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Resumen: Lste arliculo cs sobre ¢l modclamicnlo de “reglas de decisién” como componentes fundamentales de
los modelos de simulacién y una de las mas dificiles tarcas en modelamiento y andlisis. Las reglas de decisién en
modclos de dindmica de sistemas siguen ¢l método cientifico, en donde ¢l cientifico (en este caso, el modelador) hace
un esfuerzo en construir adecuadamente el mundo real (¢n este caso, la representacién de decisiones humanas en
modelos de dindmica de sistemas). Consecuentemente, este articulo esta organizado siguiendo cl método cientilico.
Las reglas de decisién deberfan estar basadas de acuerdo con el propésito del modelo y con una teorfa de toma de
decisiones. Personalmente, creo en que las decisiones humanas fallan cn satisfacer la mayoria de las suposiciones
de la teoria de seleccién racional. Por lo tanto, si se desea que los modelos representen sistcmas reales, la teorfa
de racionalidad limitada es una mejor aproximacién para la representacién de decisiones humanas. Se presentan
algunas técnicas para cl modelamicnto de reglas de decisién de la dindinica de sistemas y de otras escuclas de
modelamiento.
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Abstract: This paper focuses on modelling decision rules, fundamental components of simulation models and
onc of the most difficult tasks in modclling and analysis. Modclling decision rules in systemn dynamics models
follows the process described by the Scientific Method, by which scientists (in this case, modellers) make an cffort
to construct an accurate representation of the world (in this case, representations of human decisions in systems
dynamics models), Consequently, the paper is organized in the light of the scientific method. Decision rules
should be shaped by the purpose of the model and be based on a theory of human decision making. I believe that
human decision fail to satisfy most of the assumptions of the rational choice theory. ‘This leads to persistent and
systematic deviations from the prediction of the rational choice theory. Therefore, if there is an agreement that
models should represent reality, the use of bounded rationality theory is a better approximation to model human
decisions. Techniques for building decision rules from system dynamics and other modelling schools are presented.

Keywords: Decision Rules, System Dynamics, Modelling

Science is best defined as a careful, disciplined, logical
search for knowledge about any and all aspects of the
universe, obtained by ezamination of the best available
evidence and always subject to correction and
improvement upon discovery of better evidence. What's
left is magic. And it doesn’t work.

- James Randi

1 INTRODUCTION
This paper focuses on modelling decision rules, one of

the fundamental components of simulation models. De-
cision rules represent human decisions in formal models,
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and are of key importance for tiiec behaviour of dynanic
systems. The formulation of decision rules is one of the
most difficult tasks in modelling and analysis [Mass and
Senge (1978)]. The purpose of this essay is to survey
the literature on this challenging topic and explore the
available methods to formulate decision rules in Systemn
Dynamics models.

Modelling decision rules in system dynamics models
follows the process described by the Scientific Method,
by which scientists (in this case. modellers) make an cf-
fort to construct an accurate representation of the world
(in this case, representations of human decisions in sys-
tems dynamics models). Consequently, the paper is or-
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ganized in the light of the scientific method. There are
five basics according to wikipedia® , which are Observa-
tion, Hypothesis/Prediction, Experimentation, Conclu-
sion and Evaluation, and Repetition. Thus, the paper
provides the appropriate information for the modeller
to build the decision rules based on those fundamental
steps.

First I present some formal definitions of decision
rules. Second, I present theories on modelling decision
rules of human decisions. Third, T present various me-
thods to establish the decision rules, where both prin-
ciples and techniques from various disciplines are consi-
dered. Fourth, issues on structure validation and para-
meter estimation are presented, followed by a discussion
and some personal comments.

2 DEFINITION OF DECISION RULE

A large number of modelling schools have appeared
based on the scientific method. the advances of com-
puters, and the mathematical models [Mcadows (1976)].
Each school hase created their own needs, methods
and languages. In particular, simulation models of dy-
namic systems constitute a subset of computer modelling
methodologics. They represent reality in terms of mul-
tiple non-linear differential equations. Simulation mo-
dels of dynamic systems have two basic building blocks:
Stocks (state variables) and flows (rate variables). Flows
represent the rate of change in stocks and stocks accu-
mulate flows. Thus, flows are the derivatives of stocks.

Flows describe not only natural processes but can
also represent human decisions. In general, flows are
the variables that control all system states. Examples
of flows arc valves in clicinical plants, the birth rate of a
population, and the acquisition of equipment. While the
flows that represent natural process arc generally clearly
established by physical laws; human decision making
does not have a unified theory for its representation. The
representation of human decisions by the use of mathe-
matical functions is often referred to as decision rules in
simulation models.

