  
are one and the sam e. A n y delays and discrepancies 
between the deciding and the doing that we m ight exjmct 
from  the com mon usage o f  the words would involve level 
equations in a model. So the policy, or rute equation, 
tells how to com pute the rate (the flow  in to som e level) 
based on the values o f levels and constan ts" .

As ail example, think o f a person filling a glass of  
water from the tap. Initially, she looks at the glass and 
opens the tap. Once she sees that the glass is about to be 
full she decides to close the tap. The final water level in 
the glass is not necessarily the exact “desired” one, but it 
satisfies her wishes. It is precise enough for her and there 
is any need for exact optim isation. Figure 2 illustrate the* 
feedback loop. This is a  simple feedback loop compared  
to m ost real life tasks, where many feedback loops may 
have to  be taken into account.

W hile rational expectations theory is identified as 
normative, bounded rationality theory is identified as 
descriptive [Simon (1979)]. Currently, both theories co­
exist and are under the m icroscope to find out which 
one is the m ost appropriate. T he validity o f these the­
ories is an empirical question. Different answers have 
been given w ithout consensus or agreem ent so far. At 
least, there are some cases where th e rational expecta­
tions theory fail and bounded rationality in the form of  
heuristics involving feedback theory is more likely to  ex­
plain the decisions [Sterman (1989a); Sterm an (19896); 
Kampinann (1990); Paich and Sterm an (1993); Diehl 
and Sterman (1995); Moxnes (1998a); Moxnes (19986); 
Moxnes (2000)]. These tests  have been performed in 
decision making type of problems th at are norm ally ad­
dressed by the system  dynamics field. W hile the rational 
expectations theory claim s that the actors have “per­
fect foresight” , feedback theory is open to  m ore elabo­
rate decision rules which involve not only the foresight 
as a function o f the current states but also the current
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states them selves. N ote that the theory o f rationality  
lim its itself to  traditional models which have analytical 
solution; hence they frequently ignore the im portance of  
dynam ics, non-linearity, m easurem ent errors and ambi­
guity. Sim on (1979, p. 496) states that “ The classical 
theory o f om niscien t rationality is  strikingly sim ple and 
beautiful. M oreover, it  allows us to  predict (correctly or 
n ot) hum an behaviour without stirrin g  out o f our arm ­
chairs to observe what such behaviour is like". If reality  
is more com plex than assumed in classical theory, ratio­
nality ends up os a simplified view of the decision maker. 
Thus, in practical terms of m odelling, it is a simplified  
decision rule  with a questionable validity.

From th e above, one may suspect that rational theo­
ry explains well sim ple cases, w hile it fails w ith increas­
ing com plexity. In sim ple feedback system s, the be­
haviour could be identical under decision rules formu­
lated with either rational choice or bounded rationality 
theory, given that people can easily see the “rational” de­
cision. In th e  exam ple (see Figure 2) rational choice and 
bounded rationality m ay offer the same results. How­
ever, when the com plexity o f the system  is increased, 
and more loops becom e im portant in the decision ma­
king problem, the theory o f rational choice does not work 
any longer and rationality is degraded. People misper- 
ceive the role of accum ulation, delays, and nonlinearities 
in the system s. In these cases, bounded rationality theo­
ry offers a b etter explanation of the system ’s behaviour. 
Those cases are very often  in decision m aking problems, 
w ith strong im plications in m odel behaviour. M odels 
based on rational choice theory normally converge to  
equilibrium points; w hile models based on bounded ra­
tionality frequently produces unstable and cyclical be­
haviour.

A ccording to the system  dynam ics literature, the 
purpose of a  m odel is to  analyse a problem and this pur­
pose should shape the formulation of the decision rule. 
T he decision rule should be based on a theory of human  
decision m aking. I believe that hum an decisions fail to 
satisfy m ost o f the assum ptions o f the rational choice 
theory, w hich leads to  persistent and system atic devia­
tions from th e  predictions of such theory. Therefore, if 
there is an agreem ent th at models should represent rea­
lity, bounded rationality theory should be used to model 
human decisions. T he following quote summarizes the 
reasons to choose bounded rationality, based on a litera­
ture survey Conlisk (1996, p. 692):

“ W hy bounded ra tion ality?  In  four words (one fo r  
each section  above): evidence, success, methodology, and 
scarcity. In  m ore words: Psychology and econom ics pro­
vide wide-ranging evidence that bounded ra tionality is 
im portant (Section  I). E conom ists who include bounds 
on rutionality in th eir  models have excellent success in 
describing econom ic behaviour beyond the covernge of 
standard th eory (Section  II). The traditional appeals to

econom ic methodology cut both ways; the conditions of  
a particular context m ay favou r either bounded o r un­
bounded rationality (Section III). Models of bounded ra­
tionality  adhere to  a fundam ental ten e t o f economics, 
respect fo r  scarcity. Human cognition, as a scarve re­
source, should be treated as such (Section IV ).”

