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Resumen—En este articulo se presenta una adaptaciéon de un modelo
de red inmunolégica artificial a la estrategia de los métodos de kernel
Esta adaptacién proporciona al rea de los sistemas inmunoldgicos
artificiales, por primera vez, algunas de las ventajas de los métodos
de kernel tales como la habilidad para ser aplicados sobre datos no
vectoriales y la transformacién a espacios de alta dimensionalidad
por medio del llamado kernel trick. Algunos experimentos
preliminares fueron llevados a cabo con el fin de obtener algunas
luces sobre el comportamiento del modelo propuesto.

Palabras Clave-sistemas inteligentes, agrupamiento basado en
similitud, redes inmunolégicas artificiales, métodos de kernel.

Abstract-This paper presents an adaptation to the strategy of kernel
methods of a well known artificial immune network. This
adaptation brings to artificial immune systems, for the first time,
some of the advantages of kernel methods, such as the ability to
deal with non-vector data and the mapping to high-dimensional
spaces through the kernel trick. Preliminary experiments were
carried out in order to get some insights of the behavior of the
proposed model.

Keywords-intelligent systems, similarity-based clustering,
artificial immune networks, kernel methods.

I. INTRODUCTION
Machine learning looks for finding and recognizing patterns
in data coming from a source of interest [2]. The patterns
extracted from such data may be used for obtaining knowledge
of the data source or to make predictions [2].

Machine learning techniques can be classified into, at least,
two approaches: the feature-based approach and the similarity-
based approach [13]. The former considers a process to represent
the objects as feature vectors as a previous step to learning [2];
the latter, uses only a (dis)similarity measure between objects as
the input for the learning process [13]. There are some domains

where the objects have a complex structure, which makes difficult
to perform the feature extraction process [13]. Examples of this
kind of domains are images, sequences, graphs, and text
documents. In those cases, the application of the similarity-based
approach appears to be more suitable.

Kernel methods is a machine learning strategy that makes
algorithm design independent from the representation of the
data [25]. Such independence requires that algorithms receive
as input a pair-wise measure instead of feature vectors. From
this point of view we can consider the strategy of kernel methods
as a similarity-based approach.

Bio-inspired computing (also known as natural computing) is
the field of machine learning (and computer science) that
develops problem-solving techniques by mimicking a natural
system. Some examples of this kind of techniques are Genetic
Algorithms that take inspiration from species evolution [9],
Artificial Neural Networks that take inspiration from brain
function [4], and Artificial Immune Systems (AIS) that take
inspiration from the immune system behavior [6]. Most of those
algorithms follow the feature-based approach since the first step
in setting them up is a representation process where domain
objects are usually coded as attribute vectors, with each
component representing some important feature of the object.

There is not much research on the development of bio-inspired
algorithms that follow the similarity-based approach, except for
the kernel versions of the self-organizing map (kernel SOM) [16],
[21], [12] and the kernel particle swarm optimization (kernel PSO)
[1]. In this paper, the problem of expressing an artificial immune
network (AIN) model as a kernel method is tackled. Specifically,
a known AIN model, aiNet [7], is modified in such a way that it
does not receive as input the vector representation of antigens,
but the inter-antigen distances.

Revista Avances en Sistemas ¢ Informatica, Vol.5 No. 1, Edicion Especial, Medellin, Mayo de 2008, ISSN 1657-7663
III Congreso Colombiano de Computaciéon — 3CCC 2008



66 Revista Avances en Sistemas ¢ Informatica, Vol.5 No. 1, Edicion Especial, Medellin, Mayo de 2008, ISSN 1657-7663
III Congreso Colombiano de Computaciéon — 3CCC 2008

This paper is organized as follows: Section II presents a review
of the artificial immune network model for clustering and the
strategy of kernel methods for pattern analysis. Section III
presents an AIN model for clustering based on the kernel
methods strategy. Section IV presents the results of some
preliminary experiments, and finally, Section V concludes the
paper and proposes some ideas for future work.

II. BACKGROUND
A Artificial Immune Networks

The natural immune system (NIS) is the main defense of the
body against pathogen organisms, called antigens [22]. The
NIS exhibits some interesting properties from a computational
point of view, such as pattern recognition, autonomy,
distributivity, learning and memory [6]. Thus the field of artificial
immune systems (AIS) works on the definition of models
inspired by principles and theories of the NIS in order to be
applied to problem solving [6].