A human decision is not an instantaneous process.
It is a process that takes time and can be compared to
cooking: you take ingredients, you mix and boil them
and, after a certain period of time, you have the result -
hopefully, a good meal. Human decisions are made by in-
dividuals or groups of people in organizations, they make
use of available information, involve cognitive and social
processes, and after a while there is a result -the deci-
sion. The time could be seconds, days, weeks, months, or
years, according to the type of problem and institution
surrounding the decision. The process of making deci-
sions is not usually modelled explicitly; the process is not

'Wikipedia: online  encyclopedia

(www.wikipedia.org).
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Figura 1: Decision rule's definition in simulation of dynam-
ical systems models

part of the decision rule, only the end result. Since the
final decision takes time, the decision rule may not rep-
resent the flow variable, it represents the indicated flow.
The actual flow variable is then the indicated flow with
a delay (thus, decision rules are mathematical functions
which take the available information and transform it
with the decision rule into an indicaled flow; which is
delaycd in order to get the flow or final action in the
model). Thus, the decision rule and the delay makes up
a simplificd representation of the dynamics of the deci-
sion process (see Figure 1).

Often, more than one single flow in & model is influ-
enced by human decisions. In that case, decision rules
must be formulated for all those flows.

3 HOW TO FORMULATE THE DECISION RULES?
AVAILABLE THEORIES

Natural processes are normally modelled according to
the laws of physics. Similarly, human decisions should
be modelled according to the available theories of hu-
man behaviour. We identify two main streams of theo-
ries which are in sharp contrast to each other. On the
one hand, there is the standard neoclassical theory of
rational choice that claims that decision makers maximi-
ze utility making use of full information about current
stocks. An extension of this theory even claims that
decision makers have unbiased expectations about the
future [Muth (1961); Lucas and Sargent (1981)]. On the
other hand, there is the bounded rationality theory [Si-
mon (1979)] which proposes that human’s rationality is
limited. This theory is extended by propositions of rules
of thumb or heuristics [Tversky and Kahneman (1987)].
Quite often these heuristics lead to persistent and sys-
tematic departures from rationality when they are appli-
ed in complex dynamic systems [Sterman (2000)].
Rational choice has been the dominant theory in
economics. Rational choice theory assumes perfect
knowledge of all the available policy alternatives, com-
plete knowledge of the possible results that will fo-
llow from all alternatives and certainty in the decision
maker's about present and future outcome of these con-
sequences. The decision maker has the ability to com-
pare those consequences, no matter how diverse and he-
terogeneous they are. Moreover, [Muth (1961, p. 316)]
asserts that that “ezpectations, since they are informed
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predictions of future events, are essentially the same as
the predictions of the relevant economic theory”.

In contrast, bounded rationality theory assumes
that people scek procedures that transform decision
problems into tractable ones [Simon (1979)]. One exam-
ple is to look for choices that are satisfactory rather
than optimal. Another example is to replace abstract
and/or global goals by tangible subgoals. Simon descri-
bes two fundamental concepts of the bounded rational-
ity theory: search and satisficing. The theory postulates
that “the decision maker had formed some aspiration as
to how good an alternative he should find. As soon as
he discovered an alternative for choice meeting his level
of aspiration, he would terminate the search and choose
that alternative” [Simon (1979, p. 503)]. Thus, in some
cases the decision maker has to search for the choices
and then make a decision which satisfies her desires.
Bounded rationality theory has accumulated empirical
evidence about its validity [Lovell (1986); Tversky and
Kahneman (1987); Sterman (1989¢); Kampmann (1990);
Dwyer, Williams, Battalio and Mason (1993); Levine
(1993); Aggarwal and Mohanty (1995); Diehl and Ster-
man (1995); Cashin, McDermott and Scott (2002)].

The decision rules embody the assumptions about
the degree of rationality of decision makers. The pro-
blems addressed by the system dynamics discipline in-
clude dynamic complexity, non-linearities, and delays. It
has been demonstrated that full rationality is unlikely to
be observed in such problems [Sterman (1989a); Kamp-
mann (1990); Paich and Sterman (1993); Diehl and Ster-
‘man (1995); Conlisk (1996); Moxnes (2004)]. Instead,
these experimental tests have shown that decision rules
based on the bounded rationality theory are closer to
reality (Sterman (2000)).

Bounded rationality theory includes also feedback
concepts in social sciences as presented in [Richardson
(1991)]. The hierarchies in system structure can be sumn-
marized as:

Closed boundary

Feedback loop structure
Level and rate substructure
Goal, observation, discrepancy, and action as
the sub-substructure within rates

According to [Forrester (1968), decisions are part of
feedback loops:

“Principle 4.2-1. Decisions always within
feedback loops: Every decision is made within a feed-
back loop. The decision controls action which alters the
system levels which influence the decision. A decision
process can be part of more than one feedback loop.”

In the same reference, Forrester presents also the
foundations of modelling decision rules based on feed-
back theory, particularly applied to system dynamics
models. In the following quote note that a decision rule
is the same concept and has the same meaning as “poli-

Figura 2: TFeedback Loop

cy statement” or “rate equations” {Forrester (1968, Scc.
4.4):

“A rate equation is a policy staternent. That is, the
rate equation tells how o “decision stream™ (or “action
streain™) is generated. “Rate equation”™ and “policy”, as
used here, have the same meaning. A policy describes
how the available information is used to generate deci-
sions. “Deciston strearn” and “action stream” are cqui-
valent because, as used here, the decision and the action
are one and the same. Any delays and discrepancies
between the deciding and the doing that we might expect
Jrom the common usage of the words would involve level
equations in a model. So the policy, or rute equation,
tells how to compute the rate (the flow into some level)
based on the values of levels and constants”.