T h e use of rational choice theory could still be valid 
to stud y some problems. For exam ple, rational choice 
could eventually work as benchmark to  compare with  
other realistic decisions, or it can also explain human 
decision in sim ple problems where rational choice theory  
may be valid. System  dynam ics generally subscribes to  
the bounded rationality theory and in particular to  feed­
back theory. However, it should have clearly open doors 
to the use of rationality in cases where is required.

Thus, being conscious ab out the theory behind the 
m odelling process helps to improve the discipline itself 
and therefore th e quality of m odels, as is claimed by 
Meadows (1976): “Com puter m odelling could be more 
effective, both as a  science and as a useful art, if each 
m odeller could recognize the assum ptions behind his own  
m odelling school and could understand and respect the 
assum ption behind other schools” .

4 M ETH ODS FO R  BUILDING D E C ISIO N  RU LE S

IIow can modellers identify a function th at defines a de­
cisión rule? How should th ey  quantify the parameters 
in the decision rule? There arc different m ethodological 
approaches available that th e modeller can use to build 
decision rules. Personal experiences w ith  similar pro­
blems, different theories about the topic, expert know­
ledge, historical d ata  and different sources o f information  
described by Forrester (1980), are am ong the possible 
m ethodological approaches.

L et’s start w ith  Forrester’s definition o f decision rule 
[Forrester (1968)], as a pioneer o f the system  dynam ics  
field. He argues th at the decision rule is determined by 
four com ponents or sub-structures: a goal, an observed  
condition of the system , som ething to express the dis­
crepancy between the goal and the observed condition, 
and a w ay to take the action based on the discrepancy. 
This process is presented in Figure 3, and is supported  
by the Principle 4-4-1  [Forrester (1968)]:

“P r in c ip le  4 -4 -1 -  G o a l, o b s e r v a t io n , d i s c r e ­
p a n c y ,  and, a c t io n - s y s t e m  s u b -s u b s tr u c tu r e :  A po­
licy o r rute equation recognizes a local goal toward which  
that decision po in t s trives, compares the goal w ith the 
apparent system  condition to  detect a discrepancy, and  
uses the discrepancy to guide action."

Som e of the features defined to th e  decision rules
are:

i) It is instantaneous in its behaviour,

ii) It is a pure algebraic expression th at states the
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Figura 3: Components of a Decision Rule

present flow rate in terms of the present informa­
tion,

iii) It is free o f  lags and tim e-dependent distortion (all 
tim e-dependent changes are created by the level 
equations).

Forrester (1994) argues that in order to  represent 
policies and decision making, all kinds o f information  
should be used. It includes not only numerical data, but 
also other rich sources o f information such as mental 
m odels (which are built up from experience and obser­
vation), and w ritten information. There is not always 
d ata  available about im portant structures or variables. 
Forrester argues that om itting these data is less scientific 
and less accurate than using on e’s best judgm ent to esti­
m ate their values. “ To om it such variables is equivalent 
to  saying they have zero effect probably the only value 
that is known to be wrong!” [Forrester (19G1, p. 57)].

Décision rules depend only on level variables and/or  
constants in th e  m odel, and not on other decision rules. 
T he decision rules do not depend on tim e or own past 
variables as is presented in Principle 4-3-6.

“P r in c ip le  4 -3 -6 . R a te s  d e p e n d  o n ly  o n  le ­
v e ls  a n d  c o n s ta n ts :  The value of a rute variable de­
pends only on constants and on present values o f level 
variables. No rate variable depends directly on any other 
rate variable. The ra te equations (policy sta tem en ts) o f  a 
sys tem  are o f sim ple algebraic form ; they do not involve 
tim e  o r  the solu tion  interval; they do are not dependent 
on their own jxist values.”

Forrester’s presentation may seem  dogm atic with  
no room for other alternatives to  m odel decisions. For 
exam ple, it is not recommended to use information about 
other rates. In principle Forrester is right since rates can­
n ot be measured instantaneously (m easurem ent of rates 
depend on accum ulation devices). However, in practice 
th ey  could be known by the decision maker.