The immune learning is the ability of the NIS for adapting
itselfto the changes in the antigenic environment [6]. When an
antigen enters the body for the first time, the NIS uses
adaptation mechanisms to create cells (B-cells) and molecules
(antibodies) able to deal with such antigen. Additionally, the
NIS uses a memory mechanism for keeping an internal image of
the antigen, so that it can deal with it faster and more effectively
ifthe same antigen (or a similar one) invades the body again [22].

From the point of view of the immune network theory, immune
learning and memory can be explained as follows: the production
of a given antibody (elicited by an external antigen) stimulates/
suppresses the production of other antibodies that stimulate/
suppress the production of other antibodies and so on [22].
The main hypothesis of this theory states that immune memory
is maintained by B-cells interacting with each other even in the
absence of foreign antigens [22]. These interactions between
cells/molecules are via shape matching (recognition). The way
an antigen (or an antibody) can stimulate/suppress the
production of antibodies is based on the strength of the
recognition, which is called affinity [22].

An artificial immune network (AIN) is an AIS that uses
concepts from the immune network theory [6], mainly the
interactions between B cells (stimulation and suppression) and
the cell cloning and mutation processes [8]. In the last years
different AIN models have been proposed to solve problems
such as pattern recognition in DNA sequences [ 10], data analysis
[201],[15],[27],[26], [ 7], web mining [18], [19], multimodal function
optimization [5], robot control [11], [17], autonomous navigation
[14], [17] and e-mail classification [24].

Most of AIN models are based in the shape-space concept
introduced by Perelson [8]. This concept represents antibodies
and antigens as points in a #-dimensional space, where each

dimension is related to a feature involved in the recognition
process [22]. An antibody recognizes those antigens in its
scope, which is defined by a hypersphere with certain
recognition radius and center in the antibody [22]. From this
point of view, AIN can be labeled as a feature-based approach.

Most of AIN models assume a feature based representation of
the domain objects to be used in the learning process. This makes
difficult to apply such models in domains with complex structure.
Then, a representation independent AIN model would allow to
extend the application domain of AIN. The kernel methods
approach gives a suitable strategy to achieve such model.

B Kernel Methods

Kernel methods are described as a unified approach based
on statistical methods for pattern analysis [25]. The approach
assumes that transforming the input data to a proper feature
space could make the pattern identification process easier [25].
Such transformation corresponds to the representation process
mentioned above. However, the transformation is defined
implicitly by a kernel function, which is related to the specific
data type and the kind of patterns that is expected to find in the
data set [25].
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Fig. 1. A schematic representation of the kernel methods approach

The kernel methods strategy can be represented as in Fig. 1.
Data are mapped to a feature space through a kernel function «
which computes dot products between objects in the new space.
The kernel matrix Kcontains the evaluation of the kernel function
for each pair of objects and acts as input of a learning algorithm
Athat is designed to find patterns in the feature space based on
such matrix [25]. One interesting and useful property of the
kernel function is that it can compute the dot product from the
original objects. This property is called the kernel trick [23].
Then, the learning algorithm is designed so that it does not
need the coordinates of the objects in the new space, but only
the kernel matrix [25].

Kernel methods can be applied to any data type, 7e., input
data do not need to be represented as feature vectors [25]. It is
because constraints to consider a function as a kernel function
are stated in terms of the kernel matrix. Therefore, any pair-wise
measure (e.g similarity) able to produce a pair-wise matrix that
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satisfies those constraints can be considered as a kernel function
[25]. Hence, kernel methods can be labeled as a similarity-based
approach.

Kernel methods have the advantage of separating the learning
algorithm from the data representation [25]. This allows research
on pattern analysis to be defined in two directions: one for
defining kernel functions for specific data types, and other for
building learning algorithms to find specific pattern types.

The definition of a kernel method implies the expression of
computations in terms of dot products [25]. This can be achieved
directly as the case of support vector machines or by modifying
a known model as the case of the kernel k-means, which is the
kernel version of the k-means algorithm [25].

C.  Kernel Methods on Bio-inspired Algorithms

There is not much research on the development of bio-inspired
algorithms that follow the kernel method strategy. Here, we
review the kernel versions of the self-organizing map (SOM)
and the kernel version of the particle swarm optimization
algorithm (PSO).