As an exmnple, think of a person filling a glass of
water from the tap. Initially, she looks at the glass and
opens the tap. Once she sees that the glass is about to be
full she decides to close the tap. The final water level in
the glass is not necessarily the exact “desired” one, but it
satisfies her wishes. It is precise enough for her and there
is any need for exact optimisation. Figure 2 illustrate the
feedback loop. This is a simple feedback loop compared
to most real life tasks, where many feedback loops may
have to be taken into account.

Wihile rational expectations theory is identified as
normative, bounded rationality theory is identified as
descriptive [Simon (1979)]. Currently, both theories co-
exist and are under the microscope to find ont which
one is the most appropriate. The validity of these the-
ories is an cmpirical question. Different answers have
heen given without consensus or agreement so far. At
least, there are some cases where the rational expecta-
tions theory fail and bounded rationality in the form of
heuristics involving feedback theory is more likely to ex-
plain the decisions [Sterman (1989a); Sterman (1989b);
Kampmann (1990); Paich and Sterman (1993); Dichl
and Sterman (1995); Moxnes (1998a); Moxnes (1998b);
Moxnes (2000)]. These tests have been performed in
decision making type of problems that are normally ad-
dressed by the system dynamics ficld. While the rational
expectations theory claims that the actors have “per-
fect foresight”, feedback theory is open to more clabo-
rate decision rules which involve not only the foresight
as a function of the current states but also the current
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states themselves. Note that the theory of rationality
limits itself to traditional models which have analytical
solution; hence they frequently ignore the importance of
dynamics, non-linearity, measurement errors and ambi-
guity. Simon (1979, p. 496) states that “The classical
theory of omniscient rationality is strikingly simple and
beautiful. Moreover, it allows us to predict (correctly or
not) human behaviour without stirring out of our arm-
chairs to observe what such behaviour is like”. If reality
is more complex than assumed in classical theory, ratio-
nality ends up as a simplified view of the decision maker.
Thus, in practical termns of modelling, it is a simplified
decision rule with a questionable validity.

From the above, one may suspect that rational theo-
ry explains well simple cases, while it fails with increas-
ing complexity. In simple feedback systems, the be-
haviour could be identical under decision rules formu-
lated with either rational choice or bounded rationality
theory, given that people can easily see the “rational” de-
cision. In the example (see Figure 2) rational choice and
bounded rationality may offer the same results. How-
ever, when the complexity of the system is increased,
and more loops become important in the decision ma-
king problem, the theory of rational choice does not work
any longer and rationality is degraded. People misper-
ceive the role of accumulation, delays, and nonlinearities
in the systems. In thesc cases, bounded rationality theo-
ry offers a better explanation of the system’s behaviour.
Those cases are very often in decision making problems,
with strong implications in model behaviour. Models
based on rational chioice theory normally converge to
equilibrium points; while models based on bounded ra-
tionality frequently produces unstable and cyclical be-
haviour.

According to the system dynamics literature, the
purpose of a model is to analyse a problem and this pur-
pose should shape the formulation of the decision rule.
The decision rule should be based on a theory of human
decision making. I believe that hunan decisions fail to
satisfy most of the assumptions of the rational choice
theory, which leads to persistent and systematic devia-
tions from the predictions of such theory. Therefore, if
there is an agreement that models should represent rea-
lity, bounded rationality theory should be used to model
luman decisions. The following quote summarizes the
reasons to choose bounded rationality, based on a litera-
ture survey Conlisk (1996, p. 692):

“Why bounded rationality? In four words (one for
each section above): evidence, success, methodology, and
scarcity. In more words: Psychology and ec ics pro-
vide wide-ranging evidence that bounded rationality is
important (Section I). Economists who include bounds
on rationality in their models have ercellent success in
describing economic behaviour beyond the coveruge of
standard theory (Section II). The traditional appeals to
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econormic methodology cut both ways; the conditions of
a particular context may fovour either bounded or un-
bounded rationality (Section III). Models of bounded ra-
tionality edhere to a fundamental tenet of ecomnomics,
respect for scarcity. Human cognition, as a scarce re-
source, should be treated as such (Section 1V).”

The use of rational choice theory could still be valid
to study some problems. For example, rational choice
could eventually work as benchmark to compare with
other realistic decisions, or it can also explain human
decision in simple problems where rational choice theory
may be valid. System dynamics generally subscribes to
the bounded rationality theory and in particular to feed-
back theory. However, it should have clearly open doors
to the use of rationality in cases where is required.

Thus, being conscious about the theory behind the
modelling process helps to improve the discipline itself
and therefore the quality of models, as is claimed by
Meadows (1976): “Computer modelling could be more
effective, both es a science and as a useful art, if each
modeller could recognize the assumptions behind his own
modelling school and could understand and respect the
assumption behind other schools”.

4 METHODS FOR BUILDING DECISION RULES

Ilow can modcllers identify & function that defines a de-
cision rule? How should they quantify the parameters
in the decision rule? There are different methodological
approaches available that the modeller can use to build
decision rules. Personal experiences with similar pro-
blews, different theories about the topic, expert know-
ledge, historical data and different sources of information
described by Forrester (1980), are among the possible
methodological approaches.

