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Resumen—En este trabajo se presenta una técnica de mineria
de datos para la extraccién de patrones en secuencias de proteinas.
Especificamente, el objetivo es explorar el uso de reglas de
asociacién como una base para construir exitosamente predictores
de estructuras secundarias en una capa estructura - secuencia.
En esta investigacién no se toma en cuenta informacién bioldgica
ni heuristica, es decir, que solo la informacién otorgada por las
reglas de asociacién se utiliza como una base de construccion de
un predictor de estructura secundaria.

Este trabajo proporciona elementos de comprensién acerca de las
caracteristicas de prediccién de estructuras secundarias

para ser usadas en algoritmos de aprendizaje, es esperado que
este trabajo sea util para alcanzar mejoras substanciales en la
precisién de la predicciéon de estructuras secundarias en trabajos
futuros.

Palabras Clave—Mineria de Datos, Predicciéon de Estructuras
Secundarias, Reglas de Asociacion.

Abstract—In this paper, a data mining technique for protein
sequence pattern extraction is developed. Specifically, the aim is
to explore the use of association rules as a basis to build successful
secondary structure predictors, in a sequence-structure layer.
No heuristic or biological information is taken into account in
the present study and only the information given by the association
rules isused as a basis for building a secondary structure predictor.
This work gives some insights about secondary structure
prediction features to be used in learning algorithms; this is
expected to be useful to achieve substantial improvements of
accuracy in protein secondary structure prediction.

Keywords—Data Mining, Secondary Structure Prediction,
Association Rules.

I. INTRODUCTION

S cientists have studied the complex process that determines
the structure, properties and function of proteins for
decades; however, such processes and mechanisms about
protein folding and the prediction of secondary structures still
remain unknown. Predicting a protein secondary structure
consists of the classification of the amino acids in a sequence as
either helices (H) or sheets (E) or coils (C).

Secondary structure prediction could be studied as a machine
learning problem by performing either classification or pattern
recognition; classification is then based on the features of a
protein sequence.

Secondary structure prediction methods can be categorized
in four different generations [1]. The first generation was based
on propensities of single residues, i.e., it was based on single
amino acid propensities for finding a specific amino acid in a
specific structural element; the methods developed by Chou
and Pasman[2] and the method GOR developed by Granier et
el[3] were among the most significant. Second generation
methods were based on propensities of segments as opposed
to isolated amino acids. Representative approaches are the work
by Rooman and Wodak [4], Strelets [5] and the method called
PREDATOR [6]. In the third generation, information from
homologues sequences to the query sequence and state of the
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art machine learning methods were used. Among the
representative approaches are Zvelebil[7], PHD[8] and PSI-
PRED[9]. In fourth generation approaches, a matching between
secondary and tertiary protein structure was used; in other
words, information about 3D protein conformation was added
to secondary structure predictive methods as in the work by
Meiler and Baker [10].

In spite of the progress achieved by secondary structure prediction
approaches, they have reached around 77% average prediction
accuracy per residue in unknown protein sequences [11].

Since the 70's, several approaches to solve the secondary
structure prediction problem based on machine learning
techniques have been proposed; support vector machines and
neural networks have been successfully applied, obtaining
similar results in terms of prediction accuracy.

Despite of good prediction showed by machine learning
methods, the results given by some of them, especially those
based on neural networks, are difficult to interpret. Therefore,
some probabilistic models, which are easier to interpret, have
been developed [12].

Figure 1 depicts a general model for secondary structure
prediction based on sequence. The first step consists of
potential conserved and interesting patters taken from a
sequence data base. The next step consists of the extraction
and definition of the patterns found in the first step and
developing the model itself. Finally an optimized predictor is
reported as an approach to solve the secondary structure
prediction problem.