1) KM-Kernel SOM: In [16] MacDonald and Fyfe present a
kernel version of the Kohonen's self-organizing map (SOM).
The authors review the kernel &~means (KM), which is the
base for this kernelized SOM (KSOM). In that model, each
mean 1 is a linear combination of input data in the feature
space, which is expressed as

m, =3 7,4(x)

where {X-}I-E[l’ ] is the set of input samples, ¢ is the

mapping from the input space to the feature space, induced
by a kernel function, and v, is the weight of the ~th simple
for the mean m, . Coefficients vuare in [0, 1] and the sum
over all the coefficients representing a mean equals the
number of points assigned to the cluster that mean
represents. Thus, in KM-KSOM, neuron weights are linear
combinations of input data in the feature space, and the
weight updating mechanism is the same as in the original
SOM, even using the same neighborhood function. As
reviewed in [12], in this model neuron weights are defined
in the feature space but not in the input space.

2) GD-Kernel SOM This kernel version of SOM, reviewed in
[12], is presented in [21] by Pan efa/ and in [3] by Andras.
The model is based on gradient descent (GD) and the
problem is to minimize the mean square error of an input
and the corresponding prototype in the mapped space.

3) EF-Kernel SOM: In [12] Lau et al. present a review of the
KM-KSOM the GD-KSOM. They show that SOM can be
performed completely in feature spaces and that both
versions of KSOM are equivalent to a unifying KSOM
based on energy functions, all of this keeping in mind
classification tasks. Authors derive a KSOM based on a

energy function (EF) to be minimized. It is followed from a
definition of the original SOM as minimizer of such function.
They then show the updating rules of KM-SOM and GD-
SOM are particular cases of the updating rule in the EF-
SOM, that can be used depending on weights are or are
not defined in the feature space.

4) Kernel PSO: In [1] Abraham et al present a kernel version
of the Particle Swarm Optimization (PSO) algorithm to
perform automatic clustering, 7.e., without prior knowledge
about the right number of clusters. The modified version
is achieved by defining a clustering index, called CS
measure, in terms of inner products and solving the
clustering problem as an optimization problem where CS
measure should be minimized, which implies an optimal
partition has been reached. In the process, each particle
represents a partition of the input data set and therefore,
the solution is the globally best particle at the end of the
process.

IIT. APROPOSAL FOR A KERNEL ARTIFICIAL IMMUNE
NETWORK (KAIN)

Fig. 2 shows a general training algorithm for AIN, which is
taken from [8]. The algorithm receives as input a set AC A of
antigens, which are going to be presented to the network, where
A is the set of all possible antigens. The algorithm returns an
artificial immune network composed of a set BC B of B-cells
and connections between them, where Bis the set of all possible
B-cells. The set Bis the set of B-cells of an AIN at a given time.

The first step, initialization, is to create an initial set of B-cells.
After this, an iterative process is performed starting by
presenting the set of antigens to the network, which means that
for each antigen and each B-cell the stimulation is calculated

(£,

stimulatio

: Bx A— R). Such stimulation is based on an
and B-cells

(£, ity BU Ax BU A— R) that measures the similarity/

a

affinity measure between antigens

complementarity between elements in the shape-space.
In the next step B-cells are allowed to interact with each other,
this is done by calculating the stimulation and suppression

them  ( £2 :BxB—>R

between stimulatio

effects

and 1%

sup pression

: Bx B— R). Similar to antigen/B-cell

stimulation, B-cell/B-cell stimulation (and suppression) could
be calculated as a function of B-cell/B-cell affinity. Total
stimulation of B-cells is then calculated by summing up the
effects caused by antigen and network interactions

( F: B— R). Based on total stimulation, some B-cells are
selected and some copies ( f;[om'ng : B— N) of each selected

B-cell are created and mutated ( murate: B— B)- Some

models interpret this rate as the probability of a B-cell to be
selected for suffering mutation; other models interpret it as the
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GAIN(A: antigen set)

1: initialization

1.1: assign B an initial set of B-cells
1.2: initialize network structure L

2: repeat until a stop criterion is met
2.1: antigen presentation:

2.1.1: calculate f (I_Vﬁ:!’__n?:.t.u[ﬂ.. b) for all a € A, b € B Antigen/B-cell affinity

2.1.2: ¢z ate F& A
147G L](“Ll:ll te f stimulation
2.2: B-cell interaction:

99 1. nte B
2.2.1: calculate f stimulation
r B-cell /B-cell stimulation/suppression
2.3: affinity maturation:

2.3.1: calculate F(b) as

= b
Fb) = z_;'fsfsi-rn.ulu.ti on (0,a)

(b,b') and f®

& i
e Z s s?‘.-si-m.-ufa.a‘.-zio-nE'I}' v)

b€ B,b b

(b,a) for all a ¢

SUPPTESSION

A and b € B v Antigen/B-cell stimulation

(b,b') for all b,b' =€ B

e Total stimulation

Ji:] f o -
¢ ¥ Fouppression(0: 1), for allbe B

b =B b b

2.3.2: repeat f ch-n.'in.q('h?’ times b eloning and mutation

2.3.2.1: ¥ = mutate(b) b create a clone and mutate it

2.3.3: calculate stimulation of all new B-cells

2.4: meta-dynamics:

2.4.1: update network structure L deletion/creation of B-cells and links
3: return (B, L) & Return immune network

Fig. 2. A General Artificial Immune Network algorithm

proportion of the B-cell fields that will be changed.

In the meta-dynamics step, some useless B-cells are removed
from the network, new B-cells are created randomly and
incorporated into the network, and links among all B-cells are
reorganized. Finally, when the stopping criterion is met, the
current network is returned.

A AModified Version of the GAIN Algorithm

To modify the GAIN algorithm so that it follows the strategy
of kernel methods, it should be noticed that a crucial step is the
mutation operator, since it is usually implemented as a few
variation in the coordinates of a feature vector. For this purpose
we propose to define a new representation for B-cells.

1) Representation and Mutation of B-Cells. Here, we follow

a similar approach to that of Kernel-SOM. Generally, in
most AIN models, antigens correspond to input samples
and antibodies may be assimilated to cluster centroids
(neural weights). Therefore, in KAIN B-cells (antibodies)
are represented as linear combinations of antigens in the
feature space. In a more formal way, a B-cell is represented

bf - Z7,j¢(3j)

where b, € B isaB-cell, 2, € A isanantigen, ¢ isa
ii
mapping from the input space to a feature space and is

a weight. We can constrain the linear combination to be
convex in order to make the B-cell be surrounded by the
antigens it recognizes. In general, a,may be any antigen
presented to the network, 7.e. A = A however we can
restrict A to include only those antigens which have
interacted with (stimulated) &. Notice that those A are not
necessarily disjoint.
From the biological point of view, this representation makes
sense because when an antigen enters the body, the
immune system creates some B-cells in order to neutralize
such antigen. The B-cells more likely to survive are those
with high affinity with the stimulating antigen, in that way,
those B-cells are internal images of such antigen.
As a B-cell is stimulated by those antigens close enough
in the shape-space, 7.¢., the affinity between the B-cell and
each of those stimulating antigens is greater than a certain
threshold, the shape of a B-cell is defined for the set of
antigens it recognizes, as more than one B-cell can
recognize the same antigen, the sets A4 are not necessarily
disjoint.
Notice that given a set of antigens A= {3 j} ol > @ B-
Jellgl
cell b, is totally determined by the coefficients . This
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means that a B-cell b, can be represented as the vector of
weights (% ..., ¥im) . Based on this representation it is
easy to adapt a genetic algorithm mutation scheme for
real-valued chromosomes. For instance, a Gaussian
mutation scheme as described in [9]

mutatd b)) = mutatdy,,...,y,,)
= (7/11""’7/1)n)+(AI’“"Am)

where each 4,~ M0, g)and ois a parameter that controls
the expected size of 4, Notice that a normalization step is
required after adding the vector 4 in order to keep the
convexity property. The implementation of this operator is
straightforward, however the crucial step is the
implementation of mutation in such a representation.
2) B-cell <» antigenand B-cell <> B-cell affinity. As it
was mentioned in Section II, affinity is a central concept in
AIN models. Since B-cells are represented as a linear
combination of antigens, the B-cell «» antigen and the B-
cell <> B-cell affinity may be defined in terms of antigen
<> antigen affinity. Notice that in the natural immune
system there is not such a concept as antigen <> antigen
affinity; this is also the case in most AIN. However, most
ofthe AIN represent B-cells and antigens in the same way,
thus the B-cell <> antigen affinity measure may be
naturally extended to an antigen <> antigen affinity
measure.

