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Resumen—En  Dinámica  Molecular   (DM)  una 
configuración  sucesiva  es  generada  mediante  la 
integración  de  las  leyes  de  movimiento  de  Newton,  las 
tr ayector ias  resultantes  nos  dan  información  acerca  de 
como  las  posiciones y velocidades de  las  par tículas  en el 
sistema,  cambian  con  el  tr anscurso  del  tiempo,  en  este 
contexto    lo  que   mayor   costo  computacional  exige  es  la 
determinación  de  las  fuerzas  aplicadas  a  cada par tícula 
en  su  respectiva  posición;  generalmente  en  DM    se 
suelen  utilizar   modelos  simples,  donde    todas  las 
colisiones  son    elásticas  y  ocur ren  cuando  las 
separaciones  entre  los  centros  de  las  par tículas  son 
iguales al punto de discontinuidad del potencial. 

Al utilizar  potenciales continuos la fuerza y la posición de 
las  par tículas  dependen  de  la  interacción  con  las 
restantes  par tículas  del  sistema  generando  una 
interacción de muchos cuerpos, una solución analítica no 
es  posible  aun  en  este  problema.  Existe  una 
aproximación  de  potenciales  atómicos  que  interactúan 
con  funciones  de  entrenamiento  analíticas  mediante 
puntos de Datos. 

La pr incipal  tarea en el método propuesto es generar  un 
conjunto  de  datos  de  entrenamiento  mediante  la 
acumulación  de  la  funciones  de  potencial  de  Lennard 
Jones  ,  extraer   los    r asgos  estructurales   a par tir  de sus 
trayector ias  y  par ticionar   un  número  de  objetos 
dinámicos  en  un  pequeño  número  de  clústeres,  de  tal 
forma  que  los  objetos  en  cada  cluster   sean  en  lo  más 
posible similares y  los objetos en diferentes clústeres son 
lo  menos  similares  ,  permitiendo  predecir     el 
compor tamiento de las var iables de salida. 

El objetivo más amplio del  tr abajo consiste en el análisis de 
un sistema molecular  donde buscamos capturar  impor tantes 
eventos  por   ejemplo  la  desintegración  y  fusión  de  defectos. 
La  técnica  utilizada  es  el  r econocimiento  de  patrones 
temporales  difusos.  El  concepto  más  impor tante  que  se 
presenta  en  este  contexto  es  la  opción  de  una  medida 
relevante de  la similar idad, que se utiliza para  la definición 
del cr iter io de agrupamiento. 

Palabras  Clave—  Dinámica  de  Sistemas,  Lógica  Difusa, 
Aplicaciones de Inteligencia Ar tificial 

Abstract—In  Molecular   Dynamic,  successive  configurations 
are  generated  by  integrating  Newton’s  law  of  motion;  the 
resulting  trajectory  specifies  how  the  position  and  velocities  of 
the par ticles in the system move with time. The expensive par t is 
the calculation of forces on each par ticles from cur rent positions 
,  based  on  the  force  field,  when MD  using  simples  models  all 
collisions  are  per fectly  elastic  and  occur   when  the  separation 
between  the  center s  of  the  par ticles  equal  to  point  of 
discontinuity  in  the  potential.   When  is  using  with  continuous 
potentials ,  the force on each par ticle will change whenever  the 
par ticle  change  its  position  or   whenever   any  of  the  other  
par ticles with which it interacts change position ,  the motions of 
all  par ticles  are  coupled  together   ,  giving  r ise  to  a many  body 
problem  that    cannot  be  solved  analytically  ;  finite  difference 
methods has to be used. 

The main task in the proposed method is to generate a group of 
data of  tr aining by means of  the  accumulation of  the  functions 
of potential of Lennard Jones, to extract the structural features 
star ting from its  tr ajector ies and   a number  of dynamic objects 
segment  in  a  small  cluster s  number ,  in  such  a  way  that  the 
objects in each cluster  are in the most possible thing similar  and 
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the  objects  in  different  cluster s  are  the  less  similar   ones, 
allowing to predict the behavior  of the exit var iables 
The goals  is build an automated system to capture impor tant 

events  such  as  defect  disintegration  and  defect  amalgamation 
but  goals  initial  is  to  understand  the  interaction  among  defect 
using dynamic fuzzy pattern recognition . The task of cluster ing 
methods  is  to par tition a number  of objects  into small numbers 
of homogeneous cluster s so that objects belonging to any one the 
cluster s would  be  as  similar   as  possible  and object of different 
cluster s  as  dissimilar   possible.  The  most  impor tant  problem 
ar ising  in  this  context  is  the  choice  of  a  relevant  similar ity 
measure, which is use for  definition of the cluster ing cr iter ion 