Accordingly, this paper focused on the development and
implementation of a data mining technique for the extraction of
protein sequence patterns. Specifically, the aim is the
development of a data mining technique for association rule
extraction (see figure 1). The focus is on the use of association
rules as a method for extraction of secondary structure
information from protein sequence. Therefore, instead of
developing a secondary structure predictor, we explore the use
of association rules as a basis to build good predictors. Thus, a
framework to understand and study the association rules as a
first step to build an accurate secondary predictor model is
presented. Such questions have taken on increased practical
significance with the realization that a lot of currently approaches
to the secondary structure problem are associated with
association rules or frequent items as a sequence to structure
layer in the process.

Moreover some authors [1] believe that substantial
improvement on the accuracy of secondary structure prediction
methods can only be possible if better representations for the
secondary structure features are found, instead of continuing
applying different machine learning algorithms on the same set
of profile-based features, which has shown to yield similar
results in the past.

The rest of this paper is organized as follows. First, a short
biological background necessary to understand the secondary
structure prediction problem is presented. Then, the training
dataset is described. Subsequently the proposed data mining
approach is explained. Thus, the proposed data preprocessing,
amino acid frequent pattern recognition and prediction models
are described. Next the experimental framework and its results are
discussed. Finally, some conclusions from this work are devised.
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II. BACKGROUND

Proteins are formed from one or more amino acid sequences
in a folding process in which a three-dimensional structure is
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obtained. This three-dimensional structure is highly important
because it helps to determine its function of the protein. In
order to understand the structure and formation of proteins, it
is convenient to consider four structural levels. Primary structure
consists in the order of the amino acids in the sequence.
Secondary structure contains regular components such as q-
helices, g -sheets and p -turns, where these types of structures
contribute to the stabilization of protein folding. Tertiary
structure where the elements of secondary structure are folded
forming an almost solid compact structure that is stabilized by
weak interactions. Quaternary structure consists of several
polypeptides chains with tertiary structure that are joined by weak
connections - non-covalent - to form a protein complex [16].

III. ASSOCIATION RULES IN PROTEIN SECONDARY
STRUCTURE PREDICTION

The proposed approach is based on the application of a data
mining procedure on a sequence data set to discover amino
acid patterns in association rules that characterize protein
secondary structure. Those patterns will be the first information
source to build a machine learning technique to predict protein
secondary structure. The analysis of this model will give some
insights about the use of association rules as a technique to
build secondary structure predictors. Additionally, a framework
to extract information from a biological dataset based on
association rules is proposed.

It is important to notice that no heuristic or biological
information is taken into account and only the information give
by the association is used as a basis for building a secondary
structure predictor.

Analyzing figures | and 2, it is observed that the developed
predictor does not perform completely the sequence to structure
layer.

A DATAPREPROCESSING

Main biological databases have reliable and curated
information that has been carefully found. The necessary
guidelines and requirements to construct a data set for the
training and verification of the methods of secondary structure
prediction could be found in the literature [7, 8, 9, 13]. Based on
these guidelines, some consensus criteria among all of them
could be established; for example, it could be stated that protein
sequence identity above 25%, structural homologues and
transmembrane proteins should be avoided. On the other hand,
well resolved crystal structures with a resolution better than 2.5
A should be favored; in addition, the data set should be a
representative subset of the known fold space.

In this work, the protein data set CB513 proposed by Cuff
and Barton in 1999[13] and the data set SCOP-SFR developed
by Birzele et al in December 2003 [14] are used. These protein
data sets fit the requirements enounced as consensus criteria
in the paragraph above; they also have the following
characteristics. CB513 data set contains 513 protein chains

with 84119 amino acids. The helix content is 34.5%, 22.7% sheets
and 42.8% coils. The SCOP-SFR data set contains 940 protein
chains with a total of 157813 residues distributed in 36.79%
helices, 22.78% sheets and 40.42% coils.

