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Resumen—  En  este  ar tículo  se  presenta  un  modelo 
computacional  para  el  estudio  de  fenómenos  de  propagación 
epidemiológicos  mediante  la  implementación  de  la  Teor ía  de 
Percolación  y  Sistemas  de  Información  Geográfica  (SIG).  Se 
calculan  factores  cr íticos  de  la  propagación  de  una  epidemia 
tales  como  la  tasa  de  contagio y de  recuperación por  medio de 
percolación  para  simular   la  fluctuación  poblacional  en  un 
modelo matemático epidemiológico SIR (susceptible –  infectado 
–  recuperado)  por   medio  de  funciones  de  análisis  espacial  y 
visualización de  los patrones de propagación mediante Sistemas 
de  Información  Geográfica.  Como  caso  aplicado  se  toman  los 
datos  de  una  epidemia  de  asma,  en Manhattan New York,  del 
tutotial de ARCGIS® 8.3. 

Palabras  Clave—  Teor ía  de  Percolación,  Sistemas  de 
Información Geográfica, Epidemiología. 

Abstract— In this ar ticle we present  the design of a software 
for   modelling  the  dynamics  of  propagation  phenomenom 
through  percolation. Using GIS  you  can  visualize  the dinamics 
of  this  phenomenom.  As  an  application  of  this  we  used  some 
samples from an asthma case in Manhattan New York, from the 
ARCGIS(r ) 8.3 tutor ial; contagious and recover ing rates are 

calculated and then they are used on the implementation of a 
SIR (susceptible­infected­recovered) model. 

Key  words—  Percolation  Theory,  Geographic  Information 
Systems, Epidemiology. 

I.  INTRODUCCIÓN 
L uso  de  los  Sistemas  de  Información Geográfica  (SIG) 
en  el  campo  de  la  salud  pública  y  específicamente  en 

epidemiología  es  reciente  y  se  encuentran  agrupados  en  la 
categoría SIG­EPI. Se han implementado para el estudio de la 
situación  de  salud  en  un  área  geográfica  en  particular,  para 
generar  y  analizar  hipótesis  de  investigación,  identificar 
grupos  de  alto  riesgo,  planear  y  programar  actividades  de 
monitoreo,  evaluación  de  intervenciones  y  estudios 
epidemiológicos ambientales [1]. 
Según  la  Organización  Panamerican  de  la  Salud  (OPS), 

dentro  de  los  primeros  programas  computacionales  usados 
para  tal  fin  se  encuentran  el  EpiMap  y  el  SiMap  usados 
básicamente en el almacenamiento de datos y su visualización 
a través de mapas para el apoyo de vigilancia y monitoreo en 
salud pública [2], [3], [4], [5]. 
El  uso  de  los  SIG  en  epidemiología  incluye  técnicas  de 

