Perspectivas y Experiencias en el Desarrollo de un Curso
de Arquitectura de Software

Perspectives and Experiences in the Development of a
Software Architecture Course

Nicolas Lopez G., MSc., Pilar Villamil G., PhD., Rubby Casallas G., PhD.
Universidad de los Andes, Bogota, Colombia
{ni-lopez, mavillam, rcasalla} @uniandes.edu.co

Recibido para revision 28 de Noviembre de 2007, aceptado 14 de Febrero de 2008, version final 28 de Febrero de 2008

Resumen—La réapida evolucién de la tecnologia y TI para soporte
a los negocios, asi mismo como los nuevos requerimientos para
curriculos de ingenieria que buscan el desarrollo de habilidades
més alld de contenidos temdticos, imponen una serie de retos
para el disefio y definicién de un curso de arquitectura de software.
Propuestas previas para el desarrollo de habilidades necesarias
para la préactica de ingenieria de software, relacionadas a
arquitectura, se han enfocado principalmente en tecnologia, no
son lo suficientemente flexibles a largo plazo, y no son adecuadas
para el desarrollo de criterios necesarios para que los estudiantes
puedan aplicar arquitectura de software en proyectos reales.
Adicionalmente, las soluciones basadas exclusivamente en
contenidos conceptuales no dan a los estudiantes suficiente campo
para el desarrollo de habilidades de disefio en el 4rea de
arquitectura de software, particularmente, el impacto de la
tecnologia en la arquitectura y calidad de un sistema. En este
articulo presentamos la evolucién del disefio del curso de
arquitectura de software para estudiantes de pregrado.
Particularmente introducimos nuestra propuesta para una nueva
perspectiva del disefio de este curso, usa metodologias de
aprendizaje activo y su contenido estd centrado en tres grandes
areas: negocio, disefio y tecnologia

Palabras Clave—Learning Software Architecture, Active Learning,
Professional Software Engineering Skills

Abstract—The rapid evolution of technology and IT for business
support, as well as the new demands on engineering curricula for
the development of skills rather than just the presentation of
thematic contents, imposes a series of challenges for the design
and definition of a software architecture course. Proposals for the
development of skills necessary for software engineering practice,
regarding architecture, focused on technology, are not flexible
enough on the long term, and are not proper for the development

of criteria necessary for students to apply architecture in real
world projects. Conversely, solutions based solely on conceptual
contents do not give enough room for students to develop design
skills in the area of software architecture, and particularly, the
impact that technology has on architecture and overall system
quality. In this paper, we present the evolution of our design for
a software architecture course for undergraduate students.
Particularly we introduce a proposal for a new perspective for the
design of this course; this perspective is based on three broad
areas: business, design and technologies using active learning
methodologies.

Keywords—Learning Software Architecture, Active Learning,
Professional Software Engineering Skills

I. INTRODUCTION

ducators confront many challenges while defining and

evolving software architecture courses. This is due to the
rapid pace in which the business, technologies and concepts
related to architecture advance. The accelerated pace at which
business are adopting technologies, and the increasing
complexity of business application and business situations that
IT must support, demand a new set of skills from software
engineering professionals. Various authors [4], [6] present some
of the issues in helping students develop the skills expected of
software engineers.

The alarming statistics that show how technology projects
fail in the real world are a clear indicator that education in software
architecture still has many challenges. Usually, software
architecture courses focus on the use of technologies such as
JEE and .NET. Because of this, it is common that engineers are

Revista Avances en Sistemas ¢ Informatica, Vol.5 No. 1, Edicion Especial, Medellin, Mayo de 2008, ISSN 1657-7663
III Congreso Colombiano de Computaciéon — 3CCC 2008

126 Revista Avances en Sistemas ¢ Informatica, Vol.5 No. 1, Edicion Especial, Medellin, Mayo de 2008, ISSN 1657-7663
III Congreso Colombiano de Computaciéon — 3CCC 2008

competent in the use of specific technologies and are not aware
of the business and architectural conditions that help choose
one approach over another; sometimes leading to
implementations that do not satisfy business needs. Software
architects require skills that they must develop starting at their
undergraduate education.