Given that the amino acids of some common conformation as
the sheets can be quite distant from each other in the linear
sequence, the creation of a window of interaction was necessary
to analyze the interaction of amino acids in a sequence interval.
The window size refers to the specific number of amino acids in
the patterns that will be studied. In this work, a 20 amino acid
window was generated; all the amino acids in the protein
sequences of the data set were scanned using this window. In
figure 3 an example showing the process followed to build a
transaction table is depicted. In this example, for each amino
acid of the sequence VLSEGEWAQ five different transactions
are created using a window of size four.

A binarization process on the data set was performed, given
the fact that some algorithm that finds association patterns
requires the data to be binary [17]. Then, a transaction table was
built, where each amino acid gofeach sequence VLSEGEWQ and
a window of size four, creating five different sets.

YLSEGEWQ

B4 |

2
-
3
ol

Fig. 3. Scanning of sequence VLSEGEWQ using a window of size 4.

B. FINDING FREQUENT PATTERNS

The existence of consecutive patterns in amino acid
sequences could be useful in identifying important
characteristics in function and structure; such features could
be based on chemical or evolutionary properties.

Although some secondary structure prediction methods such
as the ones developed in [18] and [19] identified frequent
patterns in protein data sets to be associated with specific
structural states. In this work, similarly to the work developed
in [1] and [14], an algorithm to discover association rules called
A priori is used [20] to search consecutive items and amino acid
patterns in the data sets CB513 and SCOP-SFR. Therefore, in
the proposed approach, an implementation of the A priori
algorithm based on prefix trees was used to organize the
counters in the item sets [20].

The main aim to perform an A priori search in the data set is to
find a set of frequent words or N-grams that represent
consecutive amino acids patterns of variable, with the objective
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of applying this codified information in the development of a
predictive model of secondary structure prediction.

There are two main challenges to face in the classic
implementation of the A priori algorithm. The first one is defining
a frequency and support scoring; the second one is to preserv
the order and sequence of the frequent patterns found.

There are two different approaches to define the frequency
of a pattern in a data set: the occurrence of a pattern in the data
set and the number of sequences in which the pattern is found.
Given that the goal here is similar to the work in [14], namely,
using the frequent patterns to structurally classify a region or
residue around a pattern, it is convenient to count the
occurrence of a pattern as an independent event without taking
in account its successive occurrence in the same sequence [1].
Then, the frequency could be defined as follows:

freq( p, D) = Z number of ocurrencesof pins. (1)

seD

where Drepresents the protein data set, prepresents the pattern
and s the amino acid sequence.

In order to guarantee the application of equation (1), it is
necessary to use the window concept given in section 3.A.
Accordingly, every sequence of amino acids is divided into
windows of size 20. A pattern found in one of these windows
will be present in the next 7windows, where 7is the position of
the window where the first element of the pattern is found (see
figure 4). Then, it is guaranteed that a pattern that could be
found more than once in a sequence will be counted as an
independent event in each occurrence.

Pos 1.2345 67 8
Seq 1 VLSEGEWQ
Seq 2 LSEGEWQYV
Seq 3 SEGEWQVI
Seq 4 EGEWQVIA
Seq 5 GEWQVIAM
Seq 6 EWQVIAMF
Fig. 4. Consecutive amino acid sequences using a window of size 8.
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Fig. 5. Percentage of sequences in which each essential amino acid is
present after a windows of size 20 is applied in the data set CB-513.

Based on the application of the A priori algorithm over the
data set, it was possible to perform an exploratory analysis of
the data; for example, in figure 6, a diagram showing the
percentage of sequences in which each essential amino acid is
present after a window of size 20 is applied in the data set CB-
513 is shown. It is clear that the Leucine (L) is present in 81.7%
of the sequences out of 74372 sequences derived from the data
preprocessing with a window of size 20. On the other hand, the
least frequent amino acid is Cysteine, present in 23.7% of the
sequences.

C.  ASSOCIATIONRULES

Several machine learning models for protein secondary
structure prediction have been proposed; particularly, neural
networks [22,23], support vector machines [24,25,26] and hidden
Markov models [27] have been successfully applied.

