
Revista Avances en Sistemas e Informática, Vol.5 No. 1, Edición Especial, Medellín, Mayo de 2008, ISSN 1657-7663

III Congreso Colombiano de Computación – 3CCC 2008

Un Sistema de Extracción de Información Basado en

Ontologías para Documentos en el Dominio de las

Tecnologías de Información

An Ontology-Based Information Extractor for Data-Rich

Documents in the Information Technology Domain

Recibido para revisión 28 de Noviembre de 2007, aceptado 14 de Febrero de 2008, versión final 28 de Febrero de 2008

Sergio G. Jiménez V., Ing., Fabio A. González O., PhD.

National University of Colombia - Branch Bogota

{sgjimenezv,fagonzalezo}@unal.edu.co

Resumen—Este artículo se presenta un método de extracción de

información adaptado a documentos ricos en datos, basado en el

conocimiento representado en una ontología de dominio. El

extractor combina un buscador aproximado de cadenas de

caracteres y un algoritmo para desambiguación automática de

sentidos de palabras (WSD). El buscador aproximado de cadenas

de caracteres encuentra menciones a los términos combinando

medidas de similitud a nivel de carácter y de palabra soportando

acrónimos no estandarizados y estilos inconsistentes de

abreviación. Proponemos una distancia de edición a nivel de

caracteres con sensibilidad a prefijos llamada root distance y un

nuevo algoritmo de similitud de cadenas a nivel de palabras para

detección automática de acrónimos. Adicionalmente se utilizó

una estrategia de WSD usando una medida de afinidad semántica

basada en ontologías para resolver la ambigüedad inherente de

algunos términos. El modulo de WSD encuentra combinaciones

de sentidos para todo el documento optimizando la coherencia

semántica del discurso. Nuestro enfoque resulta apropiado para

la extracción de información en documentos ricos en datos que

describen un solo objeto (i.e. producto) por documento. Los

experimentos alcanzaron una precisión del 78,9% con una

cobertura del 99.5% utilizando documentos y una ontología

relacionada con el dominio de las computadoras portátiles.

Palabras Claves—Gestión del conocimiento, Extracción de

Información, Ontologías, Búsqueda Aproximada de Cadenas,

desambiguación automática de sentidos de palabras, Afinidad

semántica

Abstract—This paper presents an information extraction method,

suitable for data-rich documents, based on the knowledge

represented in a domain ontology. The extractor combines a fuzzy

string matcher and a word sense disambiguation (WSD) algorithm.

The fuzzy string matcher finds mentions of terms combining

character-level and token-level similarity measures dealing with

non-standardized acronyms and inconsistent abbreviation styles.

We propose a new character-level edit distance sensitive to prefixes

called root distance and a token-level similarity algorithm for

fuzzy acronym detection. Additionally, a WSD strategy using an

ontology-based semantic relatedness measure is used to solve the

inherent ambiguity of some entities. The WSD module finds a

sense combination over all the document length optimizing the

document semantic coherence. Our approach seems to be suitable

to extract information from data-rich documents describing only

one main object (i.e. product) by document. The results showed a

precision of 78.9% with 99.5% recall using documents and an

ontology related to laptop computers domain.

Keywords—Knowledge Management, Information Extraction,

Ontologies, Fuzzy String Searching, Word Sense Disambiguation,

Semantic Relatedness

I. INTRODUCTION

The amount of documents available electronically has

increased dramatically with the vertiginous growth of the

Web. Nevertheless, our capacity to "understand" automatically

(i.e. machine reading) those documents is still considered an

open problem [1]. Information Extraction (IE) is a reading process

which aims to extract structured information from un-structured

text documents. For instance, to obtain a list of authors, book

titles and publishers from a set of literary critics. IE is considered

a shallow reading process but it might be considered a step

towards solving the machine-reading challenge.