Key  words—Dynamic  System,  Fuzzy  Logic,  Application  of 
Intelligent System 

INTRODUCTION 

L  interés principal de nuestra actividad investigativa  es el 
descubrimiento de patrones dinámicos e  información de un 

sistema  estudiado,  lo  que    puede  redundar  en  un  mayor 
compresión  de  la  física  que  se  esconde  tras    la evolución de 
los  defectos  estructurales  ,  su  dinámica,  esto en  tiempo real. 
Lo anterior pueden ser resultados de cambios abruptos en las 
estructura  de  los  clústeres  correspondiente  a  cambios  de 
estado o comportamiento del  sistema en  consideración y que 
hace  referencia  a  un  cambio  estructural.      Debido  al 
surgimiento de nuevos clústeres y la consideración de algunos 
datos históricos como  irrelevantes, pueden aparecer cambios 
en la estructura dinámica del cluster  [Man, 1983] 

En  muchas  áreas  de  la  ciencia  y  la  ingeniería,  los  sistemas 
pueden  ser  estudiados  a  través  de  la  evolución de  los  rasgos 
temporales  de  sus  propiedades  observables.  Diferentes  tipos 
de sistemas en diferentes estados de un sistema sencillo puede 
distinguirse mediante un apropiado análisis de las secuencias 
temporales, usualmente la clasificación de series de tiempo es 
realizada mediante la computación de algunas características 
de los parámetros para cada serie de tiempo en cuestión. Las 
clasificaciones  son  realizadas  con  los  nuevos  datos  que  no 
aparecen claramente asignados en  los clústeres existentes, es 
necesario crear uno o más clústeres en forma secuencial o en 
paralelo.  Esta  situación  puede  aparecer  si  el  grado  de 
membresía del nuevo cluster con respecto a todos los clústeres 
difusos es igual o menor al de los ya formados. 

Con  base  a  este  conjunto  de  parámetros.  Frecuentemente  se 
hace en forma no supervisada, aunque no se conozca a priori 
que medición  del  parámetro  corresponda  a  una  determinada 
clase.    En  el  caso  de  un  rasgo  escalar  que  sigue  una 
distribución encorvada para distinguir  diferentes clases. La 
similaridad entre trayectorias puede ser interpretada en forma 
diferente dependiendo del contexto. En el lenguaje natural, la 
interpretación  de  similaridad  esta  asociada  con  “tener 
características  comunes”  o  “no  tener  diferencia  en  la  forma 
pero sí en tamaño o posición” [Setnes et el, 1998, p 378]. 

En ciertas aplicaciones, el propósito de la clasificación de las 
series  de  tiempo  es  la  partición  de  las mismas  en  grupos  o 
series  con  dinámica  similar.  En  estos  casos  la  noción  de 

similaridad  es  utilizada  para  cuantificar  la  aproximación 
entre  sistemas  dinámicos  y  sus  atractores,  más  que  como 
series  de  tiempo  individuales.  Para  sistemas  dinámicos  con 
grados  de  libertad,  los  atractores  son  definidos  como  un 
subconjunto  M­dimensional  en  el  espacio  de  fase  hacia  los 
cuales  algunas  de  las  trayectorias  se  juntan  como  “atraídas” 
asintóticamente. 

Buscamos  mostrar  como  el  uso  del  conocimiento  sobre  la 
similaridad  en  series  de  tiempo,  divide  las  secuencias  en 
grupos significativos o clústeres. 

Un  conjunto mutuo  de  similaridades  permite  trabajar  en  un 
espacio  abstracto  de  propiedades  dinámicas  sin  tener  que 
especificar  una  base  o  incluso  una  dimensión.  Una 
aproximación  similar  produce  resultados  promisorios  en  el 
contexto  especial  de  la  clasificación  de  la morfología  de  los 
registros. 