The aim of this research is, in principle, a bit different from
typical prediction methods; in the next section, a simple
association rule approach to classify residue chains in their
secondary structures is performed.

In the application of association rules over the preprocessed
data set, the A priori algorithm implemented in [20] was used. It
was applied over 74372 pre-processed protein sequences of
size 20 in CB513 and 139953 with similar features on SCOP-SFR

The transactional file generated in the application of the
association rules follows the pattern shown in figure 6, in which
'Sequence' reports a sequence of the preprocessed data set,
'Class' reports the secondary conformation at which each amino
acid of the sequence belongs, and 'Transaction' reports the file
structure used as input to the a priori algorithm.

Position 1 2 3 4
Sequence vV L S E
Class a o B B

Transactions: V a VL aa VLS aaB VLSE aaPp
Fig. 6. Transactional sequence for association rule application

From figure 6, the generation of a transactional file requires
the generation of new items. In the specific case of figure 6, the
transaction has 8 items for a sequence of 4 amino acids (VLSE).
In general, it is possible to say that using the presented pattern,
the maximum number of items in a set of preprocessed
sequences, with a size N window, could be defined by the generation
of not repeated items formally expressed by equation (2).

N
I1=2a*((Q p,)—2Na) @)
=l
where /is the maximum number ofitems in a transactional file, a
is the window size, pis the size of protein 7and NVis the number
of proteins in the data set. Equation 2 determines the maximum
number of items in a transactional file with the features described
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in this work. Even in a realistic experiment the maximum number
will not be achieved, because one of the 20 amino acids will be
repeated in a data set. This equation is very important because
it proves the feasibility of the proposed approach, showing
that the number of items in a transactional file will not be so
high to make the computations unfeasible.

The association rules we are interested in have the following
structure: the left side of the implication represents an amino
acid sequence, and the right side represents the classes each
amino acid of the sequence belongs to.

AAA...A..A A —>CCG,..C..C,C,Q3)

In the experimental framework, a significant amount of
experiments were run to test the performance of the developed
models (section D). As a particular case, by running the algorithm
with a minimum support equal to 0.1% and a confidence of 50%,
287 association rules, that satisfied the structural requirements
previously defined, were generated.

D PREDICTIONMODELS

A prediction model based on the obtained association rules
was developed. The use of association rules as a basis for
secondary structure prediction is presented in the next section.
A predictor model based on association rules is described in
section C.2 and the details to develop a neural network model
are presented in section C.3.

The proposed model was implemented in order to automate
the training and prediction phase of the model.

D.1 An Evaluation Patterns

The evaluation pattern is based on the hypothesis that the
classification of an amino acid in its secondary structure should
depend on the interactions of such amino acid with other amino
acids in the protein chain. Then, it is important to generate a
model that takes into account the patterns found from the
association rules.

Figures 7 shows all the possible combinations with a maximum
size of 3, in which amino acid E situated in position 4 is involved
in an interaction with other neighbor amino acids.

An analysis model was generated, in which, for every amino
acid in a sequence, all possible combinations of the interactions
between this residue and the other amino acids were evaluated.
The number of combinations depends on the window size and
the highest size of any association rule generated by the A
priori algorithm.

Pos 12345678
Seql VLSEGEWQ

Patl VILE E GEWQ

Pat2 VL[S EQEWQ
Pat3 VL S[EGHWQ

Patd V L|S E[GEW Q

Patt 5 VLSEWQ

Patt 6 VLSGEWQ

Fig. 7. Evaluation patterns for amino acid E situated in position 4

D.2 Association Rule Model

An association rule-based model to secondary structure
prediction based on two main features was developed. The first
feature of the model in the training phase is redundancy
elimination and the second one is an effective indexing of ARs.
These features are characterized by the use of a hash table. The
key will be the association rule antecedent, and the value will
be the association rule consequent concatenated with the
confidence {oftheimplication, see figure 8.