análisis espacial (análisis de superficies, análisis de distancias 
y de proximidad, reclasificación de mapas, álgebra de mapas, 
geoestadística)  por  medio  de  las  cuales  es  posible  estudiar 
patrones  de  propagación  de  epidemias  para  condiciones 
determinísticas  en  algunos  de  los  factores  críticos  de 
propagación,  combinando  las  geociencias,  las  ciencias 
ambientales  y  la  epidemiología.  En  el  estudio  de  Beyea  se 
aplican  técnicas  de  los  SIG  a  epidemiología  ambiental 
mediante el modelo de exposición geográfica que usa técnicas 
de  modelamiento  de  polución  en  el  aire  para  delimitar 
regiones altamente expuestas a  la polución en el  tiempo y el 
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espacio [6]. En el 2001, un estudio de fiebre de dengue en la 
Guayana  francesa  de  Iracuobo  uso  los  SIG  para  integrar  la 
información  del  caso  de  estudio  y  visualizar  los  patrones 
exhibidos por la relación espacio ­ tiempo (riesgo relativo) de 
un  foco  de  transmisión  de  dengue  para  datos  obtenidos 
mediante  la  técnica de análisis del  test de Knox que permite 
detectar  agregados  espacio  temporales  [7].  En  el  2004, 
mediante  el  uso  de  SIG  se  determinaron  métricas  para 
cuantificar  los  efectos  de  un  contaminante  sobre  los 
individuos expuestos a él usando mapas en los cuales se tenia 
la  información  de  la  ubicación  espacial  de  la población bajo 
estudio y haciendo un análisis de proximidad a las fuentes de 
contaminación  e  implementando  técnicas  de  monitoreo  por 
medio  de  Sistemas  de  Posicionamiento  Global  (GPS);  se 
modeló  el  nivel  de  exposición  al  contaminante  para  obtener 
resultados  de  la  incidencia  del  contaminante  sobre  la 
población  [8].  En  el  2004,  se  realizó  un  estudio  sobre  la 
propagación  espacial  de  un  brote  del  síndrome  respiratorio 
agudo severo (SARS) en Hong Kong analizando los patrones 
de  propagación  de  la  enfermedad  mediante  técnicas 
geoestadísticas  implementadas en  los SIG. Las superficies de 
estimación  estadísticas  obtenidas  permitieron  a  los 
investigadores  determinar  los  patrones  de  propagación  de  la 
enfermedad y visualizar las regiones críticas de incidencia de 
la  misma  [9].  En  el  2005,  se  publicó  en  la  revista  de  la 
facultad  de  Ingeniería  de  la  Universidad  de  Antioquia  un 
artículo  sobre  el  modelamiento  y  simulación  computacional 
usando  técnicas  geoestadísticas,  sistemas  de  información 
geográfica  (SIG)  y  dinámica  de  sistemas  aplicadas  a 
fenómenos  epidemiológicos  en  el  que  se  estudiaron  los 
principales  modelos  matemáticos  usados  en  epidemiología 
(susceptible­  infectado­recuperado:  SIR,  susceptible­ 
infectado­recuperado­susceptible:  SIRS,  susceptible­ 
infectado­susceptible:  SIS)  para  su  integración, 
espacialización  y  simulación;  con  el  fin  de modelar  factores 
críticos en la propagación de epidemias. Para la simulación se 
tomaron  los datos de una epidemia de asma en el distrito de 
Manhattan  de  Nueva  York  y  mediante  un  análisis 
geoestadístico  se  pudieron  determinar mapas de  los patrones 
de  propagación  de  la  enfermedad  y  las  zonas  críticas  de 
incidencia con el  fin de aportar información para la toma de 
decisiones en el control geográfico de la epidemia [10]. En el 
2006  la  Agencia  de  Protección  Ambiental  de  los  Estados 
Unidos,  hizo  un  estudio  para  modelar  el  nivel  de 
concentración  residencial  de  material  particulado  (PM) 
mediante SIG y técnicas geoestadísticas que permitió estimar 
a  partir  de  algunas  estaciones  de muestreo  la  concentración 
del  PM  en  aquellas  zonas  en  las  cuales  no  se  tenia 
información,  con  los  resultados  fue  posible  modelar  la 
variación  de  la  concentración  del  PM  en  el  ambiente  y 
establecer controles para minimizar los riesgos sobre la salud 
poblacional en alguna región de estudio [11]. 
Actualmente se ha incorporado a la biología y al estudio de 

las  dinámicas  sociales,  conocimientos  teóricos  provenientes 

de  las  matemáticas  y  la  física  tales  como:  caos  dinámico, 
fractales,  sistemas  disipativos  y  autoorganización;  para  el 
análisis de las dinámicas asociadas con fenómenos complejos 
[12]. En el 2004 se publicó un artículo sobre el modelamiento 
de  la  transmisión  de  enfermedades  en  el  cual  se  agrupan 
diferentes  técnicas  matemáticas  y  computacionales  usadas 
para  la  determinación  de  los  patrones  de  propagación  de 
enfermedades  en  poblaciones  para  el  control  de  su 
transmisión  mediante  la  dinámica  de  redes  en  las  cuales 
existen contactos entre  sus  individuos. Estos modelos van de 
estructuras  determinísticas  a  estructuras  estocásticas  en  las 
cuales  se  estudia  el  comportamiento  de  la  red  mediante  la 
variación  de  algunos  parámetros.  Los  modelos  estudiados 
incluyen  tasas  estratificadas  de  comparación  de  riesgos, 
regresiones  logísticas  y  modelos  de  proporcionalidad 
aleatoria;  para  explorar  modelos  mas  robustos  usados  en 
análisis epidemiológico [13]. 
Gastner  asocio  al  estudio  de  la  dinámica  de  redes  el 