I.  FUNDAMENTOS DE DINÁMICA MOLECULAR 
La  dinámica  molecular  hace  uso  de  las  componentes  del 
sistema  en  un  sencillo  esquema  formado  por:  la  energía 
potencial, la ecuación dinámica de cada una de las partículas, 
donde  se  obtiene  la  aceleración  y  la  velocidad  para  obtener 
finalmente  las  coordenadas  y  por  consiguiente  las 
trayectorias. 

Integrando  las  ecuaciones  de  movimiento  de  Newton 
mediante  de  métodos  numéricos;    se  espera  generar 
trayectorias  exactas    sobre  intervalos  largos  de  tiempo  ; 
cuando  se  ha integrado  numéricamente con pasos de tiempo 
finito      no  es    factible,  sin  embargo  esta  exactitud    no  es 
necesaria, lo más importante es el comportamiento estadístico 
de  la  trayectoria  para  asegurar  que  las  propiedades 
termodinámicas  y  dinámicas  del  sistema  estén  siendo 
obtenidas con una preedición suficiente, lo cual se cumple  si 
el  propagador  del  movimiento    tiene  la  propiedad  de 
simpleticidad  o  sea  que  conserva  la  métrica  invariante  del 
espacio  de  fases,  lo  cual  implica    a  la  vez  que  el  error 
asociado al propagador esta acotado 

(1) 

Donde  es  el  número  de  pasos  de  la  simulación, 

es  la  energía  total  inicial  del  sistema 

equilibrado,  y  es  el  límite  superior  que  asegura  la 

conservación  de  la  energía  Vg.  donde  un  valor  de  es 
aceptable,  para  sistemas  Hamiltonianos,  la  propiedad  de 
simpleticidad  implica que el Jacobiano sea  unitario: 

E
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(2) 

Donde  Representa el vector inicial del espacio de fases de 

dimensiones, contiene todas las variables de posición 
y de impulsión  que describen el sistema. El potencial de 
Lenard  –Jones  es  comúnmente  utilizado  para  describir  la 
interacción  de  sistemas  compuestos  por  gases  nobles  como 
Neón, Argón y para líquidos. 

Al  asumir  un  sistema  conformado  por  átomos  de  argon  se 
tiene básicamente que los primeros términos (ecuación 3) son 
de corto alcance y repulsivos y según el principio de exclusión 
de Pauli, dos electrones no pueden ocupar la misma posición, 
lo cual termina manifestándose como una fuerza de repulsión 
entre cargas del mismo signo. 

La atracción de largo alcance, segundo termino (ecuación 3), 
los  electrones  alrededor  del  núcleo  polarizado  crean  una 
atracción  electrostática  entre  los  átomos,  par  el  caso  átomos 
de Argon m=6.6x10  exp.  ­23  gramos,  E=1.66x10  exp.  ­14 
erg, sigma=3.4x 10 exp. 10­8 

(3) 

II.  NOCIONES DE SIMILARIDAD ESTRUCTURAL 
PARA TRAYECTORIAS 

Para  determinar  la  similaridad  estructural  son  analizados 
aspectos  relevantes  del  comportamiento  de  las  trayectorias, 
que  definen  propiedades  matemáticas  de  las  mismas  como 
pendiente, curvatura, posición, valores de puntos de inflexión 
y  suavidad,  los  cuales  son  utilizados  como  criterios  de 
comparación.  De  esta  forma,  la  similaridad  estructural  es 
ajustada  a  situaciones  en  la  que  se  determina  patrones 
particulares  en  las  trayectorias  que  pueden  emparejarse, 
(referencia).  De  esta manera,  la  tarea  es  definir  una medida 
de  similaridad  para  trayectorias,  que  expresen  un  grado  de 
emparejamiento  de  acuerdo  a  algún  criterio  predefinido  e 
invariante, como Cambios de escala, traslación, observaciones 
lejanas o apariencia de valores incorrectos. 

A.  Similaridad en base a Curvatura de las Trayectorias 
La  curvatura  de  las  trayectorias  de  cada  punto  describe  el 
grado con  la cual una trayectoria esta doblada en este punto. 
Esta  es  evaluada  mediante  el  coeficiente  de  la  segunda 
derivada  de  una  trayectoria  en  cada  punto,  que  puede  ser 
definida mediante la siguiente ecuación (para una trayectoria 
unidimensional). 