Let’s start with Forrester’s definition of decision rule
[Forrester (1968)], as a pioneer of the system dynarnics
field. He argues that the decision rule is determined by
four components or sub-structures: a goal, an observed
condition of the system, something to express the dis-
crepancy between the goal and the observed condition,
and a way to take the action based on the discrepancy.
This process is presented in Figure 3, and is supported
by the Principle 4.4-1 [Forrester (1968)]:

“Principle 4.4-1. Goal, observation, discre-
pancy, and action-system sub-substructure: A po-
licy or rate equation recognizes ¢ local goal toward which
that decision point strives, cotnpares the goal with the
apparent system condition to detect a discrepancy, and
uses the discrepancy to guide action.”

Some of the features defined to the decision rules
are:

i) It is instantaneous in its behaviour,

ii) It is a pure algebraic expression that states the
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Figura 3: Components of a Decision Rule

present flow rate in terms of the present informa-
tion,

iii) It is free of lags and time-dependent distortion (all
time-dependent changes are created by the level
equations).

Forrester (1994) argucs that in order to represent
policies and decision making, all kinds of information
should be used. It includes not only numerical data, but
also other rich sources of information such as mental
models (which are built up from experience and obser-
vation), and written information. There is not always
data available about important structures or variables.
Forrester argues thal omitting these dala is less scientific
and less accurate than using one’s best judgment to esti-

. mate their values. “To omit such veriables is equivalent
to saying they have zero effect  probably the only value
that is known to be wrong!” [Forrester (1961, p. 57)].

Dccision rules depend only on level variables and/or
constants in the model, and not on other decision rules.
The decision rules do not depend on time or own past
variables as is presented in Principle 4.3-6.

“Principle 4.3-6. Rates depend only on le-
vels and constants: The value of a rute variable de-
pends only on constants and on present values of level
variables. No rate variable depends directly on any other
rate variable. The rate equations (policy stat ts) of a
systern are of simple algebraic form; they do not involve
timne or the solution interval; they do are not dependent
on their own pust velues.”

Forrester’s presentation may seewn dogmatic with
no room for other alternatives to model decisions. For
example, it is not recommended to use information about
other rates. In principle Forrester is right since rates can-
not be measured instantaneously (measurement of rates
depend on accumulation devices). However, in practice
they could be known by the decision maker.

However, Forrester’s position is not the only view
about modelling decision rules in system dynamics. In
particular, Business Dynamics [Sterman (2000)] has be-
come a frequently used reference by system dynamics
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modellers. In the chapter about modelling decision ma-
king, Sterman rather than presenting a dogmatic state-
ment about the nature and composition of the decision
rules, presents a collection of principles that should be
followed. The decision rule is made according to assum-
ptions about the degree of rationality of the decision
maker. Thus, there is o wide range of possibilities: from
decisions based on the rational choice theory to bounded
rationality. This gives room to include within the deci-
sion rules the rational expectations theory. Ife points
out that decision rules should follow the following five
principles:

1. The Baker Criterion: the input information to all
decision rules in wodels must be currently available
to the real decision makers. It implies that the fu-
ture is unknown, and that forecasting must be done
based only on current and historical information.
The actual and perceived conditions of the system
may be different due Lo reporting delays, slow up-
date of heliefs, ete.

2. Decision rules should conform to managerial practi-
ce, therefore all variables and relationships should
have a real world meaning.

3. Desired and actual conditions should be distin-
guished, and it is necessary to represent the physical
constrains to the realization of the desired condi-
tions.

4. Decision rules should be robust under extreme con-
ditions.

[5]

. Equilibrium should not be assumed and stability
may (or may not) cmerge from the interaction of
the clements of the system.

Sterman presents certain mathematical functions?,
which normally satisfy the principles stated above.
Those functions could be used as decision rules. The
decision rules should be customized for cach case, de-
pending on the purpose of the model, the time horizon,
etc. Others advice to follow arc: i) All outflows require
a first order control, ii) avoid IF ... THEN ... ELSE
formulations, and iii) disaggregatc net flows. Richardson
and Pugh (1981) present other mathematical functions
to consider for decision rules, and they also point out

2These templates are the following: Fractional Change in
Rate, Adjustinent to a Goal, The Stock Management stru-
cture: Rate = Normal Rate + Adjustment, Flow = Resource
* Productivity, Y = Y* * Effect of X1 pm Y * Effcct of X2
pmY*. .. *Effectof Xn pm Y, Y =Y" + Effect of X; pmY
+ Effect of X2 pm Y + ... + Effect of X, pm Y. Fuzzy MIN
(MAX) Function, Floating Goais, Nonlinear Weighted Aver-
age, Modeling Search: Hill-Climbing Optimization, Resource
Allocations
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that the list is not exhaustive, and it is open to try new
ideas as well.