In the verification phase the proposed model was used as a
predictor based on the following four steps i) Reception of a
query sequence ii) Pattern evaluation iii) Verifying the existence
of the patterns in the hash table iv) Decision making using a
voting system v) Secondary structure prediction, where steps
from ii) to v) constitute an iterative process over all the amino
acids of the query sequence.

Step ii) returns a set of patterns corresponding to all the
combinations, where the studied amino acid has an interaction
given a size window. Then the existence of each one of these
patterns is studied in the hash table; ifit exists, a voting system
will be used to accumulate the contribution of each pattern
given the associate confidence. Finally, the contributions of
each class are accumulated and the class with the highest
contribution is reported.

KEY VALUE

GGGy ;-GG + 6

GGG Gy G +¢

CuCiy '”C.":j"ci:;—lq:.' +g

C. € c

11 2 by "Cp—l:n Tg
Cp,lcp,l "'prr'"cp,n—lcp,n ¥ -

Fig. 8. Indexing hash table
D.3 Neural Network Model

A prediction model based on a neural network was developed.
The architecture of the neural network is as follows: 60 neurons
in the input layer, where each set of 20 consecutive neurons
corresponds to an amino acid representation after performing a
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binarization process, a variable number of nodes in the hidden
layer, and 9 neurons in the output layer, where each set of 3
consecutive neurons corresponds to the classes of input amino
acids (see figure 9).

The neural network was developed to work with association
rules with a maximum size of three amino acids for the evaluation
pattern process (section D.1).

The verification phase of the proposed model is based on the
following steps. i) Reception of a query sequence ii) Pattern
Evaluation iii) Obtaining results by the neural network iv)
Decision making using a voting system v) Secondary structure
prediction, where steps from ii) to v) constitute an iterative loop
over all the amino acids in the query sequence.

Step ii) returns a set of patterns corresponding to all the
combinations, where the studied amino acid has an interaction
given a size window. For these patterns, the neural network is
used to get a prediction and a voting system is used to accumulate
the individual contribution of each pattern. Finally, the
contributions of each class are accumulated and the class with
the highest contribution is reported.

J

- X hidden neurons
9 60
0 00
0 0

0 00
o0 ® @

60 neurons, 20 for each amino acid
A
00 OO0

000000600

Fig. 9. Architecture of the developed neural network

IV.EXPERIMENTATION

The main goals of the experiments that were carried out were:
1) To evaluate the association rules as a method for extraction
of secondary structure information from protein sequence in
order to build a sequence - structure layer; 77) To analyze and
compare the results obtained using the CB513 data set and the
SCOP-SFR data sets in a prediction experiment; 777) To clarify
the limitations and advantages of using association rules in
secondary structure prediction 7v) To study the behavior of
simple secondary structure predictors based on association
rules.

Al Experimental fiamework

In order to accomplish such objectives, a set of experiments
were carried out; eight of them are reported in table I. Id identifies
a specific running experiment. The parameters of each experiment
are as follows:

Id 1: A support of 0.2% and a confidence of 50% were used as

the A priori algorithm parameters, 820 association rules extracted
from CB513 were used, and the models were tested on the data
set CB513.

Id 2: A support 0of 0.2% and a confidence of 50% were used as
the A priori algorithm parameters, 820 association rules extracted
from CB513 were used, and the models were tested on the data
set SCOP-SFR.

Id 3: A support of 0.2% and a confidence of 50% were used as
the A priori algorithm parameters, 424 association rules extracted
from SCOP-SFR were used, and the models were tested on the
data set CB513.

Id 4: A support 0of 0.2% and a confidence of 50% were used as
the A priori algorithm parameters, 424 association rules extracted
from SCOP-SFR were used, and the models were tested on the
data set SCOP-SFR.

Id 5: A support 0of 0.2% and a confidence of 50% were used as
the A priori algorithm parameters, 1244 association rules
extracted from CB513 and SCOP-SFR were used, and the models
were tested on the data set CB513.