(4) 

Donde  denota  el  coeficiente  de  la  primera  derivada  en el 

punto  dado por: 

(5) 

Sustituyendo la anterior ecuación en la ecuación de la 
curvatura, se llega a la siguiente ecuación basada en los 
valores de las trayectorias originales: 

(6) 

Las  trayectorias  poseen  mínimos  y  máximos  locales,  éstos 
pueden  ser  detectados  mediante  la  espera  de  un  cambio  de 
signo en los valores de la primera derivada. Así, es suficiente 
considerar  los  coeficientes  de  la  segunda derivada ya que en 
estos puntos específicos es donde la curvatura es máxima. La 
característica  distintiva  cuando  se  considera  la  curvatura,  es 
el  signo  del  coeficiente  de  la  segunda  derivada.  Si  el 
coeficiente  es  positivo  en  cierto  periodo  de  tiempo,  entonces 
la  trayectoria es convexa en el intervalo (cercana al tope). Si 
el coeficiente es negativo en determinado periodo de tiempo, 
la  trayectoria  es  cóncava  (cercana  al  punto  bajo).  Si  el 
coeficiente  es  igual  a  cero  en  algún  punto,  que  es  llamado 
punto  de  inflexión,  no  se  presenta  curvatura  en  este  punto. 
Los  puntos  de  inflexión  aparecen  en  Si  trayectorias 
oscilatorias  e  indica  el  cambio  de  curvatura  de  convexo  a 
cóncavo  y  viceversa.  Todas  las  funciones  lineales  son 
caracterizadas mediante curvatura cero en todos los puntos. 
Definición  trayectorias  e  son  consideradas 
similares  con  respecto  a  su  curvatura  si  están  caracterizadas 
por coeficientes similares en su segunda derivada. 

Esta  definición  de  similaridad  estructural  es  ilustrada  en  la 
figura 1, donde tres tipos de trayectorias están representadas: 
la  trayectoria  convexa  C,  la  trayectoria  cóncava  B,  y  la 
trayectoria A  con  comportamiento  oscilatorio  que cambia de 
cóncavo a convexo. 

La  medida  de  la  similaridad  basada  en  la  curvatura  es 
particularmente  adecuada  para  trayectorias  con  un  bajo 
número  de  fluctuaciones  y  en  forma  ondulada.  Esta medida 
sin  embargo  es  susceptible  al  cambio  de escala, por ejemplo 
una  trayectoria  transformada  mediante  un  factor  de  escala 
tiene una curvatura diferente que al comienzo.
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Figura 1.  Similaridad Estructural basada en Curvatura de las Trayectorias. 

B.  Agrupamiento por relación de equivalencia difusa 
para la identificación de los rasgos. 
Como  los  rasgos  de  las  trayectorias  que  caracterizan  el 
comportamiento  de  un  sistema  dinámico  no  pueden 
definirse  crisp,  pero  puede  ser  aproximado  como  un 
subconjunto  difuso  en  un  espacio  bidimensional  definido 
por  la  curvatura  y  la  pendiente.  Sin  embargo  la 
aproximación utilizada para la clasificación esta basada en 
el  concepto  de  equivalencia  difusa,  que  define  una 
relación que es reflexiva, simétrica y transitiva máx.­min. 
Este  algoritmo  se  ilustra  mediante  el  diagrama  de  flujo 
que  se  muestra  en  la  figura  2.  Una  relación  de 
equivalencia  difusa  define  una  partición  difusa  en  cada 
nivel  ,  cada  una  de  las  cuales  representa  un  cluster 
separado. 

Figura 2.  Diagrama de flujo del proceso propuesto 

El  análisis  de  componentes  principales  (PCA) es usado para 
encontrar  la  curvatura  del  cluster  identificado,  aunque  los 
datos exhiben   una   variación considerable, la cual no puede 
estar  representada  exactamente mediante  los  primeros  pocos 
vectores propios del conjunto completo de datos, sin embargo 
PCA  es ejecutada en una ventana de datos, para encontrar las 
orientaciones locales. 