However, Forrester’s position is not the only view  
about m odelling decision rules in system  dynam ics. In 
particular, Business D ynam ics  [Sterinan (2000)] has be­
com e a  frequently used reference by system  dynamics

modellers. In the chapter about, m odelling decision ma­
king, Sternmn rather than presenting a dogm atic sta te­
ment about the nature and com position o f the decision  
rules, presents a  collection of principles th at should be 
followed. The decision rule is made according to assum ­
ptions about the degree o f rationality o f the decision  
maker. Thus, there is a wide range of possibilities: from 
decisions based on th e rational choice theory to bounded  
rationality. This gives room to  include within the deci­
sion rules the rational expectations theory. He points 
out that decision rules should follow the following five 
principles:

1. The Baker Criterion: the input information to  all 
decision rules in m odels m ust be currently available 
to the real decision makers. It im plies that the fu­
ture is unknown, and that forecasting m ust be done 
based only on current and historical information. 
The actual and perceived conditions o f the system  
may be different due to reporting delays, slow  up­
date o f beliefs, etc.

2. Decision rules should conform to managerial practi­
ce, therefore all variables and relationships should  
have a real world meaning.

3. Desired .and actual conditions should be d istin­
guished, and it is necessary to represent the physical 
constrains to the realization of the desired condi­
tions.

4. Decision rules should be robust under extrem e con­
ditions.

5. Equilibrium should not be assum ed and stability  
may (or may not) emerge from the interaction of 
the elem ents o f the system .

Sterinan presents certain m athem atical functions2, 
which normally satisfy the principles stated above. 
Those functions could be used as decision rules. The 
decision rules should be custom ized for each case, de­
pending on the purpose o f  the m odel, the tim e horizon, 
etc. Others advice to  follow are: i) A ll outflows require 
a first order control, ii) avoid IF . . .  TH EN  . . .  ELSE 
formulations, and iii) disaggregate net flows. Richardson  
and Pugh (1981) present other m athem atical functions 
to consider for decision rules, and they  also point out

2These tem plates are the  following: Fractional Change in 
Rate, Adjustment to  a  Goal, The Stock Management .stru­
cture: Rate =  Normal Hate +  Adjustm ent, Flow =  Resource
* Productivity, Y =  Y" * Effect of X i  pm Y * Effect of .Y2 
pm Y * . . .  * Effect of X n pm  Y, Y =  Y '  4- Eflcct of X i  pm Y 
+  EfTect of X i  pm Y +  . . .  +  EfTcct of X n pm Y, Fuzzy MIN 
(MAX) Function, Floating Goals, Nonlinear W eighted Aver­
age, Modeling Search: Hill-Climbing Optim ization, Resource 
Allocations
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that the list is not exhaustive, and it is open to try new  
ideas as well.

Tlie trial-and-error method fits into the iterative 
m odelling process [Homer (1996); Sterman (2000)]. Sys­
tem  dynam ics m odelling is also a feedback process that 
goes through constant iteration, constant questioning, 
testing, and refinement. It can be understood as a  trial 
and error m ethod, w hich includes the decision rules. In 
fact, the decision rule, or w hat is also called th e policy, is 
a hit-or-m iss process from a wide range o f options [Coyle 
(1996)]. T h e modeller should develop the skill to  choose 
the proper function and adapt it to  the m odel in order 
to  test the chosen option . It m ust be chosen according 
to the in fon n ation /action /con seq u en ccs feedback theory  
and take in to  account the two major components: s tru ­
cture and param eters. The structure is the form o f  the 
equation and the links on the influence diagram. The 
parameters, for a given structure, are the numerical va­
lues.

Frequently, system  dynam ics use particular practi­
ces in order to improve m odels. Group model building 
is ail exam ple. This practice involves the client within  
the m odelling process in order to  facilitate and improve 
m odels. T h is fact could apparently be a natural source 
to  formulate decision rules. Group model building does 
not have th e  model construction as its primary goal. 
However, th e  clients aid  m odel building, hence the deci­
sion rules form ulation. It com bines different techniques 
according to  the stage in the m odelling process. D eci­
sion rules arc defined in the m odel formulation stage. In 
th is stage, group m odel building calls the attention  to  
dim ension consistency through the whole m odel. Som e 
qualitative d ata  m ay need special units, som etim es just 
for the m odel, that requires especial discussion between  
the m odeller and the clients [Vennix (1996)]. A lthough, 
the current literature on group m odel building docs not 
provide hints and m ethods to  be used directly in the de­
cision rules form ulation, som e ideas and m ethodologies 
may be useful. Due to  the fact th at those m ethodologies 
are m ostly taken from the knowledge elicitation tech­
niques, it w ill be explained later on.