componente  espacial  asignando  a  cada  nodo  de  la  red  una 
ubicación en el espacio geográfico con lo cual estableció una 
relación beneficio costo en  la comunicación de los diferentes 
nodos mediante modelos de optimización de Monte Carlo. La 
implementación  de  diferentes  técnicas  computacionales 
permitió  la  simulación  de  dichos  modelos  a  partir  de 
algoritmos  que  permiten  el  estudio  de  la  estructura  espacial 
de  las  redes  [14].  Simoes  determinó  que  la  propagación  de 
una enfermedad infecciosa está altamente influenciada por la 
estructura  y  la  dinámica  de  la  red  social  subyacente 
(movimiento  diario  de  las  personas  entre  locaciones).  Para 
ello  uso  un  modelo  basado  en  micromundos  con  agentes 
(ABM) con dos componentes: un modelo de movimiento y un 
modelo de infección. En el modelo de movimiento se supone 
una  estructura  diaria  de  movimiento  de  cuatro  tipos:  de 
vecindad,  intra  región,  inter  región  y  aleatorio;  cuya 
geometría se simula mediante la implementación de SIG para 
estudiar el comportamiento espacial y temporal del fenómeno 
epidemiológico  en  diferentes  escenarios  alternativos  y 
comparar  la estructura espacial de  la dinámica de la red con 
la distribución espacial de sus individuos [15]. 
Como  aporte  a  la  discusión  planteada,  en  este  artículo  se 

establece  una  relación  entre  los  SIG  y  la  Teoría  de 
Percolación.  Se  modelan  algunos  factores  críticos  asociados 
con  la  dinámica  de  fenómenos  de  propagación de epidemias 
como  son  la  tasa de contagio  (TC) y  la  tasa de  recuperación 
(TR) por medio de un aplicativo computacional que simula un 
proceso  de  percolación,  los  resultados  obtenidos  ingresan 
como  datos  para  la  simulación  de  un modelo  SIR mediante 
funciones de análisis espacial y así obtener la visualización de 
los  patrones de propagación de un  fenómeno epidemiológico 
usando SIG. Para la región de estudio se genera una malla en 
donde cada retícula representa una ubicación espacial y tiene 
asociada  probabilidades  p  que modelan  los  valores  de  TC  y 
TR  que  favorecen  o  no  la  propagación  del  fenómeno.  Para 
obtener  los  valores  de  las  probabilidades  p  se  utilizó  la
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función  de  generación  de  números  pseudoaleatorios  del 
Visual  Basic  y  para  cada  conjunto  de  datos  generados  se 
garantizó  uniformidad  mediante  una  prueba  de  forma  y  la 
independencia  mediante  una  prueba  de  corridas  [16].  Se 
decidió explorar  la generación de p mediante generadores de 
variables  aleatorias  exponenciales,  uniformes  y  gaussianos 
con  el  fin  de  obtener  valores  de  p  tales  que  se  ajusten  a  los 
patrones de dichos generadores con el fin de poderlos usar en 
fenómenos en los que se tenga prestablacido que siguen dicho 
patrón.  Para  la  implementación  de  los  generadores  de 
variables aleatorias se usaron los resultados del generador de 
números  pseudoaleatorios  y  los  métodos  de  la  transformada 
inversa  para  el  caso  del  exponencial  y  el  uniforme,  y  el 
método  de  la  convolución  para  el  caso  del  gaussiano.  El 
exponencial  se modeló mediante  la  expresión  ­µrLn(1­r),  en 
donde µr  es  la  media  de  los  números  pseudoaleatorios 
generados  y  r  es  un  número  pseudoaleatorio  genrado,  el 
uniforme mediante la expresión rmin+(rmax ­ rmin)r en donde rmin 
y  rmax  son  el  mínimo  y  máximo  número  pasuedoaleatorio 
generado  respectivamente  y  r  es  un  número  pseudoaleatorio 
generado.  El  gaussiano  se  modeló  mediante  la  expresión 
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y media de los números pseudoaleatorios generados y r es un 
número  pseudoaleatorio  generado.  Como  caso  de  estudio  se 
toman los datos de una epidemia de asma en Manhattan New 
York del tutotial de ARCGIS® 8.3. 
Al  final  del  artículo  se  detalla  una  proyección de posibles 

estudios derivados de los resultados encontrados. 

II.  MODELAMIENTO DEL PROCESO DE 
PERCOLACIÓN 

La Teoría  de Percolación  es  una  teoría matemática con  la 
cual  es  posible  estudiar  los  patrones  que  exhibe  la  dinámica 
de  un  sistema  interconectado  al  azar  [17].  En  una  malla 
reticular  de  geometría  rectangular,  cada  retícula  puede  estar 
ocupada o no y este evento se puede representar en términos 
probabilísticos  mediante  una  probabilidad  p  con  lo  cual  se 
pueden dar las siguientes situaciones: 
•  Que una  retícula en una ubicación  i,  j esté ocupada con 

una  probabilidad  p  y sus vecinos estén desocupados con una 
probabilidad  1­p.  A  lo  cual  se  denomina  percolación  por 
nodos. 
•  Que una retícula en una ubicación i, j y sus vecinos estén 