III.  CLUSTERING MEDIANTE RELACIONES DE 
EQUIVALENCIA DIFUSA 

Esta  sección  describe  una  técnica  clustering  en  la  cual  los 
datos  multivariadas  son  usados  para  formar  una  matriz  de 

relación de equivalencia difusa.  Diferentes niveles  de este 
conjunto difuso se producen en número diferentes de clústeres 
a  partir  de  los  datos  originales.   Dado  un  conjunto  de  datos 

con  n  muestras  sobre  un  espacio 

p­dimensional  de  rasgos  ,  una  matriz  de  relaciones  de 
equivalencia  difusa  con  dimensiones  es 

determinada.  Defínase  y  el valor máximo y mínimo 

respectivamente de  para cada rasgo  en  como: 

Y 
(7) 

Definiendo el término  enésimo de la matriz  como:

(8) 

Para formar la matriz relacional de compatibilidad difusa  . 

Cada  representa  la  composición  de  la  relación  de  la 

forma  .  La  clausura  ,  de  puede  ser  computada 
mediante el siguiente procedimiento. 

Desde  la matriz  de  clausura  transitiva  con  elementos  , 

una  colección  de  clústeres  ,  es  formado para un grado de 
membresía  específico  .  Sea  tal  que 

forman una clase de equivalencia difusa. 

Se  define  un  cluster  de  equivalencia  difusa  mediante 

. 

1.1  Conjuntos de Múltiples cluster s. 

Definamos el centroide del cluster  como: 

(9)
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Donde  denota  la  cardinalidad  del  conjunto  de  clústeres 

.  Sea  el  conjunto  de  centroides  de 

clusters  difusos  resultado  de  coleccionar  datos  durante  un 
intervalo  de  tiempo,  y  un  segundo 

conjunto  de  centroides  de  clusters    difusos  resultado  de 
coleccionar  datos  durante  un  intervalo  donde 

con  máximos  y  mínimos  acumulativos  para  cada 
rasgo  donde se obtienen los 
términos sin perdida de generalidad: 

Y  los 

vectores  de  peso  y 

formalizados  sin  perdida  de 

generalidad mediante  . 

Defínase  el  rango  global  como: 
,  la 

matriz relacional difusa será de la forma: 

(10) 

Donde  es  la dimensión del espacio de rasgos y  para 
la  distancia  de  Hamming  y  para  la  distancia 

Euclidiana.      Con  las  proyecciones  y 

1.2  Conjunto de Mezcla de Cluster s. 

Usando  la matriz  de  relación centroide  y  , una nueva 

colección  de  clústeres  es  construida  con  un  umbral 

que satisface  ,  es remplazado así: 

(13) 

Donde  en  consecuencia  es  remplazado  por  . 

Finalmente la forma: 
(11) 

Para una nueva colección de clústeres representando series de 
tiempo  y  .  Este  método  debe  ser  repetido  para 
cada sucesivo intervalo de tiempo. 

1.3  Medida de Similar idad en el Cluster . 

Sea  el conjunto de clústeres formados mediante adición o 
mezcla de conjuntos de clústeres en un número de intervalos 
de  tiempo.   Sea  el conjunto de clusters durante un nuevo 

intervalo  de  tiempo  .una  matriz  de  relación  difusa 

puede  ser  computada  y  la  proyección  . La medida  de 
similaridad  es  definida  como  el  grado  en  la  cual  el 

conjunto  de  clústeres  es  similar  al  conjunto  de  clusters 

y formalizada así: 

(12) 

Ejemplos  del  uso  de  la  medida  de  similaridad  en  sistemas 
dinámicos se dará en la siguiente sección: 

IV.  DEFINICION DEL PROBLEMA 

La  parte  problema  inicia  con  la  obtención  de  las  series  de 
tiempo como fuentes que nos permite a partir de datos, llegar 
a formar base de datos de conocimiento descubiertos (BCD). 

Con  un  programa  computacional  con  entradas  en  sus 
coordenadas  y  las  velocidades  de  todos  sus  átomos.    Los 
átomos  son  inicialmente  arreglados  en  forma  de  un  Lattice 
regular.     Estos átomos ocupan todas las esquinas y el centro 
de un cubo llamado celda unitaria. (Ver figura 5) 

Figura 3.  Lattice FCC. 

Aunque  las  celdas  unitarias  son  cúbicas,  , 

cada  celda  contiene 

y  la densidad 

numérica de datos  esta dado por  o  . Las
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4  coordenadas  están  dadas  como:  , 

,  estas  cuatro  ordenadas  se 

almacenan en una matriz de orden 4x3. 