Our view of software architecture is that professional practice
requires skills in three broad areas: business, design and
technology. By business, we mean that students must have
skills related to understanding business needs that are the
drivers of system architecture. This includes understanding
that IT as support for business processes rather than the
development of applications that satisfy functional
requirements. By design, we mean that students must have the
basic skills to identify and understand architectural styles,
paradigms and patterns. Beyond having skills to apply specific
paradigms, such as Service Oriented Architecture (SOA), they
must be able to apprehend a new emerging paradigm and use it
in a real world context. Finally, by technologies we mean students
must have at their disposal a toolbox of known technologies
that support the development of applications using architectural
styles, paradigms, and patterns that aim at solving specific
business needs. Furthermore, we want students to develop the
skill to embark in self-learning of any new technology.

We believe that a software architecture course should be a
step to develop this set of skills. However, designing such a
course is not an easy task, this design goes way beyond the
definition of the thematic content that addresses the subjects
related to these skills. We need to develop skills rather than just
present a thematic content; the design of this course must be
coherent with other software engineering courses, as well as
with transversal spaces within a computer science/computer
engineering/software engineering curriculum, and must include
the definition of methodologies that support this goal [7]. So
the question here is which are some appropriate methodologies
to develop these skills?

On the other hand, the environment at University of Los Andes
has an effect on our objectives. Two main events influence our
software architecture course greatly; firstly, the Software
Construction group recently implemented a project to change
all the basic programming courses [11][12]. As a result, the set
of skills before entering the course has also changed.
Previously, students entered the course with programming skills
in java, skills in software process methodologies, particularly,
TSP and modeling skills, specifically a complete course covering
subjects including UML and state machines was part of the
curriculum. However, with the changes in the curriculum
students entering the course now have further developed
problem analysis skills, and have more knowledge of other
programming related technologies, such as XML, Servlets,
JUnit, Ant, etc. Even though the software engineering course
that teaches TSP still remains, the modeling course is now not

compulsory, so these skills are less developed.

Secondly, not all students entering the course have the same
set of skills. The course is also a leveling course for students
entering the masters program that did not have an outstanding
performance in the admission exam and, in some cases, these
students completed an undergraduate program in some other
engineering. As a result, some students entering the course
only have a basic knowledge of object-oriented programming.

Our objective is to create a software architecture course that
deals with all these issues. The course must cover the three
broad areas: business, design and technologies, using active
methodologies that help develop skills necessary for software
architecture practice in the real world. Furthermore, due to the
business and technological environment it has to be a course
in constant evolution.

We have studied several other proposals for software
architecture courses at various universities [1], [5], [8], [9], [3],
[2] including the top rated universities in the US [10]. We were
surprised to find that out of the top five schools only one has
as part of the undergraduate curriculum a software architecture
course. For the universities that do have a software architecture
course, different methodologies are proposed. Most of the
programs we revised focus on the conceptual and theoretical
aspects of software architecture and have little emphasis on
technology[1], [5], [8],[3], [2]. Some others are oriented around
technology [9].

We have redesigned the software architecture course
progressively over the past 2 semesters. In this process we
have moved from a technology centered course, initially designed
to cover thematically a series of technologies left out of other
courses in the curriculum to a course based on thematic axes
that directly aim at students developing skills related to software
architecture. The course is supported by case studies, exercises
and a central project of a small size regarding functionality. The
project is divided in various cycles that emphasize certain
architectural choices, their evaluation according to business
conditions, their implementation using state of the art
technologies, and the apprehension of the consequences that
these choices have.

This paper is organized as follows. Sections 2 and 3 review
the main features of the previous versions of the software
architecture course. These sections present the main challenge,
our solution and the most relevant problems of each approach.
Section 4 presents our proposal to create an environment where
students practice and acquire the skills necessary for practice
in the real world. Finally, section 8 concludes the paper.

II. COURSE VERSION 1
A Challenge

Train undergraduate students in a series of technologies not
covered in other courses of the curriculum in the area of Software

Perspectivas y Experiencias en el Desarrollo de un Curso de Arquitectura de Software — Lopez, Villamil y Casallas. 127

Engineering. The course was a walkthrough of technologies,
software patterns and non-functional requirements and
frameworks related to architecture, with emphasis on technology.

B Solution

The solution focused on using technologies in which
students have weaknesses.