ocupados  aleatoriamente  e  independientemente  de  los  otros 
con  probabilidad  p.  A  lo  cual  se  denomina  percolación  de 
enlace o percolación “random”. 
Es  posible  modelar  el  comportamiento  aleatorio  de 

ocupación de las retículas mediante un algoritmo de recorrido 
y  verificación  de  ocupación  de  cada  retícula  y  sus  vecinos. 
Dependiendo  del  tipo  de  geometría  de  la  malla,  el  sistema 

evoluciona  en  el  tiempo  hasta  que  en  un  momento  dado  es 
posible pasar de agregaciones aisladas de retículas ocupadas a 
conglomerados  a  lo  que  se  denomina  umbral  de  percolación 
en  el  cual  se  forma  un  cluster  infinito  de  percolación.  Para 
una malla  reticular  de geometría  rectangular, como  la usada 
en este trabajo, el valor de p para el cual se llega al umbral de 
percolación  está  cerca  de  0.5  y  se  denomina  probabilidad 
crítica  pc.  El  cluster  infinito  de  percolación  permite 
representar  patrones  de  propagación  de  sistemas 
interconectados aleatoriamente. 
La  lógica  del  algoritmo  diseñado  programado  en  Visual 

Basic  para  modelar  la  dinámica  de  los  valores  de  la 
probabilidad  de  ocupación  de  cada  celda  hasta  llegar  al 
umbral de percolación, es la siguiente: 
•  Se define una malla de retícula cuadrada de nxn celdas. 
•  Se  selecciona  un  modelo  para  la  asignación  de  los 

valores iniciales de p en la malla. A cada una de las celdas se 
asigna  una  probabilidad  p  de  dos  maneras:  usando  un 
generador  de  números  pseudoaleatorios  o  por  medio  de 
generadores  de  variables  aleatorias  uniforme,  exponencial  o 
gaussiano  cuyo  propósito  es  dar  la  posibilidad  de  poder 
simular fenómenos que tengan esos tipos de distribución. 
•  Se  realiza  una  búsqueda  y  verificación de ocupación de 

cada  retícula.  En  una  primera  iteración,  se  recorre  la malla 
buscando las celdas (i,  j) cuyos valores de p sean de 0.95 y a 
sus  vecinos  en  las  posiciones  (i­1,j­1),  (i­1,j),  (i­1,  j+1),  (i,j­ 
1),  (i,j+1),  (i+1,j­1),  (i+1,j),  e  (i+1,  j+1)  se  asigna  una 
probabilidad de 1­p. En las siguientes iteraciones, se repite el 
paso  anterior  para  valores  de  p  entre  0.9  y  0.05  con  un 
decremento  de  0.05  hasta  que  la  probabilidad  promedia  de 
todas  las  celdas  de  la  malla  convergan  al  valor  de  pc  (0.5) 
valor  en  el  cual  se  conformaría  el  cluster  infinito  de 
percolación para geometría de celda rectangular. 
En  las  figuras  1,  2  y  3;  se  muestran  los  resultados  de  la 

ejecución  del  algoritmo  para  experimentos  en  los  cuales  la 
asignación de los valores iniciales de p en la malla se hizo por 
medio  de  un  generador  de  variables  aleatorias  exponencial. 
De  la  figura  1  a  la  2,  se  puede  observar  como  unas  celdas 
aisladas conforman un conjunto de celdas interconectadas de 
agregados aislados y  luego estos se conectan para conformar 
un posible cluster  infinito de percolación en la figura 3 cuyo 
valor  de probabilidad promedia de  las celdas ocupadas es de 
0.6  en  la  iteración  8  ya muy  cerca  al  valor  de  probabilidad 
crítica.
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Figura 1. Búsqueda y verificación de ocupación de celdas con valores de 
p=0.95. Las celdas sombreadas son celdas ocupadas que presentan valores de p = 
0.95 de probabilidad promedio en la iteración 1. 

Figura 2. Búsqueda y verificación de ocupación de celdas con valores de 
p=0.80. Las celdas sombreadas son celdas ocupadas que presentan valores de p = 
0.80 de probabilidad promedio en la iteración 4. 

Figura 3. Búsqueda y verificación de ocupación de celdas con valores de 
p=0.60. Las celdas sombreadas son celdas ocupadas que presentan valores de p = 
0.60 de probabilidad promedio en la iteración 8, cercano al valor de probabiliadd 
crítica. 