D ue to  the growth o f the field o f experim ental eco­
nom ics, research on dynam ic problem s addressed by the 
system  dynam ics m ethodology has increased. Labora­
tory experim ents w ith  real subjects have been done in 
order to  understand problems associated w ith  decision  
m aking, and the d ata  have been used to  analyze the 
heuristics people use to  make decisions and to  estim ate 
decision rules, which are used in sim ulation m odels. The  
basic idea is to  have a controlled environm ent where 
th e subjects make decisions, generally motivated by eco­
nomic rewards. Afterwards, hypothetical decision rules 
are tested  b y  direct observations. T he literature of sim ­
ulation m odels w ith experim ents is increasing, exam ­
ples are [Sterman (1989a); Paich and Sterm an (1993);

M oxnes (1998a); R assenti, Reynolds, Sm ith and Szi- 
darovszky (2000)]. Details ab out the m ethodology arc 
framed in Friedman and Sunder (1994).

Decision rules cannot be determ ined from aggregate 
statistica l data, but it must be done by first hand data by 
using techniques such us experim ental econom ics [Smith 
(1982); Sterm an (1988); R assenti et al. (2000)]. It should  
be done through observation o f  the actual decision m a­
king in the field itself, by th e use o f laboratory expe­
riments in which managers operate sim ulated system s. 
W ith first hand inform ation, the modeller may be able 
to infer the appropriate decision rule. According to Mass 
and Seuge (1978), first, there must be a prior hypothe­
sis regarding the causes of the changes in the dependent 
variable (output o f the decision rule). T he hypothesis  
should be based on observed phenom ena an d/or prior 
theories, which identify the variables believed to  be sig­
nificant determ inants o f change in the dependent varia­
ble. T h e hypothesis should also specify how these de­
term inants are to  be combined. Second, the initial prior 
hypothesis must be tested  under the available empirical 
information and refined if  needed. Som e exam ples are 
[Sterman (19896); Rassenti e t al. (2000)].

System  dynam ics has grown as a m odelling school, 
taking advantage of the latest com puting capabilities. 
Simultaneously, other m odelling schools have emerged. 
Some o f those address problem s where human decisions 
are involved. Therefore, it represents a  source for diffe­
rent techniques to  formulate decision rules. Following,
I present some alternative m ethodologies that could be 
used in the system  dynam ics field.

Experts system s  have a different purpose than si­
m ulation models. This methodology' is used to  suggest 
decisions autom atically, and eventually to make deci­
sions. C onsistent w ith  the nam e, the expert system s are 
built from expert knowledge. T h e experts provide direct 
data about decisions. Thus, it makes experts system s a  
natural source o f  m ethodologies to build decision rules. 
Expert system s have used a number o f  Knowledge E li­
cita tion  [KE] techniques, m ostly  designed to  elicit rules. 
Decision rules are called procedural know ledge in the 
field o f expert system s and knowledge elicitation  [Moody, 
Richard and B lanton (1996)].

K E techniques are m ethods and practices o f ac­
quiring knowledge about specific topics from different 
sources, such as experts ill th e  field, an d /o r  published  
literature. KE is one o f the m ost im portant tasks o f  the 
expert system s field. Any particular technique m ight be 
adapted according to  the nature of the situation , th e do­
main knowledge, and the availability o f experts [Dawood 
(1996)]. KE techniques focus basically on th e use the  
expert knowledge [Hoffman, Shadboll, Mike and Gary 
(1995)].

There is a great diversity o f KE techniques. KE  
has a variety o f  goals such as generation o f cognitive
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specifications for jobs or task, m itigation o f human error 
in dom ains with pressure and risks, skill remediation, 
etc. [Hoffman et al. (1995)]. They also present a com­
p lete m ethodological analysis o f KE from experts. They  
classify KE techniques into analysis o f fam iliar task, in- 
teruiews, and contrived techniques. Following, I present 
a description o f  different 1<E techniques based on their 
literature survey.

4.1 A nalysis of Familiar Task

This category o f techniques investigates what is the 
exp erts’ behaviour in their usual problem solving or 
decision-m aking tasks. It studies decision in situ, i.e., 
analysis of people’s behaviour when they make decisions 
in real life.