C. Methodology

We created the first version of the course giving lecture classes
with presentations; support material was limited to technology
documentation pages. During lectures, we used simple examples
to present technologies; these were those available as a base
example by the technology providers.

Students practiced technologies by means of small
workshops; the workshops proposed specific challenges that
were not aligned with the material covered during class. Groups
of two or three students got together for the workshops. We
organized workshops around a central project of medium size
with several development cycles. Every two weeks we
introduced students to a new technology (or a set of
technologies) necessary to implement the workshop. During
the course, students developed 6 workshops.

Each workshop had its specific deliverables with specific
grading criteria associated; however, there were two main
projects. The first project focused on processing, transformation
and presentation of information using XML, parsers and
patterns like the Builder pattern and MVC. The second one was
the implementation of a simple business application using J2EE.

We presented content related to architecture, analysis and
methodology as a support to technology subjects. We
introduced non-functional requirements each time a technology
supported them. In a similar manner, we presented design
patterns each time a technology is appropriate for their
implementation, and students saw the pattern as the proposed
solution for the workshop.

D Problems

The course was a walkthrough of technologies and
frameworks related to software architecture, but it lacked a clear
focus on what architecture is and how these technologies help
create, define, evaluate and implement a specific architecture.

The concept of software architecture was spread out
throughout all the technology subjects. The articulation of these
subjects was not clear; the introduction of one technology after
another related to the workshops, and students perceived it as
being abrupt.

Introducing non-technology subjects was difficult; the
student was solely responsible of making necessary
generalizations and abstractions of the concepts not related to
a specific technology. For example, we did not introduce
students with design patterns as means to solve recurring design

and architectural problems, but rather as specific ways to
implement a certain technology. Additionally, we introduced
patterns during lectures in a high abstraction level; this made
their implementation by students on workshops a 'reproduction’
of how the lecturer says it should be.

On the other hand, students studied the patterns in an order
that did not ease their understanding. For example, the builder
pattern, which is relatively more complex than others (i.e.
delegation), was introduced first, since it was the proposed
solution to the SAX workshop. We presented the pattern using
the concrete elements of SAX that enabled its implementation.

Students required much more support material to guide their
architectural decisions in the workshops. There were no cases
or examples similar to the workshop, in terms of neither
technology nor business requirements, that supported students
in developing theirs. Students had at their disposition the
common "hello world" example and the workshops required of
them a much more complex development. These examples were
far too simple, and students had to face typical implementation
problems without the appropriate support tools.

The students perceived subjects related to non-functional
requirements as merely informative. Around the middle of the
semester, we gave a couple of lectures presenting all the typical
non-functional requirements, their definition and some examples
of how users perceive them. We presented tradeoffs between
obvious requirements, such as performance and fault tolerance
using replication, but we did not have available specific examples
of decisions where architectural choices influence the quality
level of various non-functional requirements, creating tradeoffs.
The implementation of non-functional requirements related
directly to technologies that guarantee quality levels
transparently, specifically, we used J2EE. For example, for
concurrence, we proposed the use of web servers and Servlets/
JSP pages with session handling. However, the evaluation,
quantification, and certification of non-functional requirements
with a specific architecture related to implementation
technologies, and not to architectural choice.

As a general conclusion, even though the thematic content
ofthe course was comprehensive, the methodology used posed
several problems for the development of specific skills related
to the subject of software architecture.

III. COURSE VERSION 2
A Challenge

In this version of the course, the main objective was to prepare
students in technologies, of relevance to academy and industry,
not covered in other courses of the curriculum in the area of
Software Engineering. Additionally, we introduced students to
concepts related to architectural styles, non-functional
requirements, design and architectural patterns with the
objective of developing skills in the use of these concepts.

128 Revista Avances en Sistemas ¢ Informatica, Vol.5 No. 1, Edicion Especial, Medellin, Mayo de 2008, ISSN 1657-7663
III Congreso Colombiano de Computaciéon — 3CCC 2008

The main objective of the course, even though it covered
concepts related to the study of software architecture, was still
familiarization with the technologies. From this issue rises the
challenge in methodology that we confront: How can students
acquire skills in the use of concepts related to architecture with
a course that does not focus on teaching technology?