Los valores de p de las mallas obtenidos en cada una de las 
diferentes  iteraciones  son  usados  posteriormente  para 
representar la variación de la TC y la TR en un modelo SIR y 
calcular  la  fluctuación  poblacional  en  la  propagación  de  un 
fenómeno epidemiológico por medio de SIG. 

De manera global en la figura 4 se muestra la secuencia de 
instrucciones  del  algoritmo  anterior  en  la  cual  se  selecciona 
un modelo para la asignación de los valores iniciales de p en 

la malla, se realiza una búsqueda y verificación de ocupación 
de  cada  retícula,  se  calcula  la  dinámica  de  variación  de  los 
valores de p hasta llegar finalmente al valor de pc en donde se 
da el umbral crítico de percolación y se obtiene los valores de 
p en los cuales se da el cluster infinito de percolación. 

Figura 4. Diagrama de flujo de la aplicación para el cálculo de la malla con los 
valores de p. 

En la figura 5, se muestra la interfaz gráfica de usuario de 
la  aplicación  en  la  cual  se  tienen  las  siguientes  opciones  de 
cálculo: 

Figura 5. Interfaz gráfica de usuario de la aplicación. 

•  Un  “combo  box”  que  incluye  un  botón  de  comando 
denominado  “generar  números  aleatorios”  o  un  selector  de 
generadores  de  variables  aleatorias  exponencial,  uniforme  o 
gaussiano,  con  esta  configuración  se  asignan  los  valores 
iniciales a la malla reticular. 
•  Un  botón  de  selección  denominado  “módulo  1”  para 

activar  la  búsqueda  inicial  de  una  p  dada  en  la  malla,  que 
para la aplicación tiene un valor de 0.95.
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•  Un botón de comando denominado “búsqueda de p­0.05” 
mediante  el  cual  se  asigna  a  las  ocho  celdas  vecinas,  de 
aquellas  seleccionadas con el proceso anterior, un valor de p 
igual  al  p  que  tenía  menos  0.05.  con  ello  se  modela  la 
dinámica de un proceso de percolación “random”. 
•  Un  botón  de  comando  llamado  “calcular”  mediante  el 

cual  es  posible  obtener  resúmenes  del  proceso  tales  como: 
valor  inicial  de  p  para  la  búsqueda  (0.95),  porcentaje  y 
número de celdas ocupadas, probabilidad promedio de celdas 
ocupadas (con el cual se verifica si se acerca al valor de pc) y 
el número de  iteraciones antes de  llegar al umbral crítico de 
percolación. 
•  Un  botón  de  comando  denominado  “mostrar  matriz” 

cuya  activación  permite  visualizar  las  celdas  ocupadas  de  la 
malla reticular y la conformación de los clusters de datos. 
•  Un botón de comando “salir” que finaliza la ejecución de 

la aplicación. 

Una  vez  realizadas  distintas  pruebas  de  validación  de  la 
aplicación se estableció un procedimiento con el fin de usar el 
aplicativo  directamente  desde  una  herramienta  SIG  como  el 
ARCGIS® 8.3 mediante la inserción de un botón de comando 
en la barra de herramientas. Este procedimiento introduce un 
avance  local  en  el  desarrollo  de  aplicaciones  en  ambientes 
visuales  y  el  uso  de  herramientas SIG. La  secuencia  técnica 
de pasos del procedimiento es: 
•  Activar  el menú  contextual de  la barra de herramientas 

del SIG y seleccionar el comando “customize”. 
•  Seleccionar  la pestaña “commands” y de  la columna de 

opciones  presentada  seleccionar  “UIControls”  y  activar  el 
botón  “New  UIControl”  ubicado  en  la  parte  inferior  de  la 
ventana  para  seleccionar  la  opción  de  “UIButtonControl”  y 
activar el comando “create” en este punto es posible agregar 
código  (hecho  en  VB)  y  ubicar  el  formulario  que  se  quiere 
ejecutar (userForm1.show). 
•  Repetir  el  primer  paso  y  seleccionar  la  pestaña 

“toolbars”,  activar  el  botón  de  comando  “new”  con  lo  cual 
aparecerá  una  nueva  ventana  en  donde  se  puede  asignar  el 
nombre  al  nuevo  “toolbar”  y  seleccionar  la  dirección  de 
almacenamiento;  el  nombre  asignado  por  defecto  es 
“Normal.mxt”.  Terminado  este  proceso  aparece  el  nuevo 
“toolbar”. 
•  Seleccionar nuevamente la pestaña “commands”, en ella 

seleccionar  “UIControls”,  dar  un  click  sostenido  sobre  el 
nuevo botón creado y arrastrarlo hasta el toolbar. 