Id 6: A support of 0.2% and a confidence of 50% were used as
the A priori algorithm parameters, 1244 association rules
extracted from CB513 and SCOP-SFR were used, and the models
were tested on the data set SCOP-SFR.

Id 7: A support of 0.2% and a confidence of 25% were used as
the A priori algorithm parameters, 3643 association rules
extracted from CB513 and SCOP-SFR were used, and the models
were tested on the data set CB513.

Id 8: A support 0of 0.2% and a confidence of 25% were used as
the A priori algorithm parameters, 3643 association rules
extracted from CB513 and SCOP-SFR were used, and the models
were tested on the data set SCOP-SFR.

Additionally, A represents the accuracy of the studied model
given a confusion matrix and A1 represents the accuracy of the
model, only taking into account classes o.and C.

A2 Experimental results

Analyzing the results of the experiments, it can be stated that
the models have the characteristics of secondary structure
prediction models belonging to the first and second generations.
In this work, experimentally the results of Rost and Sander [29]
were proved. Specifically, even though great efforts were made
to increase the prediction accuracy of the association rule
methods, they will only reach approximately 65% prediction
accuracy. Methods studied in this paper have a prediction
accuracy around 53%, which could be improved adding some
characteristics used in first and second generation methods.
The main problem of using association rules is the poor accuracy
of B -sheet prediction, which is slightly better than random.
Another problem was the short number of predicted helix and
sheet elements represented by association rules; this is
understood by the fact that a short number of association rules
were generated with respect to the possible combinations in an
alphabet of 20 amino acids.
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EXPERIMENTAL RESULTS
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The experiments carried out using the two data sets produced
similar results (Id 1 to 6). It is important to mention that the
SCOP-SFR data set was reported more recently than CB513.

Association rules are a good methodology to extract structure
information from a protein data set to build an accuracy predictor,
because from the experiments it can be stated that the
association rules keep general information from a set of data
representing the known fold space. In experiments 1 to 6, the
accuracy is almost the same, even though different data sets
were used in the training process. Moreover, comparing the
results of experiments 5 and 6, with experiments 1 to 4, it is clear
that the amount of association rules does not determine the
accuracy.

Association rules based models could be sensitive to the
number of redundant information, for example, in experiments 7
and 8, the neural network training error is higher than 0.5. Even
ifthe application of filters to avoid redundant information is an
easy process, the definitions of the parameters of good
association rules are difficult to get.

The extraction of secondary structure information from protein
sequence using association rules could be thought of as
independent of the data set, if such data set represents a known
fold space and it does not produce redundant association rules.

V. CONCLUSIONS

In this work, a data mining technique for association rule
extraction was developed. The focus is on the use of association
rules as a method for extraction of secondary structure
information from protein sequence. Despite of the limitations of
association rules as predictive methods, they are a significant
source of information for extraction of secondary structure
information from protein sequence in order to build a sequence
— structure layer. This has been shown in different studies,
where accuracy prediction methods have been developed based
on frequent patterns as part of a sequence — structure layer.
Additionally, it is important to mention that association rules
give some insights about secondary structure prediction features
to be used in learning algorithms.

The data mining methodology developed in this research is
feasible and useful in the exploration of information from protein
sequence.

The use of hash tables provides an excellent computational
technique to model association rules, because the number of
collisions is reduced to zero, it avoids the data redundancy and
the insertion; in addition, erasing and search of association
rules is performed efficiently.

The fixed size sliding window to study association rules is a
limitation of these secondary structure prediction methods, but
it highly decreases the computational resources to perform an
A priori algorithm.

In this work, the problems with first and second generation
methods are experimentally explored, clarifying the advantages
and limitations of using association rules. As a conclusion,
association rules are good to support secondary structure
prediction methods, but they are limited predictors by
themselves.

Future work will focus on the building of a four generation
predictor with a sequence-structure layer based on association
rules to experimentally evaluate the contribution of this
approach to the accuracy of protein secondary structure
prediction.
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