D ocum entation  arialysis: It is the first step in the 
search of knowledge from experts. It refers to  the review  
o f all information in docum ents (text, manuals, course, 
etc.) or any other sort o f records. It is not just ha­
ving information flow from docum ents, “the researcher’s 
analysis o f t he docum ents can involve specific procedures 
th at generate records or analyses of the knowledge con­
tained in the docum ents” . This process m ay be time- 
consum ing, but indispensable in som e cases.

Task analysis: consists o f the task or jobs o f the sub­
jects  “on-line” or “in situ” . Other suggestive names are 
job analysis, structural analysis, and task description, 
etc. T he task analysis is explored by using “Think Aloud 
Problem -Solving/P rotocol Analysis” . The subjects are 
.asked to do their regular tasks. In the meantime, they  
are asked to “think aloud” about the problem and des­
cribe w hat th ey  are doing. This information is recorded 
and analysed subsequently. The actions are grouped by 
com m on features to  seek for comm on patterns. It is re­
com m ended to  take into account possible biased answers 
by differences in verbal expressiveness, which may lead 
to  differences in perception o f the actions. Task analysis 
is also studied by the use o f test cases. W ith this tech­
nique, the experts are asked to  describe how they behave 
in certain cases. Test cases are used to  confront experts 
w ith  past decisions and observe their reasoning of past 
experiences. It is also recommended alternative tech­
niques for task analysis such as tough cases and atypical 
cases. W ith these techniques, the expert is confronted 
w ith  particularly difficult or challenging cases, and may 
eventually be more revealing if the experts are observed 
m aking decisions in comm on or routine problems. The 
technique has been used extensively in fields such as 
m edical diagnosis, physics, computer programming, and 
accounting.

4.2 Interviews

T h e  interviews are the second m ajor category of KE  
techniques. A n  interview is a question/answ er arrange­

ment, where the interviewer gets information from the  
interviewed. According to  the nature o f the questions, 
interviews can be unstructured or structured. The first 
takes the form o f open dialog with the expert, w ith ques­
tions such as “Tell m e everything about Y .” The idea  
is to get to know the expert’s reasoning. It is useful 
to observe the kind o f knowledge and then, follow up 
with structured interviews. Problem s w ith  the unstruc­
tured interview are that the expert can get away of the  
desired track, or the expert, can assum e that the elici- 
tor has knowledge a priori. Interviews in general have 
been widespread, hence recom m endations and literature 
available from many different fields helps to  improve I he 
skills.

The second is the structured interview, also called  
“focus” . Those interviews are planned and well defined. 
Structured interview goes directly to the point and re­
duce the tim e spent, compared w ith  unstructured inter­
view. In general, there are two form ats of structured in­
terviews Domain-Specific Probe Q uestions and G eneric 
Probe Questions. In the dom ain-specific probe questions, 
the elicitor prepares fixed questions; hence the inter­
viewer requires a  prior knowledge about the topic. In 
generic probe questions, the elicitor relies on a set of 
generic questions'', which have specific functions.

Additional com panying m aterial is part o f the in­
terviews. It helps with the structure of the interview. 
The companying m aterial could be te st cases, first-pass 
knowledge base, and even t recall in terview s. The test 
cases have the sam e form as described on the analysis o f  
familiar tasks. The first-pass knowledge base is basically 
a list o f prepositions that, express m any o f tin? core con­
cepts, the definitions ol' terms, and the procedural rules 
about the topic. The list is normally taken from the task  
analysis activities or initial interviews. Finally, event re­
call interview look for questions th at “try to go through  
the events in reverse order” and try to recall an incident, 
from different perspectives. Occasionally, the interviews 
can also be fruitful when they are performed in groups. 
In group interviews, the interviewer normally seeks for 
common knowledge and agreem ents am ong the group of  
experts.

4.3 Contrived Techniques

According to some psychological research, expert know­
ledge* and reasoning can be revealed by deliberate m o­
dification of the familiar tasks. D em onstration about

'’Examples of probe set questions applicable to  decision 
rules, are: “Why would you do th a t?” , “How would you do 
tha t?” , “W hat would you do a t each step  on this procedure?” . 
“When would you do th a t?” , “Is [the rule] always the case?” , 
“W hat alternatives [to the prescribed action or decision] are 
there?” , “W hat if it were not the case th a t [currently true 
conditions]”
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w ith experim ents sucli as asking chcss masters “to  re­
call gam e boards in which the pieces had been random ly  
arranged” , or “making bridge players adhere to altered 
rules”. T he controversy arises about how much o f those 
departures are legitim ate or fruitful to  elicit knowledge. 
It is argued that contrived tasks m ay make the experts 
uncom fortable or may reflcct reasoning strategics that 
are not the real behaviour. Some o f the contrived tech­
niques are describe below.