Con este procedimiento es posible asignar un nuevo botón 
de  comando  a  la  barra  de  herramientas  del  ARCGIS®  8.3, 
con  el  cual  se  activa  directamente  desde  esta  herramienta 
cualquier  aplicación  desarrollada  en  el  ambiente  Visual 
Basic® y  de  esta  forma usar  en  conjunto  tanto  la aplicación 
como los beneficios del SIG. 

III.  SIMULACIÓN DEL MODELO SIR USANDO SIG 
En  los  Sistemas  de  Información  Geográfica  existen  dos 

modelos  de  datos  fundamentales:  el  modelo  de  datos  tipo 
“raster” representando mediante una matriz de celdas en cada 
una de  las cuales se tiene información referenciada, es decir, 
que brinda una ubicación espacial con base en un sistema de 
proyección  geográfico;  e  información  tabular  acerca  de  los 
atributos  o  propiedades  de  los  objetos  geográficos  bajo 
estudio;  y  el  modelo  de  datos  tipo  “vector”  representado 
mediante  una  secuencia  de  nodos  y  aristas  que  también 
informan  acerca  de  los  atributos  y  ubicación  espacial  de  los 
objetos geográficos. Los valores de p obtenidos en las mallas 
anteriores  se  usan  para  representar  las  variaciones  de  TC  y 
TR y obtener varios “rasters” en los cuales cada celda tiene un 
valor de p ubicado espacialmente lo que permite su uso en el 
modelamiento  de  fenómenos  de  propagación  que  se 
comporten  como  sistemas  dinámicos  estocásticos 
(propagación de epidemias, de incendios, dinámicas sociales, 
entre otros) que se desarrollan en una región geográfica y en 
los  cuales  es  determinante  el  poder  modelar  y  simular  su 
patrón de propagación con el propósito de poderlos intervenir. 
En  los  modelos  matemáticos  tradicionales  usados  en 

epidemiología  [18],  durante  un  proceso  infeccioso  y 
dependiendo  del  tipo  de  enfermedad,  los  individuos  pueden 
pasar por todas o algunas de las siguientes fases: 
•  Susceptibles (S) a ser contagiados. 
•  Infectado  (I)  el  individuo  se  halla  infectado  y  además 

puede infectar; 
•  Removido  (R),  o  recuperado,  estado  durante  el  cuál  el 

individuo  no  puede  ni  ser  infectado  por  haber  adquirido 
inmunidad  (temporal  o  permanente)  ni  afectar  (por  haber 
recuperado  o  haber  pasado  la  etapa  contagiosa  de  la 
enfermedad). 
Con  base  en  lo  anterior  los  modelos  epidemiológicos 

matemáticos se clasifican en tres grandes grupos: 
•  SIR:  El  modelo  susceptible­infectado­removido, 

relacionado  con  las  enfermedades  que  confieren  inmunidad 
permanente y un ciclo típico incluye las tres fases. 
•  SIRS:  El  modelo  susceptible­infectado­removido­ 

susceptible, idéntico al anterior, pero aplicable a casos en que 
la  inmunidad  no  es  permanente  y  el  individuo  vuelve  a  ser 
susceptible después de un cierto periodo, tal como la gripe. 
•  SIS: El modelo susceptible­infectado­susceptible; se usan 

en  casos  en  que  la  enfermedad  no  confiere  inmunidad  y  el 
individuo  pasa  de  estar  infectado  a  susceptible  nuevamente, 
saltando la fase R. 
Para  modelar  el  SIR  se  supone  que  inicialmente  hay  un 

total  de  habitantes  (H0),  un  total  de  sanos  (S0),  un  total  de 
infectados  (I0)  y  total  de  recuperados  (R0).  Se  denomina  a 
S ∆  ,  I ∆  y  R ∆  como  las  variaciones  de  crecimiento  o 

decrecimiento  poblacional  y  se  consideran  las  siguientes 
restricciones: 

•  S ∆  ,  I ∆  y  R ∆  están en función de TC y TR.
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•  TC y TR dependen de múltiples factores varios de 
ellos  de  naturaleza  aleatoria  y  se  modelarán 
mediante  la  teoría  de  percolación  como  la 
variación  de  una  probabilidad  p  en  una  malla 
rectangular  y  se  expresan de manera decimal. En 
el  trabajo  de  Castro  et  al  de  la  referencia  15  los 
valores de TC y TR se toman constantes en toda el 
área  de  estudio,  en  este  trabajo  se  modelan 
estocásticamente  en  diferentes  posiciones 
espaciales. 