Specifically, IE aims to find some selected entities and simple

relations in text documents. In our book publishing example,

three target fields can be extracted (i.e. author, title and publisher)

and two possible relations are is-written-by and is-published-

by. Generally, IE seeks only for a small part of document

Revista Avances en Sistemas e Informática, Vol.5 No. 1, Edición Especial, Medellín, Mayo de 2008, ISSN 1657-7663

III Congreso Colombiano de Computación – 3CCC 2008
48

information in comparison with the entire document information.

Many other entities and complex relations expressed using

natural language are disregarded. For instance, in our literary

critics example, feelings, opinions, favorability of the critic and

final critic's recommendation are out of the reach of IE.

However, other types of documents could be considered with

higher extracted/included information ratio. For instance, laptop

computer data-sheets describe products in detail, including

features, composing parts and performance capabilities (see

Fig. 1). In the remainder of this paper we refer that type of

documents as data-rich [2]. Those documents are plenty of

entities to be extracted and relationships between them are clearly

defined. Consequently, it is possible to think that IE performed

over data-rich documents is a machine-reading process not as

shallow as IE over natural language text documents.

Fig. 1 Sample of a laptop data-sheet.

Our IE approach for data-rich docs is to borrow from Natural

Language Processing field a word sense disambiguation (WSD)

[3] strategy as labeling technique. WSD aims to label all open

class words in a text sequence [4]. Moreover, WSD has coverage

broader than other un-supervised labeling tasks commonly used

in IE such as named entity recognition. Our method is full un-

supervised and uses an ontology to represent all specific domain

knowledge required for extracting product features from

Information Technology (IT) domain data-sheets.

In addition, we enrich our model improving the simplistic string

matching using a fuzzy string matcher [6]. That matcher

combines edit-distance algorithms at character and word level,

supporting entity identification and dealing with non-

standardized acronyms and abbreviations.

This paper is organized as follows. Problem definition is

presented in Section II. In Section III, we give the required

background. Sections IV and V present our proposed approach

to the problem. Results from some experiments carried out using

our model are presented and discussed in Section VI. Section

VII review related work. Finally we present some concluding

remarks and discuss future work in Section VIII.

II. PROBLEM DEFINITION

Data-rich documents are frequently used to describe products

with technical and commercial purposes on the IT domain (see

Fig. 1). Those commercial data-sheets have great importance in

e-commerce environments, because, based in the information

contained in them, people make buying decisions. For instance

an individual buyer in the Internet using a price engine (e.g.

Pricegrabber1) looking for a laptop computer, can find hundreds

of buying options with tens of features in its data-sheets.

To extract product features from data-sheets in an automatic

way is the first step to assist decision making processes.

Additional use scenarios for that information are data-mining,

information retrieval refinement, automatic document

translation, question answering and information integration from

texts, among others.

Many IE approaches use given or learned extraction rules, or

machine learning models trained with labeled corpora (see [7]

for a survey). Generally, availability of labeled corpora is limited

and the obtained models are not suitable for real world

applications. Additionally, most of those approaches use context

and structural homogeneity as primary evidence, which is poor

in the considered data-rich documents.

On the other hand, ontology-driven approaches [2][8][10]

use domain and lexical evidence to perform the extraction.

Particularly, Embley [8] argues that obtained models are more

resilient and usable than obtained ones from labeled corpora or

extraction rules. We are in agreement with this idea.

Considering data-rich documents, they are commonly

summarized and have a hierarchical presentation structure that

use itemized lists without complex natural language structures.

In spite of the fact that IT data-rich documents are written in a

natural language (i.e., English), documents follow the rules of

another syntactical structure given by composing parts and

attributes of the object being described. Our information extractor

is based on the idea that when an object (i.e. product) is being

described, its composing parts are listed and recursively, each

part is decomposed again until a concrete linearization is

achieved in a specific language. For instance a laptop computer

is composed of processor, memory, hard disk, etc.; similarly a

processor has its own composing parts and attributes. In brief,

its data-sheet description follows that structure

Ontologies are artifacts useful to describe real word entities

and ideas. In computer science, ontologies are graphs whose

vertices are entities and edges correspond to semantic relations

between entities [9]. Ontology definition languages such as

OWL2 offer a broad set of constructors allowing complex

ontology modeling. The most common relation types used in

ontologies are hypernyms (i.e. is-a) and meronyms (i.e. is-part-

1 h t t p : / / c o m p u t e r s . p r i c e g r a b b e r . c o m / l a p t o p / ,

2.http://www.w3.org/2004/OWL/

Un Sistema de Extracción de Información Basado en Ontologías para Documentos en el Dominio de las

Tecnologías de Información – Jiménez y González

49

of). The former allows defining entity class hierarchies and the

latter describes properties of each entity.