D ecision  analysis: it is a set o f procedures inclu­
ding decision aiding, risk analysis, probability and uti­
lity  m odelling based, etc. It seeks, in m any cases, for 
evidences about the sequence of steps in their usual de­
cision m aking by generating the following list:

(a) elem ents o f the problems,

(b) causal relationship,

(c) kind o f problems faced,

(d) features of each type o f problems,

(e) decisions involved in each type o f problems,

(f) confidence in judgm ents or hypothesis of the pro­
blem solver,

(g) consequences o f  each decisions,

(h) quality o f the analysis.

From th e steps listed above, the clicitor may possible  
develop m athem atical functions and key concepts about 
exp ert’s reasoning, and therefore generate their decision  
rules.

Group decision making: there are different m etho­
dologies to analyze decision m aking problems, w hen the 
decisions are m ade by groups. One o f them  is “bm in- 
stu n ning" , where th e participants are asked to generate 
m any different ideas w ithout any sort of criticism s or 
refining. Another one is "consejisus decision making", 
where the group is challenged to find the “best” group so­
lution by assessing advantages and disadvantages o f  the 
possible solutions. A last exam ple is “nom inal group", 
where the individuals perform independent ranking of 
given alternative solutions.

Rating and sortin '/ tasks: the technique is some­
tim es included w ith  familiar tasks. It basically seeks for 
rating and sorting alternative solutions by th e experts. It 
has been used in cases th at look for key variables, judge­
m ent about reasoning and strategic behaviour o f experts 
on different fields, etc. Som e authors have used th e  tech­
nique to  explore particular hypothesis, rather than elici­
ting expert knowledge. T h e way to  apply the technique 
varies according to the particular problem. Given the 
nature o f  th is technique, statistica l tools may be useful 
to com pare different exp ert’s results.

Constrained Processing and Lim ited Infonnation  
Problems: In this technique, the experts’ experience th at 
their familiar routines are constrained in some ways, for 
instance, the expert may be asked to follow a particu­
lar strategy or make decisions under lim ited informa­
tion. There are recom m endations to use th is technique 
together with interruption analysis, where the expert is 
interrupted during certain tasks to answer questions such  
as “W hat were you just doing?” or “W hat was just go­
ing on?” or “W hat would you have done ju st then if 
. . .  ? ”

Graph Constructions: A conceptual graph is a  re­
presentation o f relationships or links between elem ents 
or variables. The experts are asked to  draw graphs of  
a particular relationship. T hese sorts o f representations 
arc com m only used in Artificial Intelligence4.

This is not the only classifications o f K E techniques 
in the literature. For instance Coffey, Canas, Hill, Carff, 
Reichherzer and Niranjan (2003) m ade a distinction bet­
ween direct and indirect techniques. D irect techniques 
are referred to  as those where interactions w ith one or 
more domain experts occur, w hile indirect techniques 
seek for the knowledge from texts, reports or any other 
docum entation.

It is agreed that difTercnt KE techniques may elicit 
different types o f knowledge. Thus, procedural rules and  
heuristics (which is our interest) could best be elicited  
by “think-aloud” problem solving, task analysis, and in­
terview s based on m em ory probe questions. Above, I 
have described the techniques, however the literature is 
vast and more detailed material is available.

4.4 A lternative M ethodologies

A number o f  techniques arc em erging from different 
m odelling schools, which m ay be included in system  
dynam ics m odels, and therefore m odels could turn to  
be adapted into hybrid system s5. In fact, a  particular 
com putational m odelling technique could be used as a 
decision rule itself. T h is approach is analogous to  the  
m ethodological approach o f  laboratory experim ents. In 
an experim ent, the m odeller asks real people to make 
decisions based on a model and afterwards infers about 
the decision rule used by people on th is purpose. Som e 
o f th e  alternative m odelling schools are listed below:

4Siinilar kinds or representations between variables are 
also frequently used in system  dynam ics models, where 
non-linear relationships are easily represented by conceptual 
graphs.