•  Se  cumple  el  principio  de  conservación  de  masa 
para las poblaciones, es decir no hay ni muertos ni 
nacimientos. 

St + Rt + It = S0 + R0 + I0  (1) 

•  S ∆  es proporcional al producto entre los sanos y 
los  infectados  y  su  constante  de  proporcionalidad 
es  TC,  la  cual  representa  la  probabilidad  por 
unidad  de  tiempo,  por  habitante  y  por  ubicación 
geográfica de contraer la enfermedad, por lo tanto: 

S ∆  = ­(TC)*S*I  (2) 

•  R ∆  es proporcional al número de infectados y su 
constante de proporcionalidad es TR, la cual mide 
la  probabilidad  de  recuperación  de  los  infectados 
por  unidad  de  tiempo,  por  habitante  y  por 
ubicación geográfica; por lo tanto: 

R ∆  = (TR)*I  (3) 

•  I ∆  se obtiene de la suma de los nuevos infectados 
menos los que se recuperan: 

I ∆  = (TC)*S*I ­ (TR)*I  (4) 

Si  St,  It  y  Rt  son  las  poblaciones  de  sanos,  infectados  y 
recuperados en un polígono, en un tiempo t; para un tiempo t 
+1  la  fluctuación  de  dichas  poblaciones  se  puede  expresar 
mediante las siguientes ecuaciones: 

S S S  t t ∆ + = +1  (5) 

I I I  t t ∆ + = +1  (6) 

R R R  t t ∆ + = +1  (7) 

Se  tomaron  los  datos  de  una  epidemia  de  asma,  en 
Manhattan New York, del  tutotial de ArcGis® 8.3 de donde 
se obtienen  los datos  iniciales para  las poblaciones de sanos, 
infectados  y  recuperados  en  formato  “raster”.  Por medio  de 

los datos de probabilidades obtenidos mediante percolación se 
calcularon  los valores de TC y TR en cada celda del área de 
estudio y se almacenan también en formato “raster”. 

Con  la información anterior y el uso del álgebra de mapas 
se calculan  S ∆  ,  I ∆  y  R ∆  ; para obtener la dinámica de las 
poblaciones S, R e I en cada iteración i+1. 

El  modelo  espacial  para  realizar  los  cálculos  usa  el 
principio de superposición aritmética para operar los “raster” 
que contienen la información inicial de las poblaciones y TC 
y  TR,  mediante  el  comando  “raster  calculator”  del  toolbox 
“spatial analyst” del ArcGis® 8.3 y programar las iteraciones 
sobre las ecuaciones 1 a 7 

Con base en el anterior planteamiento conceptual se diseño 
un modelo de análisis espacial como se muestra en  la  figura 
6.

Figura 6. Modelo de Análisis Espacial de la variación poblacional para un SIR. 

En  las  figuras  7,  8  y  9  se  muestra  la  dinámica  de  la 
población  de  infectados  para  una  TC  y  TR  calculadas 
mediante un “raster” de percolación para una malla reticular 
cuadrangular  inicializada  con  valores  de  p  obtenido a  través 
de  un  generador  de  variables  aleatorias  exponencial.  La 
tonalidad hacia el negro en la figura indica un mayor valor de 
infectados  en  una  ubicación  espacial  específica  dentro  del 
área de estudio.
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Figura 7. Población de infectados iteración 1 (exponencial). 

Figura 8. Población de infectados iteración 3 (exponencial). 

Figura 9. Población de infectados iteración 5 (exponencial). 

De la iteración 1 a la 3 hay un incremento significativo de 
infectados en el área de estudio mientras que en la iteración 5 
ha disminuido drásticamente para luego desbordar el modelo 
en la siguiente iteración por incumplimiento del balance masa 
poblacional (ecuación 1). 
En  las  figuras  10,  11  y  12  se  muestra  la  dinámica  de  la 

población  de  infectados  para  una  TC  y  TR  calculadas 
mediante un “raster” de percolación para una malla reticular 
cuadrangular  inicializada  con  valores  de  p  obtenido a  través 
de  un  generador  de  variables  aleatorias  uniforme.  La 
tonalidad hacia el negro en la figura indica un mayor valor de 
infectados  en  una  ubicación  espacial  específica  dentro  del 
área de estudio. 

Figura 10. Población de infectados iteración 1 (uniforme). 

Figura 11. Población de infectados iteración 5 (uniforme).
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Figura 12. Población de infectados iteración 8 (uniforme). 