The trial-and-error method fits into the iterative
modelling process [Homer (1996); Sterman (2000)]. Sys-
tem dynamics modelling is also a feedback process that
goes through constant iteration, constant questioning,
testing, and refinement. It can be understood as a trial
and error method, which includes the decision rules. In
fact, the decision rule, or what is also called the policy, is
a hit-or-miss process from a wide range of options [Coyle
(1996)]. The modeller shounld develop the skill to choose
the proper function and adapt it to the model in order
to test the chosen option. It must be chosen according
to the information/action/consequences feedback theory
and take into account the two major components: stru-
cture and parameters. The structure is the form of the
cquation and the links on the influence diagram. The
parameters, for a given structure, are the numerical va-
lues.

Frequently, systemn dynamics use particular practi-
ces in order to improve models. Group model building
is an example. This practice involves the client within
the modelling process in order to facilitate and improve
models. This fact could apparently be a natural source
to formulate decision rules. Group model building does
not have the model construction as its primary goal.
However, the clients aid model building, hence the deci-
sion rules formulation. 1L combines diflerent techniques
according to the stage in the modelling process. Deci-
sion rules arc defined in the model formulation stage. In
this stage, group model building calls the attention to
dimension counsistency through the whole model. Some
qualitative data may need special units, sometimes just
for the model, that requires especial discussion between
the wodeller and the clients [Vennix (1996)]. Although,
the current literature on group model building does not
provide hints and methods to be used directly in the de-
cision rules formulation, some ideas and methodologies
may be useful. Due to the fact that those methodologies
are mostly taken from the knowledge elicitation tech-
niques, it will be explained later on.

Due to the growth of the field of experimental eco-
nomics, research on dynamic problems addressed by the
system dynamics metliodology has increased. Labora-
tory experiments with real subjects have been done in
order to understand problems associated with decision
making, and the data have been used to analyze the
heuristics people use to make decisions and to estimate
decision rules, which are used in siinulation models. The
basic idea is to have a controlled environment where
the subjects make decisions, generally motivated by eco-
nomic rewards. Afterwards, hypothetical decision rules
are tested by direct observations. The literature of sim-
ulation models with experiments is increasing, exam-
ples are [Sterman (1989a); Paich and Sterman (1993);
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Moxnes (1998a); Rassenti, Reynolds, Smith and Szi-
darovszky (2000)]. Details about the methodology arc
framed in Friedman and Sunder (1994).

Decision rules cannot be determined from aggregate
statistical data, but it must be done by first hand data by
using techniques such us experimental economics [Smith
(1982); Sterman (1988); Rassenti et al. (2000)]. It should
be done through observation of the actual decision ma-
king in the ficld itsclf, by the usc of laboratory expe-
riments in which managers operate simulated systems.
With first hand information, the modeller may be able
to infer the appropriate decision rule. According to Mass
and Seunge (1978), first, there must be a prior ypothe-
sis regarding the causes of the changes in the dependent
variable (output of the decision rule). The hypothesis
should be based on observed plienomena and/or prior
theories, which identify the variables believed to be sig-
nificant determinants of change in the dependent varia-
ble. The hypothesis should also specify how these de-
terminants are to be combined. Second, the initial prior
hypotlesis must be tested under the available empirical
information and refined if needed. Some examples are
[Sterman (1989); Rassenti et al. (2000)].

System dynamics has grown as a modelling school,
taking advantage of the latest computing capabilities.
Simultaneously, other modelling schools have emerged.
Some of those address problems where human decisions
are involved. Therefore, it represents a source for diffe-
rent techniques to formulate decision rules. Following,
I present some alternative methodologics that could be
used in the system dynamics field.

Ezperts systerns have a different purpose than si-
mulation models. This methodology is used to suggest
decisions automatically, and eventually to make deci-
sions. Consistent with the name, the expert systems are
built from expert knowledge. The experts provide direct
data about decisions. Thus, it makes experts systems a
natural source of methodologies to build decision rules.
Expert systems have used a number of Knowledge Eli-
citation [KE] techniques, mostly designed to clicit rules.
Decision rules are called procedural knowledge in the
field of expert systems and knowledge elicitation [Moody,
Richard and Blanton (1996)].

KE techniques are methods and practices of ac-
quiring knowledge about specific topics from different
sources, such as experts in the field, and/or published
literature. KE is one of the most important tasks of the
expert systems field. Any particular technique might be
adapted according to the nature of the situation, the do-
main knowledge, and the availability of experts [Dawood
(1996)). KE techniques focus basically on the use the
expert knowledge [Hofman, Shadbolt, Alike and Gary
(1995)].

There is a great diversity of KE techniques. KE
has a variety of goals such as generation of cognitive
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specifications for jobs or task, witigation of human crror
in domains with pressure and risks, skill remediation,
ete. [Hoffinan et al. (1995)]. They also present a coni-
plete methodological analysis of KE from experts. They
classify KE techniques into analysis of familiar task, in-
terviews, and contrived techniques. Following, 1 present
a description of different KE techniques based on their
literature survey.

4.1 Analysis of Familiar Task

This category of techniques investigates what is the
experts’ behaviour in their usual problem solving or
decision-making tasks. It studies decision in sity, i.e.,
analysis of people’s behaviour when they make decisions
in real life.