Clearly, an ontology can describe all possible composing parts

and attributes of a laptop computer. Data-sheets such as the shown

in Fig.1 make reference to a subset of all possible domain ontology

entities. The main problem that concerns us here is to identify all

references to ontology entities in a data-sheet, and label them

hierarchically according to the ontology as is shown in Fig.2.

Is-attrib-of

Intel Core Duo Processor T2400 1024 MB DDR2

Is-a

Processor

Brand

Processor

Line

Is-a

Laptop

Processor

Model

Name

Is-a

Context

Is-a

Processor

Is-attrib-of

Is-attrib -of

Memory

Magnitude

Memor

y Units

Memory

Technology

Is-aIs-aIs-a

Memory

Size

Is-part-of

Is-part-of

Memory

Is-attrib -of

Is-attrib -of

Laptop

Computer

Is-part-of Is-part-of

Fig. 2. Text document sequence sample hierarchically labeled with

ontology entities.

From now, two sub problems arise. Firstly, entities are referred

in documents in multiple and unexpected manners, making their

enumeration difficult in the ontology. Secondly, there are many

entities intrinsically ambiguous. For instance, 512MB could be

associated in a laptop computer with installed main memory,

maximum installable memory, video memory, operating system

memory requirement, specific software hard disk space

requirement, processor cache memory, etc.

III. BACKGROUND

A. Fuzzy String Searching

The task of identify mentions of real-world entities in

documents is know with different names in different

communities. For instance the database community refers it as

duplicate record detection, record linkage, database hardening

and deduplication. Other names are used to describe the same

concept, namely: entity disambiguation, entity resolution,

reference reconciliation, identity uncertainly, co-reference

resolution and others. This task is known with the term fuzzy

string searching (FSS) and is based on string comparison

techniques that allow errors. FSS helps to bring resilience some

IE processes.

FSS is based on similarity metrics at character and token level.

Among the most popular character-level similarity measures

are the well known edit-distance or Levenshtein distance [12].

The edit distance between two strings is the minimum number of

edit operations (i.e. insert, delete, replace) to transform one in the

other. Several modifications to the original edit distance have

been proposed varying cost schemas and adding edit operations

(see [13] for a survey). Those metrics are useful to deal with

typos, misspellings and optical character recognition errors.

Another metrics such as Jaro and Jaro-Winkler distances [14]

are particularly useful to match people names. However, our

special interest in character-level measures is their ability to

deal with inconsistent abbreviations, un-standardized acronyms

and typographical variations.

Unlike character-based similarity measures, token-level

measures uses tokens (i.e. words) as comparison unit instead

of characters. Some token-level algorithms are analogous to

character-based algorithms adding an additional similarity metric

between tokens [15]. That inter-token similarity metric can again

be other character-level metric such as edit distance. Finally,

both token and character level metrics have to be combined to

calculate a final metric between two multi-token strings.

B. Ontology-based Semantic Relatedness

Semantic relatedness (SR) is a general level of association

between two concepts [16]. For instance, in laptops domain,

there is an intuitive notion that video adapter and display panel

are semantically closer than main battery and speakers. The

simplest SR metric used in ontologies is path length (see Fig.

3), which means the number of edges in the path between two

entities linked with semantic relationships.

Fig. 3. Semantic Relatedness path length example.

Path-based measures used to assess semantic similarity (i.e.

SR in is-a hierarchies) might generate misleading results because

of pairs of entities closer to the root tend to be less related than

entities closer to leaves. In order to correct this situation Leacock

& Chodorow [17] proposed the expression (1) (d is the total

ontology hierarchy height).