De  la  iteración  1  a  la  5  hay  un  incremento moderado  de 
infectados en el área de estudio mientras que en la iteración 8 
ha disminuido drásticamente para luego desbordar el modelo 
en  la  siguiente  iteración  por  incumpliendo del balance masa 
poblacional (ecuación 1). La cantidad final de infectados para 
el caso del generador uniforme es menor que para el caso del 
modelo exponencial. 
En  las  figuras  13,  14  y  15  se  muestra  la  dinámica  de  la 

población  de  infectados  para  una  TC  y  TR  calculadas 
mediante  un  “raster”  de  percolación  que  parte de  una malla 
reticular cuadrangular  inicializada con valores de p obtenido 
a  través  de  un  generador  de  variables  aleatorias gaussiano o 
normal.  La  tonalidad  hacia  el  negro  en  la  figura  indica  un 
mayor  valor  de  infectados  en  una  ubicación  espacial 
específica dentro del área de estudio. 

Figura 13. Población de infectados iteración 1 (gaussiano o normal). 

Figura 14. Población de infectados iteración 5 (gaussiano o normal). 

Figura 15. Población de infectados iteración 10 (gaussiano o normal). 

De la iteración 1 a la 5 hay un incremento significativo de 
infectados  en  el  área de estudio mientras que en  la  iteración 
10  ha  disminuido  drásticamente  para  luego  desbordar  el 
modelo en la siguiente iteración por incumpliendo del balance 
masa  poblacional  (ecuación  1).  La  cantidad  final  de 
infectados  para  el  caso  del  generador  normal  es menor  que 
para  el  caso  de  los  modelos  exponencial  y  uniforme.  En  el 
modelo gaussiano el desbordamiento se obtiene en la iteración 
10,  en  el  modelo  uniforme  en  la  iteración  8  y  para  el 
exponencial  en  la  iteración  5. Cerca de  la  iteración  final  los 
valores  de  TC  y  TR  están  en  la  vecindad  del  valor  de 
probabilidad crítica. 

IV.  CONCLUSIÓN 
La  dinámica  de  fenómenos  espaciales  complejos  ha  sido 

abordada  desde  diferentes  técnicas  computacionales  y
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matemáticas,  la  integración  de  estos  elementos  permite 
modelar  algunos  componentes  del  fenómeno  que  permiten 
ampliar su conocimiento. En este artículo se hace un aporte a 
esta discusión mediante la integración de la tecnología de los 
SIG  a  la  simulación  de  componentes  estocásticos  de 
fenómenos  de propagación espaciales y complejos. El diseño 
de un aplicativo computacional para representar por medio de 
percolación la variación de parámetros asociados con sistemas 
dinámicos  aleatorios  espaciales  brinda  a  la  comunidad 
académica una herramienta cuyos resultados pueden aplicarse 
en  diferentes  situaciones  y  áreas  del  saber  y  la  versatilidad 
para  obtener  resultados  desde  varios  modelos  estocásticos 
(uniforme,  exponencial  y  gaussiano)  permite  su 
contextualización en casos en los cuales se tenga predefinido 
que  el  componente  estocástico  de  la  dinámica  del  sistema 
obedezca  a  alguno  de  estos  tipos  de  patrones.  El  hecho  de 
modelar  TC  y  TR  con  diferentes  modelos  estocásticos 
permitió  representar  la  rapidez  de  la  propagación  de  una 
epidemia  ya  que  para  el  caso  del  modelo  gaussiano  la 
fluctuación de las poblaciones fue más tenúe que para el caso 
de  los  modelos  unformes  y  expenencial;  ello  sería  de  gran 
ayuda  para  los  investigadores  en  el  tema  ya  que  permitiría 
establecer  parámetros  de  control  de  la  epidemia  al  vincular 
los  valores  de  TC  y  TR  con  vectores  de  propagación  y 
medidas de control. 

V.  PROYECCIÓN 

Se plantea a futuro el desarrollo de los siguientes aspectos: 
•  Implementar  otros  modelos  estocásticos  dentro  del 

aplicativo  con  el  propósito  de  ampliar  el  espectro  de 
aplicabilidad  del  modelo  que  permitan  el  desarrollo  de 
experimentos con otros tipos de sistemas dinámicos (sociales, 
ambientales,...etc.). 
•  Automatizar dentro de la herramienta SIG las funciones 

de  análisis  espacial  y  el  modelo  espacial  para  casos  de 
aplicación  específica  para  simular  el  fenómeno  de 
propagación en tiempo real. 
•  Con  datos  adecuados  realizar  simulaciones  3D  sobre 

alguna  región  en  particular  y  la dinámica de  la propagación 
de algún fenómeno de estudio. 
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