Documentation analysis: It is the first step in the
search of knowledge from experts. It refers to the review
of all information in documents (text, manuals, course,
etc.) or any other sort of records. It is not just ha-
ving information flow from documents, “the researcher’s
analysis of the documents can involve specific procedures
that generate records or analyses of the knowledge con-
tained in the documents”. This process may be time-
consuming, but indispensable in some cases.

Task analysis: consists of the task or jobs of the sub-
jects “on-line” or “in situ”. Other suggestive names are
job analysis, structural analysis, and task description,
cte. The task analysis is explored by using “Think Aloud
Problem-Solving/Protocol Analysis”. The subjects are

asked to do their regular tasks. In the meantime, they
are asked to “think aloud” about the problem and des-
cribe what they are doing. This information is recorded
and analysed subsequently. The actions are grouped by
common features to seck for common patterns. It is re-
commended to take into account possible biased answers
by differences in verbal expressiveness, which may lead
Lo differences in perception of the actions. Task analysis
is also studied by the use of test cases. With this tech-
nique, the experts are asked to describe how they behave
in certain cases. Test cases are used to confront experts
with past decisions and observe their reasoning of past
experiences. It is also recommended alternative tech-
niques for task analysis such as tough cases and atypical
cases. With these techniques, the expert is confronted
with particularly difficult or challenging cases. and may
eventually be more revealing if the experts are observed
making decisions in common or routine problems. The
technique has been used extensively in fields such as
medical diagnosis, physics, computer programming, and
accounting.

4.2

The interviews are the second major category of KE
techniques. An interview is a question/answer arrange-

Interviews
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ment, where the interviewer gets information from the
interviewed. According to the nature of the questions.
interviews can be unstructured or structured. The first
takes the form of open dialog with the expert, with ques-
tions such as “Tell me everything about Y." The idea
is to get to know the expert's reasoning. It is useful
to observe the kind of knowledge and then, follow up
with structured interviews. Problems with the unstruc-
tured interview are that the expert can get away of the
desired track, or the expert can assume that the elici-
tor has knowledge a priori. Interviews in general have
been widespread, hence recommendations and literature
available from many different ficlds helps to improve the
skills.

The second is the structured interview, also called
“focus”. ‘T'hose interviews are planned and well defined.
Structured interview goes directly to the point and re-
duce the time spent compared with unstructured inter-
view. In general, there are two formats of structured in-
terviews Domain-Specific Probe Queslions and Generic
Probe Questions. In Lhe domain-specific probe questions.
the elicitor prepares fixed questions; hence the inter-
viewer requires a prior knowledge about the topic. In
generic probe questions, the elicitor relies on a set of
generic questions®. which have specific functions.

Additional companying material is part of the in-
terviews. It helps with the structure of the interview.
The companying material could be test cases, firsl-pass
knowledge base, and cvent recall interviews. The test
cases have the same form as deseribed on the analysis of
familiar tasks. The first-pass knowledge basc is basically
a list of prepositions that express many of the core con-
cepts, the definitions of terns, and the procedural rules
about the topic. The list is normally taken from the task
analysis activitics or initial interviews. Finally, event re-
call interview look for questions that “try to go through
the events in reverse order” and try to recall an incident
from different perspectives. Occasionally, the interviews
can also be fruitful when they are performed in groups.
In group interviews, the interviewer normally sceks for
common knowledge and agreements among the group of
experts.

4.3 Contrived Technicques

According to some psychological research, expert know-
ledge and reasoning can be revealed by deliberate mo-
dification of the familinr tasks. Demonstration about

3Examples of probe set questions applicable to decision
rules, are: “Why would you do that?”, “How would you do
that?”, “What would you do at each step on this procedure?”.
“When would you do that?", “Is [the rule] always the case?”,
“What alternatives [to the preseribed action or decision] are
there?”, “What if it were not the case that [currently true
conditions]”
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with experiments such as asking chess masters “to re-
call game boards in which the pieces had been randomly
arranged”, or “making bridge players adhere to altered
rules”. The controversy arises about how much of those
departures are legitimate or fruitful to elicit knowledge.
It is argued that contrived tasks may make the experts
uncomlortable or may reflect reasoning strategics that
are not the real behaviour. Some of the contrived tech-
niques are describe below.

Decision analysis: it is a set of procedures inclu-
ding decision aiding, risk analysis, probability and uti-
lity modelling based, ctc. It seeks, in many cases, for
evidences about the sequence of steps in their usual de-
cision making by generating the following list:

(a) elcments of the problems,
(b
()
(@
(e
(0

= -

causal relationship,
kind of problems faced,
features of each type of problems,

decisions involved in each type of problems,

N

confidence in judgments or hypothesis of the pro-
blem solver,

consequences of cach decisions,

(8)
(h)

From the steps listed above, the elicitor may possible
develop mathematical functions and key concepts about
cxpert’s reasoning, and therefore generate their decision
rules.

Group decision making: there are different metho-
dologies to analyze decision making problems, when the
decisions are made by groups. One of them is “bruin-
storming”, where the participants are asked to generate
many different ideas without any sort of criticisms or
refining. Another one is “consensus decision making”,
where the group is challenged to find the “best” group so-
lution by assessing advantages and disadvantages of the
possible solutions. A last example is “nominal group”,
where the individuals perform independent ranking of
given alternative solutjons.