5There are many different definitions for hybrid systems. 
In th is paper, I refer to  hybrid systems as a  com puter model 
th a t uses more than  one problem-solving modelling school in 
order to solve a  problem.
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Neural Networks 
Regression techniques 
D ata reduction techniques 
Fuzzy logic 
G enetic algorithms 
Case-based reasoning 
Expert system s 
Decision trees 
Artificial Intelligence 
A gents based simulation  
M ulti-criteria analysis

Each of those schools is complex and diverse; there­
fore there may be different definitions and descriptions 
for them . It is not the intention here to  describe other 
com puter m odelling schools. W hat I want to point out 
is th at hybrid system s m ay be useful to model human 
decisions in system  dynam ics models, by making use of  
alternative com putational techniques instead of endoge­
nous decision rules. The modeller m ay go deeply into 
the literature in case o f the use o f those techniques.

N ext I will present some elements to  the test of the 
decision n dcs. It includes not only th e traditional sta­
tistical validation m ethodology, but also tests for consis­
tency with the theory and the system  dynam ics theory.

5 TESTING  TH E D E C ISIO N  RU LES

T he decision rules are part o f  the system  dynamics mo­
dels. Therefore, decision rule validation in particular is 
part o f system  dynam ics model validation in general. A 
number o f  publications have referred in different ways 
o f validation in general [Forrester (19G1); Forrester and 
Sengo (1980): Homer (1983); Barias (1996); Sterinan  
(2000)], however, th e focus here is only on the decision  
rules. Thus, we provide information about how’ to  test 
the hypothesized decision rule in order to be consistent 
w ith  the scicntific m ethod.

An explicit direct test o f  the decision rule is pre­
sented by Sterinan (2000). After the statem ent o f a 
hypothesis (decision rule) based on a theory, the m athe­
m atical expression that defines the decision rule is tested  
by using statistical m ethods with empirical evidence. It 
has also been used by Moxnes (1998a). In particular, 
Sterinan (2000) proposes the use o f “partial model tests" 
in order to  determ ine the intended rationality in decision  
rules. It is an explicit test o f the decision rule. In this 
technique “each organizational function  o r decision point 
is isolated from  its  environm ent until the environm ent is 
consisten t with the m ental model that underlies the de­
cision rule. The subsystem  can then be challenged with 
various exogenous patterns in  its  inputs.”

W ithin the current system  dynam ics literature, it 
is argued that one should perform m any tests  o f m odel 
structure and behaviour not possible with other types of

m odels, and that there is no single test to  make “the vali­
dation" of the model ¡[Forrester and Senge (1980)]. The  
various tests have been used and restated in d iIFeront 
sources e. g. Sterinan (2000), and som e of them  have 
also been implemented in the system  dynam ics software 
[Peterson and Eberlin (1991)]. In general, the decision  
rules, as a  part, o f the system  dynam ics m odels m ust 
satisfy all the proposed tests, and in particular, the tests  
done for the isolated decision rules. T hose tests  are listed  
next [Sterinan (2000)]:

5.1 Test o f M odel Structure

Structurc-vcrification test: it includes the verification of 
the model assum ption, and therefore also the decision  
rides.

Parameter-verification test: the decision rules’ pa­
rameters should lie confronted numerically and concep­
tually with the parameters in real life.

Extrem e-conditions test: for exam ple, the ship­
ments must be zero in the inventory of a com m odity  
is zero; and if there are no houses in a city, then the 
decision to  immigrate m ust be strongly discouraged.-

Boundary-adequacy (structure) test: it is necessary 
to develop a convincing hypothesis relating proposed 
model structure to a particular issue addressed by a 
model.

Diniensional-consistency test: measurem ent units 
must be consistent not only for the decision rules, but 
also for the whole model.

5.2 Tests o f  Model Behaviour

All the tests related to model behaviour (behaviour- 
reproduction, behaviour-prediction test, behaviour- 
anoinaly test, family member test, surprise-behaviour 
test, extrem e-policy test, boundary -adequacy (be­
haviour) test, behaviour-sensitivity test) arc applicable 
to the decision rules. Thus, in the sense th at these rules 
are im portant for the overall behaviour of the model.

5.3 Tests of Policy Implications

The tests o f policy im plications are done in order to build 
confidence in a m odel’s  im plications for policy. Since 
the policies are represented in m odels through decision  
rules, this test could be used to see the robustness of  
the policy im plications when changes are made. It in­
cludes the systcm -im provem ent test, changed-behaviour- 
prediction test, boundary-adequaey (policy) test, and 
policy-sensitivity test.