B Solution

We base our focus to tackle this challenge on a series of
hypotheses related to what we expect students to learn from
the course, and how they learn. These are summarized as follows:

1. Students learn technologies by means of direct exposal
to their implementation; the concepts learned from an initial
exposal to a technology are not sufficient for students to be
experts.

2. Concepts surrounding technologies can help learn how
to use a technology, focusing exclusively on implementation
issues can stop us from reaching this goal. In this case, students
develop mechanic skills necessary for the use of specific
technologies, which leads to a lack of comprehension and
reflection.

3. Theincremental development of a project that includes
the application of concepts seen during lecture and that uses
technology enables continuous evaluation of the student
learning progress. Conversely, this helps students to create a
consciousness of the consequences of the design and
architectural choices they make during the initial phases of the
project.

C. Methodology

These hypotheses guided the methodology proposed for the
course. During lectures, we presented subjects with audiovisual
aids, discussions of design and architectural decisions based
on the development of the workshops, as well as support classes
to understand the use of technologies (laboratories and support
sessions). We maintained the use of two projects divided in
incremental workshops developed by two or three students.

A problem presented by the previous version of the course
was the difficulty to develop the workshops due to the lack of
examples and support material. To tackle this issue, we
introduced laboratory sessions that focus on the execution of
complete examples similar to the workshops. Students received
a "killer application" much more complex and complete than the
ones they had to develop. They had to understand some parts
of the code that related specifically to their issues in their
workshop. During the laboratory, based on the specific
challenges of the workshop, students had to implement a small
extension of the example.

The laboratories enabled students to develop skills to apply
the technology in a different context than that of the workshop.
The risk of the approach is that students develop mechanical
patterns for the use of a technology, without even wondering
how it works.

The laboratories were used only during the second half of
the course. This activity had other issues because there was no
previous experience in the use of JEE technology, which we
recently introduced to the course. Because of this, we had to
use an example developed previously for a graduate course.
We presented the example using a top-down approach, this
meaning that students received a complete application including
persistence, business logic and web based GUI components;
we also used these three layers for the division of the workshops.

D Problems

The main problem with the course was that there was a clear
separation between the first and second half. During the first
half, students had to develop workshops with little support
material; this presented the same difficulties as on the previous
version of the course. Additionally, during this semester the
course was included as a graduate leveling course. This posed
an additional challenge since some students had little experience
in object oriented programming and java.

On the other hand, the decisions necessary for each workshop
were too elaborate, and students had not yet developed the
necessary criteria for their evaluation. If students did not make
the right choices, each iteration of the project became
increasingly more complex: additionally to fulfilling new
objectives, students spent long hours correcting issues from
previous workshops. Furthermore, it was very difficult to
compare the decisions proposed by the different groups and
establish discussions around them; thus, students were unable
to reflect on conclusions related to design and architectural
choices.

During the second half of the course, the decisions that
students had to make on each workshop were specific and the
laboratories were available as support. However, the decision
to use a complete "killer application" example created confusion
among students because there were too many concepts and
technologies embedded in the example, which students had
not studied and discussed. Because of this, they had problems
understanding the concepts developed during lectures that
hindered the development of the desired skills. In many groups,
'copy-paste' techniques prevailed over comprehension of the
technology and concepts. Additionally, even though the
proposed laboratory extensions were useful to develop selection
criteria, in most cases, students neither elaborated the extensions
nor discussed them afterwards.

IV. PROPOSAL FOR A SOFTWARE ARCHITECTURE COURSE
A Challenge

Help students develop a series of design skills in the area of
software architecture, as central pillars of these skills are business
needs and processes, design and software architecture
concepts. Additionally, students should be able to use and
understand the impact that technology.

Perspectivas y Experiencias en el Desarrollo de un Curso de Arquitectura de Software — Lopez, Villamil y Casallas. 129

B Solution

The course focuses on three thematic areas (business, design
and concepts, and technology) with the support of
methodological tools like architectural styles, design and
architectural patterns, industrial development models and
specifications, and state of the art technologies. Table 1 presents
the thematic axes that, using our proposed methodologically
aim at the development of skills necessary for software
architecture practice. The three broad areas introduced in the
first section of the paper relate to these axes. The broad
architecture area is divided into two separate axes: architecture
and (architectural) methodology.