Rating and sorting tasks: the technique is some-
times included with famiiliar tasks. It basically seeks for
rating and sorting alternative solutions by the experts. It
Lias been used in cases that look for key variables, judge-
ment about reasoning and strategic behaviour of experts
on different ficlds, cte. Some authors have used the tech-
nique to explore particular hypothesis, rather than elici-
ting expert knowledge. The way to apply the technique
varies according to the particular problem. Given the
nature of this technique, statistical tools may be useful
to compare different expert’s results.

quality of the analysis.
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Constrained Processing and Limited Information
Problems: In this technique, the experts’ experience that
their familiar routines are constrained in some ways, for
instance, the expert may be asked to follow a particu-
lar strategy or make decisions under limited informa-
tion. There are recommendations to use this technique
together with interruption analysis, where the expert is
interrupted during certain tasks to answer questions such
as “What were you just doing?” or “What was just go-
ing on?” or “What would you have done just then if

2

Graph Constructions: A conceptual graph is a re-
presentation of relationships or links between elements
or variables. The experts are asked to draw graphs of
a particular relationship. These sorts of representations
arc commonly uscd in Artificial Intelligence?.

This is not the only classifications of KE techniques
in the literature. For instance Coffey, Canas, Hill, Carff,
Reichherzer and Niranjan (2003) made a distinction bet-
ween direct and indirect techniques. Direct techniques
are referred to as those where interactions with one or
more domain experts occur, while indirect techniques
seek for the knowledge from texts, reports or any other
documentation.

It is agreed that different KE techniques may clicit
different types of knowledge. Thus, procedural rules and
heuristics (which is our interest) could best be elicited
by “think-aloud” problem solving, task analysis, and in-
terviews based on memory probe questions. Above, 1
have described the techniques, however the literature is
vast and more detailed material is available.

4.4 Alternative Methodologies

A number of techniques arc emerging from different
modelling schools, which may be included in system
dynamics models, and therefore models could turn to
be adapted into hybrid systems®. In fact, a particular
computational modelling technique could be used as a
decision rule itself. This approach is analogous to the
methodological approach of laboratory experiments. In
an experiment, the modeller asks real people to make
decisions based on a model and afterwards infers about
the decision rule used by people on this purpose. Some
of the alternative modelling schools are listed below:

4Similar kinds or representations between variables are
also Trequently used in system dynamics models, where
non-linear relationships are easily represented by conceptual
graphs.

3There are many different definitions for hybrid systems.
In this paper, I refer to hybrid systems as a computer model
that uses more than one problem-solving modelling school in
order to solve a problem.



Neural Networks
Regression techniques
Data reduction techniques
Fuzzy logic

Genetic algorithms
Case-based reasoning
Expert systems
Decision trees

Artificial Intelligence
Agents based simulation
Multi-criteria analysis

Each of those schools is complex and diverse; there-
fore there mnay be different definitions and descriptions
for them. It is not the intention here to describe other
computer modelling schools. What I want to point out
is that hybrid systems may be useful to model human
decisions in system dynamics models, by making use of
alternative computational techniques instead of endoge-
nous decision rules. The modeller may go deeply into
the literature in case of the use of those techniques.

Next I will present some elements to the test of the
decision rules. It includes not only the traditional sta-
tistical validation methodology, but also tests for consis-
tency with the theory and the system dynamics theory.

5 TESTING THE DECISION RULES

The decision rules are part of the system dynamics mo-
dels. Therefore, decision rule validation in particular is

- part of system dynamics model validation in general. A
number ol publications have referred in different ways
of validation in general [Forrester (1961); Forrester and
Senge (1980); Homer (1983); Barlas (1996); Sterman
(2000)], however, the focus here is only on the decision
rules. Thus, we provide information ahout how to test
the hypothesized decision rule in order to be consistent
with the scicntific incthod.

An explicit direct test of the decision rule is pre-
sented by Sterman (2000). After the statement of a
hypothesis (decision rule) based on a theory, the mathe-
matical expression that defines the decision rule is tested
by using statistical methods with empirical evidence. It
has also been used by Moxnes (1998«). In particular,
Sterman (2000) proposes the use of “partial model tests”
in order to determine the intended rationality in decision
rules. It is an explicit test of the decision rule. In this
technique “each organizational function or decision point
is isolated from its environment until the environment is
consistent with the mental model that underlics the de-
cision rule. The subsystem can then be challenged with
various exogenous patterns in its inputs.”

Within the current system dynamics literature, it
is argued that one should perform many tests of model
structure and behaviour not possible with other types of
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models. and that there is no single test to make “the vali-
dation” of the model |[Forrester and Senge (1980)]. The
various tests have been used and restated in dillerent
sources ¢. g. Sterman (2000), and some of them have
also been implemented in the system dynamics software
[Peterson and Eberlin (1994)]. In general, the decision
rules, as a part of the system dynamics models must
satisfy all the proposed tests, aud in particular, the tests
done for the isolated decision rules. Those tests are listed
next [Sterman (2000)):

5.1 Test of Model Structure

Structure-verification test: it includes the verification of
the model assumption, and therefore also the decision
rules.