Classical statistical goodness-of-fit tests have also 
been used to  test decision rules, particularly w hen data  
are obtained directly from experim ents. T he hypothe­
tical decision rule is tested by using classical statistics  
[Sterinan (1989a); Moxnes (19986)]. In particular Mass
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and Senge (1978) present a detailed case to carry on 
single-equation statistica l tests, based on the comparison 
between individual m odel equation and m odel behaviour 
test through the use of the popular t-test o f parameter 
“significance” and the partial correlation coefficient.

A particular m ethod of analysis is the “premise des­
cription” , which is used to  analyse the bounded rational­
ity  of policies or decision functions (decision rules) in a 
system  dynam ics m odel. The m ethod has a particular 
stress on the process and cognitive lim itations assumed  
in the decision m aking [Morecroft (1985)]. This method  
o f  analysis is also useful for testing the décision rule. A 
quote o f th e m ethod description is Morecroft (1985):

11 The m odeller s ta r ts  with a diagram of the model 
sys tem  showing the netw ork of in terlinked decision fu n ­
ctions. l i e  then describes the equations o f each decision  
function, drawing a tten tion  to the way factoring  and lo­
cal goals sim plify rational choice, how authority and cul­
ture influence the con tent and in terpreta tion  o f inform a­
tion  stream s, and how routine and cognitive lim ita tions  
influence the collection, processing, and transm ission  o f 
in form ation . A t the back o f his m ind the m odeller has the 
notion  o f objective ra tion ality  as a yardstick. This yard­
s tick  m ise s  questions o f  why som e inform ation  is  avai­
lable in a decision fu nc tion  and other is not, why bias is 
present. The answer to these questions naturally poin t to 
em pirically observed organizational prvcesses that stern 
fro m  bounded ra tion a lity .”

G FINAL C O M M ENTS

Since the decision rules are part of the m odel, they  
should follow th e principles o f the m odel itself. Thus, 
th e  purpose of the m odel should shape the formulation  
o f  the decision rule. O nce the m odeller has the purpose 
o f the m odel clear, it is necessary to  choose the m ethodo­
logy or strategy to  build the decision rules. The decision  
rule should also be based on a theory o f human decision  
m aking. I believe th at human decision fail to  satisfy  
m ost of th e  assum ptions o f the rational choice theory. 
T h is leads to  persistent and system atic deviations from 
th e  prediction o f the rational choice theory. Therefore, 
if  there is an agreem ent that m odels should represent 
reality, the use o f bounded rationality theory is a  better 
approxim ation to  m odel human decisions.

The Scientific m ethod  is based on hypothesis formu­
lation and testing . Here, I presented the particular case 
o f  the formulation of decision rules as a part o f  formal 
system  dynam ics m odels. The presentation is intended 
to  fulfil th e requirements o f  the scientific m ethod in both  
hypothesis formulation and testing. A decision rule is a 
hypothesis formulation o f  a theory. Since we are deal­
ing w ithin the field of system  dynam ics m odelling, the 
principles o f  the field should shape the formulation o f  
decision rules, which include th e  thinking, m ethodolo-

Methods & Ideas -4-

I System Dynamics |

Methods & Ideas -4-

Figura 4: Decision Rules Definition in Simulation of Dy­
namical Systems Models

Figura 5: Decision Rules: Formulation and Testing within 
Different Computer Modelling Schools

gies and particular techniques. The hypothesis testing  
should be also done according to the system  dynam ics 
principles.

Forrester’s early view o f system  dynam ics may  
seeins very dogm atic with respect to .the decision rule 
based on feedback theory as a  part o f bounded rationali­
ty. Even though there is som e influence and use o f other 
com puter schools on  m odelling decision rules, I think  
that the vision is still narrow (see Figure 4) and should  
open much more to  other com puter m odelling schools.

System  dynam ics is understood to  be part o f a 
wider range o f  com puter sim ulation schools of thought, 
all o f  them oriented towards problem solving [Meadows 
(1976)]. The com puter m odelling schools were influenced  
by th e  com puter evolution, m athem atical m odels and  
the scientific m ethod. Even though the schools have de­
veloped independently, com m on roots lead to  the possi­
bility o f sharing techniques, in particular for the case of  
decision rules. The decision rules are clearly identifiable 
across the schools as presented in the paper w ith sugges­
tive nam es such as: procedural rules, decision functions, 
etc. Thus, the hypothesis formulation and testin g  of  
the decision rules in system  dynam ics m odels could use 
techniques taken from other fields as is presented in the  
Figure 5. In fact, som e o f th e  techniques currently used 
in system  dynam ics m odels are taken from other fields.
I have presented a bunch o f alternative techniques that 
may improve the m odels by im proving the decision rules 
formulation and testing.
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