TABLE 1
THEMATIC AXES FOR PROPOSED COURSE

Architecture

Architecural Styles
Design paradigms
e Objects
. Component Based Design (CBD)
. Application servers / containers
e SOA
Architectural Description Languages
Enterprise Application Integration

Methodology

Design Patterns
. Interface / Implementation

. Delegation
. Factory

. Build

. Observer

. Proxy

Architectural Evaluation: ATAM

Analysis

Business processes

Non Functional Requirements
. Quality scenarios
. Tradeoffs

® Sensitivity points

Technology
JEE
e EJB3
. IMS
. JSF
e JNDI

Jboss Application Server
Web Services
Other component models: Corba, .Net

C. Methodology

We attempt to shift from a passive methodology, were
responsibility is left solely to the lecturer, to an active
methodology where the lecturer presents problematic situations
that raise questions and issues about the student's ability to
solve issues with his current set of skills. The student's curiosity
to solve these concerns leads him to elaborate exercises and

participate in case discussions with similar issues. The
discussion focus on architectural choices and the risks and
non-risks associated. During discussions, the students' drive
to find answers leads the process of development of the desired
skills.

We still support lectures using audiovisual aids; however,
short discussion worksheets are included within the lectures
and we plan laboratories for all technology subjects. The
worksheets focus on the main concepts and decisions related
with the workshops. During class, students group and discuss
the worksheets and the lecturer guides the process of defining
conclusions and lessons learnt, this enables him to naturally
introduce the concepts underlying and ease their
comprehension, as well as show their concrete application.
Additionally, we complemented the lectures with a variety of
support articles and case studies that students can read before
introducing a new subject.

A global project implemented iteratively now articulates the
workshops, much like in the previous versions of the course.
However, the big difference here is that a sole project is used
and all the workshops are heavily articulated around business
conditions, both in terms of technology and architectural
concepts. The group discusses progressively business
conditions that drive architectural decisions of the project, the
lecturer introduces new concepts and restrictions as they are
necessary, but unlike previous versions of the course, the
comprehension of the business and the evaluation of results
regarding business conditions and restrictions guide the
development.

Another difference in the new workshop is that each now has
clearer objectives and challenges that require students to make
specific choices and evaluate their consequences. For example,
in the first workshop students have to develop entity beans
and plan quality scenarios for modifiability. As part of the
workshop deliverables, students now have to document the
results of the execution of the modifiability scenario. In this
case, the decision is the definition of an appropriate entity model
to represent business concepts, and the consequence is that
an inappropriate model can lead to longer times required for
modification.

The articulation of all the workshops creates a consciousness
in students of the importance of making good architectural
choices in their workshops, since these choices will have an
impact on the overall quality of the project. Laboratories are the
main support tools for the workshops. Contrary to the situation
of the previous version of the course, students used laboratories
that incrementally introduced the technologies, so their support
for a specific workshop was clearer. This decision lead to an
overhead of work from the course support group, nevertheless
it proved to be a success to increase the probability of students
correctly developing their workshops.

130 Revista Avances en Sistemas ¢ Informatica, Vol.5 No. 1, Edicion Especial, Medellin, Mayo de 2008, ISSN 1657-7663
III Congreso Colombiano de Computaciéon — 3CCC 2008

D Problems

Contrary to previous versions of the course, students can
now concentrate more in the relevant design and architectural
choices and not just on technology. However, we could not
dedicate sufficient time to some subjects; this is the case for
design and architectural patterns. Additionally, many groups
focused on how to copy-paste and replace code from the
laboratory to implement their workshops, without reflection on
what they were doing. This resulted in an increase of time
dedicated to correction and debugging and many times students
did not understand why the problems occurred.

Support articles and cases for the subjects covered in the
lectures are another relevant factor for the success of class
discussions. However, guaranteeing that students prepare class
by reading the articles is still an issue, so we had to adjust the
lectures to consider this issue.

V. CONCLUSIONS AND FUTURE WORK

We are aware that there is still a long road ahead to achieve
our goals related to education of software architecture and
designing the course is a continuous process that needs
adjustment by the lecturers according to changes and evolution
in technologies and methodologies. However, we believe that
our efforts to focus the course according to thematic axes rather
than technology make the course maintainable, a characteristic
that guarantees its evolution and the fulfillment of its objectives

We still have as future work comparing results for this new
version against the previous versions. This analysis will enable
us to adjust our proposal and reinforce its weaker points.
However, the results from the qualitative evaluations of the
course show great improvement in student perception of the
contents, methodology; furthermore, we were impressed to see
that several students considered the course to be the most
relevant of the curriculum for their professional practice.