Parancter-verification test: the decision rules’ pa-
rameters should be confronted numerically and concep-
tually with the paramecters in real life.

Extreme-conditions test: for example, the ship-
ments must be zero in the inventory of a commodity
is zero; and if there are no houses in a city, then the
decision to immigrate must be strongly discouraged..

Boundary-adequacy (structure) test: it is necossary
to develop a convincing hypothesis relating proposcd
model structure to a particular issue addressed by a
model.

Dimensional-consistency test: measurement units
must be consistent not only for the decision rules, hut
also for the whole model.

5.2 Tests of Model Behaviour

All the tests related to model behaviour (behaviour-
reproduction, behaviour-prediction test, Dbehaviour-
anomaly test, family member test, surprise-behaviour
test, extreme-policy test, boundary -adequacy (be-
haviour) test, behaviour-sensitivity test) are applicable
to the decision rdes. Thus, in the sense that these rules
are important for the overall behaviour of the model.

5.3

The tests of policy implications are done in order to build
confidence in a model's implications for policy. Since
the policies are represented in models through decision
rules, this test could be used to see the robustness of
the policy implications when changes are made. It in-
cludes the system-improvement test, changed-behavionr-
prediction test, boundary-adequacy (policy) test, and
policy-sensitivity test.

Classical statistical goodness-of-fit tests have also
been used to test decision rules. particularly when data
are obtained directly from experiments. The hypothe-
tical decision rule is tested by using classical statistics
[Sterman (1989a); Moxnes (1998b)]. In particular Mass

Tests of Policy Implications
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and Senge (1978) present a detailed case to carry on
single-equation statistical tests, based on the comparison
between individual model equation and model behaviour
test through the use of the popular t-test of parameter
“significance” and the partial correlation coefficient.

A particular method of analysis is the “premise des-
cription”, which is used to analyse the bounded rational-
ity of policies or decision functions (decision rules) in a
system dynamics model. The method has a particular
stress on the process and cognitive limitations assumed
in the decision making [Morecroft (1985)]. This method
of analysis is also useful for testing the decision rule. A
quote of the method description is Morecroft (1985):

“The modeller starts with a diagram of the model
system showing the network of interlinked decision fun-
ctions. He then describes the equations of each decision
function, drawing attention to the way factoring and lo-
cal goals simplify rational choice, how authority and cul-
ture influence the content and interpretation of informa-
tion streams, and how routine and cognitive limitations
influence the collection, processing, and ransmission of
information. At the back of his mind the modeller has the
notion of objective rationality as a yardstick. This yard-
stick raises questions of why some information is avai-
lable in a decision function and other is not, why bias is
present. The answer to these questions naturally point to
empirically observed organizational processes that stem
Sfrom bounded rationality.”

6 FINAL COMMENTS

Since the decision rules are part of the model, they
should follow the principles of the model itself. Thus,
the purpose of the model should shape the formulation
of the decision rule. Once the modeller has the purpose
of the model clear, it is necessary to choose the methodo-
logy or strategy to build the decision rules. The decision
rule should also be based on a theory of human decision
making. I believe that human decision fail to satisty
most of the assuwnptions of the rational choice theory.
This leads to persistent and systematic deviations from
the prediction of the rational choice theory. Therefore,
if there is an agreement that models should represent
reality, the use of bounded rationality theory is a better
approximation to model human decisions.

The Scientific method is based on hypothesis [orinu-
lation and testing. Here, 1 presented the particular case
of the formulation of decision rules as a part of formal
system dynamics models. The presentation is intended
to fulfil the requircinents of the scientific mmcthod in both
hypothesis formulation and testing. A decision rule is a
hypothesis formulation of a theory. Since we are deal-
ing within the field of system dynamics modelling, the
principles of the field should shape the formulation of
decision rules, which include the thinking, methodolo-
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gies and particular techniques. The hypothesis testing
should be also done according to the system dynamics
principles.

Forrester’s early view of system dynamics may
seems very dogmatic with respect to the decision rule
based on feedback theory as a part of bounded rationali-
ty. Even though there is some influence and use of other
computer schools on modelling decision rules, I think
that the vision is still narrow (see Figure 4) and should
open much more to other computer modelling schools.

System dynamics is understood to be part of a
wider range of computer simulation schools of thought,
all of them oriented towards problem solving [Meadows
(1976)]. 'The computer modelling schools were influenced
by the computer evolution, mathematical models and
the scientific method. Even though the schools have de-
veloped independently, cornmon roots lead to the possi-
bility of sharing techniques, in particular for the case of
decision rules. The decision rules are clearly identifiable
across the schools as presented in the paper with sugges-
tive names such as: procedural rules, decision functions,
etc. Thus, the hypothesis formulation and testing of
the decision rules in system dynamics models could use
techniques taken from other ficlds as is presented in the
Figure 5. In fact, some of the techniques currently used
in system dynamics models are taken from other fields.
I have presented a bunch of alternative techniques that
may improve the models by improving the decision rules
formulation and testing.
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