El  sistema simulado es construido mediante la repetición del 
número  de    celdas  unitarias  en  las  direcciones  ,  ,  y 
almacenado cada una en un vector. El número total de átomos 
esta dado entonces por: 

(13) 

Se generan velocidades aleatorias de la magnitud 

, donde  es la temperatura inicial así que: 

(14) 

Para cada átomo el vector de velocidad esta dado mediante: 
(15) 

Donde  es  un  vector  orientado  aleatoriamente  de 

longitud unitaria. 
La  secuencia  de  enteros  aleatorios  aparentemente  entre  y 

es  obtenida  mediante  una  inicialización  para 
diferente  de  cero.  La  ecuación  recursiva  dada  por 

,  donde  se  selecciona 

y  , obteniendo los 
números aleatorios uniformes en el rango  mediante: 

(16) 

V.  RESULTADOS 
A  continuación  se  ilustra  el  comportamiento  de  un  sistema 
dinámico  molecular  específicamente  a  través  de  “Molecular 
dynamics (MD) simulation with the Lennard­Jones potencial” 
donde  se  observa  el  comportamiento  de  las  variables  de 
estado,  temperatura,  energía  potencial  y  energía  total,  Se 
quiere analizar los rasgos del comportamiento de las variables 
de  estado  en  términos  de  similaridad  estructural  entre  dos 
trayectorias. 

En  la  tabla  1  se  ilustra  el  comportamiento  temporal  de  la 
temperatura y la energía potencial con tamaños de 3,6, y 11 a 
celdas  unitarias  por  cada  eje.   Estas  trayectorias  son  la  base 
para  extraer  puntualmente  su  pendiente  y  curvatura  que  se 

convierten  en  componentes  temporales  en  el  espacio  de 
rasgos. 

La definición de similaridad estructural donde las trayectorias 
presentan  diferentes  comportamientos  a  medida  que  se 
incrementa el número de celdas unitarias en sus ejes. 
Tabla 1. Trayectorias de comportamiento de la Temperatura, Energía potencial 
con 3, 6,11 celdas unitarias por cada eje. 

Variable Estado (3 cu)  Variable estado (6cu)  Variable estado (11cu) 

La   medida  de  similaridad  ,  donde  la característica 
es  un  vector  de  coeficientes  de  la  segunda  derivada 

el  conjunto  difuso  denota  “ 

diferencia admisible para la relación difusa entre pendiente y 
curvatura”  si  la  traslación    temporal  es  irrelevante  para  el 
proceso  de  reconocimiento  de  patrones  similares  en  las 
trayectorias  ,  los  vectores  de  características  obtenidas  para 
ambas  trayectorias  pueden cambiarse   cíclicamente    respecto 
de una con la otra y la medida de similaridad se define  para 
cada  combinación  ;  en  esta  forma  la  máxima  similaridad 
corresponde  al mejor emparejamiento de  las  trayectorias con 
respecto a la curvatura encontrada. La medida de similaridad 
basada  en  la  curvatura  esta  particularmente  disponible  para 
trayectorias  con  bajo  número  de  fluctuaciones  y  en  forma 
ondulada;  esta medida  ,sin  embargo,    es  sensitiva al cambio 
de  escala,  por  ejemplo  las  trayectorias  transformadas 
mediante  un  cambio  en  el  factor  de  escala,  tienen  diferente 
curvatura. 

En  la  tabla  2  se  ilustra  el  comportamiento  temporal  para  la 
temperatura  y  energía  potencial  en  el  espacio  de  rasgos 
(pendientes  y  curvaturas  puntuales  y  temporales)  para  cada 
una de las tres celdas en los ejes en consideración. 

Los  parámetros  listados  en  la  similaridad  estructural  basada 
en  los  parámetros  temporales  específicos  de  las  trayectorias 
permiten una descripción de la forma de patrones temporales 
presentes  en  las  trayectorias.;ellos  tienen  en  cuenta    el
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número y tamaño de las colinas, su pendiente y curvatura, el 
instante de su apariencia y su duración, donde los factores de 
cambio de escala y  traslación  tienen un efecto en  los valores 
de los parámetros, esta medida de similaridad  está disponible 
para el reconocimiento y comparación de patrones específicos 
de trayectorias. 
Tabla 2. Ilustra la similaridad estructural entre el comportamiento temporal de 
la temperatura y energía potencial para 3, 6,10   celdas unitarias. 