REFERENCIAS

[1] 17655 Architectures for Software Systems, Course Detail Page,
Carnegie Mellon University, 2007. Available: https://
acis.as.cmu.edu/gale2/open/Schedule/
SOCServlet?CourseNo=17655&SEMESTER=S07&Fomname=Course_Detail.

[2] Advanced Analysis and Design, Course description, University
College London. Available: http://www.cs.ucl.ac.uk/teaching/
syllabus/mscsse/gs02.htm.

[3] Advanced Software Engineering, Course description, University
College London. Available: http://www.cs.ucl.ac.uk/teaching/
syllabus/ug/3015.htm.

[4] A.T. Chamillard, K. Braun, "The Software Engineering
Capstone:Structure and Tradeoffs", In Proceedings of the 33rd
SIGCSE Technical Symposium on Computer Science Education,
Northern Kentucky, Kentucky, March 2002, pp. 227-231

[5] CS 15-675 Architectures of Software Systems, Course
Information, Carnegie Mellon University, 1998. Available: http:/
/www.cs.cmu.edu/afs/cs/project/tinker-arch/www/html/index.html.

[6] M. Gehrke, H. Giese, U. Nickel, T. Niere, J. Wadsack, A. Zfindorf,
"Reporting about Industrial Strength Software Engineering Courses

for Undergraduates”, In Proceedings of the 24th International
Conference on Software Engineering ICSE, 2002, pp. 395-405.

[7] A. Rugarcia et Al. , "The Future of Engineering Education. I A
Vision for a new century”, Chem. Engineering Education, 34(1),
pp. 16-25 (2000).

[8] Software Architectures and Patterns: Course Catalogue: King's
College London, Course Catalogue, Kings College London.
Available: http://www.kcl.ac.uk/international/sae/sa/
coursecatalogue/programme/860

[9] Software Architecture, Software Engineering Programme. Part-
time Postgraduate Study, Oxford University. Available: http://
www.softeng.ox.ac.uk/courses/architecture.html.

[10] US Computer Engineering School Rankings, School Rankings,
Available: http://www.infozee.com/channels/ms/usa/computer-
engineering-rankings.htm.

[11] J. Villalobos, R. Casallas, "Teaching/Learning a First Object-
Oriented programming Course outside the CS Curriculum", Tenth
Workshop on Pedagogies and Tools for the Teaching and
Learning of Object Oriented Concepts, Nantes, France. 2006.

[12] J. Villalobos, R. Casallas, L. Osorio, "Looking for a new approach
to teach/learn a first computer-programming course",
International Conference on Engineering and Computer
Education ICECE, Madrid, 2005.

Maria del Pilar Villamil G. Profesor Asistente del Departamento de
Ingenieria de Sistemas y Computacion de la Universidad de los Andes, en
el area de sistemas distribuidos e ingenieria de informacion. Doctora en
Informatica, Institut National Polytechnique de Grenoble (INPG),
Grenoble, Francia. Magister en Ingenieria de Sistemas y Computacion -
Universidad de los Andes. Ingeniera de Sistemas y Computacién -
Universidad de los Andes.

Nicolas F. Lopez. Instructor del Departamento de Ingenieria de Sistemas
y Computacion de la Unviersidad de los Andes. Recibi6 su titulo de Maestria
en Ingenieria de Sistemas y Computacion de la Universidad de los Andes
en el 2005. Actualmente se desempefia como instructor del curso de
arquitectura de software y lider del grupo de desarrollo Qualdev.

Rubby Casallas. PhD de la Universidad Joseph Fourier (Grenoble France).
Especialista en Sistemas de Informacion e Ingeniera de Sistemas y
Computacion de la Universidad de los Andes. Es Profesora Asociada del
Departamento de Ingenieria de Sistemas y Computacion Universidad de
Los Andes. Directora de la especializaciéon en Construccion de Software
ECOS. Areas de interés: Fabricas de software y lineas de producto basadas
en modelos, ensefianza de la ingenieria de software; procesos de desarrollo
de software.