For this paper, we use the antigen <> antigen affinity
given by

fnultlaola) e -2 |
o)

<X, X> , the expression above turns into

D} - (#a)~gla ) dla)-ola,)
(A o)+ (ol o) 2/ gla) o)
which can be expressed using the kernel function « as

D = x(a, zz)+1<(zz zz) 21{(3 zz)

IERad J (e
In a similar way, the B-cell <> antigen affinity will given by

Dy
f.;ﬁ?nity(bi’ ¢(a)) = exp[_ O:;j

~gla)
27/027/11(7((3/’ ak)+

—2Zj:7/g ( j,a)

where DUA = H¢(

Given that Hxﬂ

where

D,BA

and finally, the B-cell B-cell affinity can be expressed as

D?
f;[ﬁmt bI’ bj) eXp [_ z ]
o

where
D=
= (b—b,b-b,)
= (b,b)+(b;,b;)=2(b,b,)

and using the fact that

<bf’bf> <Z7/1k¢ ) 27/ #a, >
2727l Hai) Ha)
Zk: mZ]: y ilag.a,)
the expression above turns into
D} = ZMZHK a,,a,)+
Zy/ka//lzc a,,a,)+
- 2; mZ[l yik(a,a)+

3) New B-cell generation: As the representation of B-
cells in feature space requires a set of antigens for each B-
cell, the initialization step can be performed by randomly

selecting a set A — Awhere each antigen represents a B-
cell, 7.e., ifthe 4th antigen is selected, the corresponding

B-cell will be &= Zj.ﬂ/ j¢(a j) where y; =0 forall j# &
and /forj =k

IV. PRELIMINARY EXPERIMENTS

Some simple experiments were carried out in order to test the
suitability of the proposed model for detecting clusters in data.
In this work results will be validated by visual evaluation of B-
cells locations. For this purpose a synthetic 2-dimensional data
set consisting of 5 clusters was used. This data set is a version
of the one used in [7], it consists of 50 points, each cluster
containing /0 points. Fig. 3 shows a plot of this data set. The
implementation we used is an adaptation of the aiNet algorithm
[7] considering the definitions presented in Section III. One
major modification was introduced in the affinity measure, while
aiNet algorithm uses / - D as the affinity measure, where D
represents the Euclidean distance between patterns, the

proposed algorithm uses exp(— O_zj as the affinity measure.
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A Experimental Setup

In this setup 2 experiments were carried out varying the input
data: the first one using clusters 2 and 3 (points in the upper
left hand and lower right hand), and the second one using the
whole data set. Table I shows an explanation of each parameter
along with the values used in this setup.

For these experiments, the identity kernel K(X, y) = <X, y>

was used, which means that no transformation of the input
space is made. This has the purpose of the visual validation of
the algorithm's performance.

B Experimental Results

Fig. 4 and Fig. 5 show the output of the algorithm for the
experiments performed. Antigens are represented as circles and
B-cells are represented as crosses. Notice that in both
experiments, B-cells are located in the antigen regions, and
regions free from antigens remain empty. This suggests that
the algorithm is able detect clusters. Another property that can
be seen is that the number of B-cells is low compared to the
number of antigens. Notice that this algorithm does not perform
data compression, as the original aiNet does, because each
antigen presented to the network is included in a linear
combination that defines a B-cell.

Taking into account these results, we can say that it performs
well in spaces where clusters appear to be well separated. As
the model has been presented as a kernel method, we could
take advantages from the kernel trick in order to transform spaces
of input data with different cluster structures into spaces where
they appear to be well separated.

V. CONCLUSION

In this paper a kernel-based model for artificial immune
networks was introduced. A key concept for this model is the
representation of antibodies as linear combinations of antigens,
which allows the definition of a mutation mechanism without
assuming a vector representation of antibodies. The model
assumes an affinity measure between antigens, which is an
idea present in the current models and supported by the shape-
space concept, but not explicitly mentioned.

Experimental results on synthetic data gave a good insight of
the ability of the proposed model for detecting clusters. Some
issues were mentioned regarding the modified version of the
aiNet model, which suggest some tasks for future work, namely

* to test the use of the kernel trick with different kinds of
cluster structures,

* toinclude the idea of "antibody saturation", which means
that a B-cell can be defined by a limited number of antigens,
and

* to apply the model to a non-vector data set.
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