−=

d

bapathLenght
baSIM

2

),(
log),((1)

Revista Avances en Sistemas e Informática, Vol.5 No. 1, Edición Especial, Medellín, Mayo de 2008, ISSN 1657-7663

III Congreso Colombiano de Computación – 3CCC 2008
50

Other approach to the same problem has been proposed by

Wu & Palmer [18] using the concept of lowest common subsumer

(LCS). LCS is the more distant concept from the root, common to

two entities. For instance, in Fig. 3 processor is the LCS of brand

and GHz. Wu & Palmer measure is given by (2) (the function

depth(x) represents the number of edges from x to the root).

)),((.2),(

)),((.2
),(

balcsdepthbapathLenght

balcsdepth
baSIM

+
= (2)

C. Word Sense Disambiguation

Word sense disambiguation (WSD) is a Natural Language

Processing task that aims to assign the correct sense to all

open class (i.e. polysemes and homonyms) words in a text [3].

Firstly, in order to define the search space for the WSD problem,

it is necessary a source of possible senses for each used word.

That source of senses is usually a machine readable dictionary

[19].

The following example has each open class word subscripted

with the number of senses found in the on line version of The

American Heritage Dictionary of the English Language3.

"Jackson found
(4)

 good
(42)

 medicine
(9)

 in his summer
(7)

 field
(37)

trips
(23)

 with their unfolding
(6)

 of new
(15)

 horizons
(8)

"

The number of possible sense combinations in that sentence

is 6,485'028,480.

SR metrics are useful to assess the semantic coherence of a

specific sense combination. The final goal is to find a sense

combination that maintains the better logical discourse

coherence in agreement with a human judge. Due to the huge

search space of the problem, techniques such as simulated

annealing [20] and genetic algorithms [21] have been used to

find near-optimal combinations. Other approaches aim to reduce

the search space using "sliding" windows over the text

sequence[22].

IV. FUZZY STRING MATCHER

Great part of entities used in the data-rich documents in

question are referred using multi-token terms such as wireless

adapter or hard disk. Those terms can be found in documents

with many variations. For instance serial-ATA can be cited as

serial ATA, SATA, S-ATA, S.A.T.A., Ser.ATA, or serial advanced

technology attachment. In order to match successfully serial-

ATA with the proposed examples it is necessary in some cases

to ignore periods and hyphens , and in some cases consider the

ATA acronym as three one-character tokens. Consider the

matching between ser.-ATA and serial advanced technology

attachment. The pairs of tokens to be compared are: [ser, serial],

[A, advanced], [T, technology] and [A, attachment]. Our fuzzy

string matcher aims to deal with this and other similar cases.

Figure 4 shows a block diagram with the architecture of the

extraction system including the role of the fuzzy string matcher.

3 http://www.thefreedictionary.com

Fig. 4. Information extractor block diagram

A. Root-Distance

Considering the previous example (ser.-ATA), each pair of

tokens could be compared using a character-based similarity

metric such as the edit-distance [12]. We propose a modification

to the edit-distance named root-Distance, which assigns higher

cost to edit operations in heading character positions than in

ending positions. Look at the following propositions:

i) EditDistance("A", "Serial") < EditDistance("A", "Advanced")

ii) RootDistance("A", "Serial") > RootDistance("A", "Advanced")

 The first proposition is clear due to the fact that "Advanced"

is the longest string and requires more edit operations to be

transformed in "A". Though "A" and "Serial" are not

semantically close, edit distance measure between them is closer.

Consequently, it is clear that if heading character positions have

higher edition costs, the distance measure can better capture a

semantic relatedness as is shown in the second proposition.

Root distance edition cost (for the longest string to be

compared) is 1 for the last character position and the string

length for the first position for the linear case. Edit distance is a

case of root distance when costs for character edition operations

are 1 in all character positions. Fig. 5 shows a calculation example

using the Wagner-Fischer dynamic programming technique [23]

and linear edition costs.