IPC (3 cu)  IPC (6cu)  IPC (11cu) 

Este  trabajo  muestra  las  trazas  de  las  variables  de  estado 
(temperatura y energia potencial) que no pueden ser definidas 
robustamente  pero  que  pueden  aproximarse  como 
subconjuntos  difusos  en  un  espacio  bidimensional  definido 
mediante la pendiente y la curvatura. 

En  la  tabla  3  se  ilustran  los  dendogramas  (generados  en  el 
proceso  de  relacion  de  equivalencia  difusa  utilizando  como 
metrica  la  distancia  euclidiana)  que  ilustran  el 
comportamiento de la temperatura y energia potencial para 3, 
6,  11,  celdas  unitarias  en  los  ejes  a  partir  de  un  numero de 
niveles  (umbrales)  que  subdividen  los  datos  en  diferentes 
subconjuntos. 

Una  vez  que  los  datos  son  agrupados,  el  análisis  de 
componentes  principales  es  aplicado para extraer estructuras 
de  alta  dimensión  con  el  propósito  de  encontrar  auto 
descomposiciones el espacio de patrones. 

Este método  es  particularmente  útil  cuando  en  el espacio de 
patrones  original  puede  ser  descrito  con  precisión  en  un 
subespacio medido mediante mucho del primer auto vector. 

El  propósito  de  la  segmentación  es  la  descomponer  la 
secuencia  en  unos  pequeños  número  de  subconjuntos 
homogéneos llamados segmentos , de tal forma que los datos 
en cada segmento pueda ser descrito con precisión  mediante 
un simple modelo , por ejemplo una constante mas ruido. 

Los  algoritmos  de  segmentación  son  ampliamente  utilizados 
para  extraer  estructuras  a  partir  de  secuencias  y  por  ello  se 
utilizaron  tres  algoritmos  el  SEG­PCA,  el SEG­PCA­DPA y 
el  PCA­SEG  [Ella  Bingham  et  la,  2000].    En  la  tabla  4  se 
ilustra básicas segmentaciones para Cada uno de los clústeres 
obtenidos  en  el  proceso  de  relacion  de  equivalencia  difusa  y 
representada  mediante  los  dendogramas.  En  la  tabla  4  se 
ilustra una muestra del proceso. 
Tabla 3.  Ilustra el agrupamiento para el comportamiento temporal de la 
temperatura y Energía potencial para celdas unitarias 3, 6,11. 

Dendograma (3 cu)  Dendograma (6cu)  Dendograma (11cu) 

Tabla 4.  Segmentaciones básicas de la Temperatura y Energía potencial para 
celdas unitarias 3, 6,10. 

Segmentación ­PCA 
(3 cu) 

Segmentación ­PCA 
(6cu) 

Segmentación­PCA 
(11cu) 

VI.  CONCLUSIONES 
La figura 4 muestra los datos originales, acompañados de los 
coeficientes  docto­  segmentos  como  imágenes  en  escala  de 
grises  para  cada  uno  de  los  tres  algoritmos  tipo  PCA 
mencionados anteriormente, para segmentos de tamaño 2. se 
notan  zonas  (rasgo  en  la  intensidad  del  color)  de 
comportamiento  similar  en  el  comportamiento  de  las
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variables  temperatura y energia potencial entre los diferentes 
números  de  celdas  unitarias.  También  se  puede  observar 
como es de fuerte la estructura latente tanto en la temperatura 
como  en  la  energia  potencial  en  el  caso  de  considerarse  11 
celdas unitarias en los ejes.   Asi que diferentes segmentos en 
algunos  casos  reales  poseen  básicamente  fundamentos 
comunes. 

Todos los métodos de reconocimiento de patrones utilizan la 
distancia  entre  objetos  y  prototipos  de  clústeres  como  un 
criterio  de  agrupamiento  para  determinar  el  grado  de 
membresía  de  los  objetos  a  los  clústeres;  mientras  que  la 
localización de los centros de los clústeres son obtenidos con 
base en  la  localización de  los objetos en el espacio de rasgos 
ponderado  mediante  su  grado  de  membresía.  En  el 
agrupamiento  usando  relaciones  de  equivalencia  no  es 
necesario especificar el número de clases. 
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