Modeling Web Services Composition with Constraints

Modelando la Composicion de Servicios Web con
Restricciones

Eric Monfroy, PhD!, Olivier Perrin, PhD 2, Christophe Ringeissen, PhD 2
'"Universidad Técnica Federico Santa Maria, Valparaiso, Chile
LINA, Université de Nantes, Francia
2LORIA, Campus Scientifique, BP 239, 54506 Nancy Cedex, Francia
eric.monfroy@inf.utfsm.cl, {olivier.perrin, christophe.ringeissen} @loria.fr

Recibido para revision 28 de Noviembre de 2007, aceptado 14 de Febrero de 2008, version final 28 de Febrero de 2008

Resumen—En este articulo abordamos el problema de
composicién de los servicios Web. Nuestra estructura se basa en
la existencia de una composicién abstracta, es decir, la forma
como algunos servicios de diferentes tipos se pueden combinar
entre si con el fin de realizar una tarea determinada. Nuestro
enfoque consiste en instanciar esta representacion abstracta de
un servicio Web compuesto, seleccionando los servicios web
concretos mas apropiados. Esta instanciacién se basa en técnicas
deprogramacion derestricciones, las cualesnos permiten comparar
los servicios Web de acuerdo a la consulta dada. La composicién es
realizada de manera incremental propagando algunas
restricciones asociadas a los servicios Web. Entonces, la
instanciacién puede actualizarse dindmicamente durante la
ejecucion via una fase de monitoreo. Nuestro enfoque esta
ilustrado en una composicion Web, describiendo el
comportamiento de un portal photolab. En este ejemplo, nosotros
usamos técnicas basadas en restricciones para dindmicamente
gestionar y calcular los tiempos de ejecucidon estimados
(anunciados por los servicios) para cumplir a cabalidad o ejecutar
a tiempo la tareas requeridas.

Palabras Clave—Servicios Web, Problema de la Composicién,
Razonamiento con Verificaciéon de Restricciones.

Abstract—In this paper we consider the composition problem of
Web services. Our framework is based on the existence of an
abstract composition, i.e, the way some services of different types
can be combined together in order to achieve a given task. Our
approach consists in instantiating this abstract representation of
a composite Web service by selecting the most appropriate concrete
Web services. This instantiation is based on constraint
programming techniques which allow us to match the Web services
according to a given query. The composition is built in an
incremental way propagating some constraints attached to Web
services. Then, the instantiation can be dynamically updated

during execution via a monitoring phase. Our approach is
illustrated on a Web composition describing the behavior of a
photolab portal. On this example, we use constraint techniques
to dynamically manage and compute the estimated execution times
(announced by services) to fulfill and achieve on time the
requested tasks.

Keywords—Web Services, Composition Problem, Constraint
Reasoning .

I. INTRODUCTION

omposition can be seen from various points of view. Many

different techniques have been developed, including
planning in Al [1], situation calculus [2,3,4], conversational
transition systems [5], or symbolic model-checking applied to
planning [6]. In this paper, we present an approach in which an
abstract representation of a composition is already given and
has to be instantiated by concrete Web services possibly
interacting via complex protocols. In this context, we are looking
for the orchestration implementing the abstract composition.
We present a framework where constraint solving allows us to
instantiate the composition with respect to input queries and
properties of Web services. Our objective is to generate a concrete
and executable service composition from a schematic (abstract)
one.

Controling a composition can be very complex: one reason is
the non-deterministic behavior of services; another reason is
the possible failure of services involved in the composition.
Therefore, exchanged messages are difficult to manage since
they include complex data related to different aspects such as
security, reliability, or presentation. The combination of all these
aspects can generate a very complex design, and the resulting

Revista Avances en Sistemas ¢ Informatica, Vol.5 No. 1, Edicion Especial, Medellin, Mayo de 2008, ISSN 1657-7663
III Congreso Colombiano de Computaciéon — 3CCC 2008

174 Revista Avances en Sistemas e Informatica, Vol.5 No. 1, Edicion Especial, Medellin, Mayo de 2008, ISSN 1657-7663
III Congreso Colombiano de Computaciéon — 3CCC 2008

code can be difficult to write, to maintain, and to adapt.
Implementing a composition requires taking into account
different aspects (such as control flow, data flow, security,
reliability, ...) and constraints (such as compatibility, time for
achieving tasks, costs, ...). Languages like WS-BPEL could allow
us to implement a composition covering at the same time all
those aspects. However, these aspects make the task very time
consuming and error prone.

In this paper, we present an approach that is aspect-oriented,
in the sense that it decouples the different aspects (for instance
the temporal aspect, i.e., times required for achieving tasks or
scheduling of these tasks with respect to requirements of the
query or to some costs) of the component services, and in the
sense that the composition is expressed separately from these
aspects. We provide a constraint-based approach (seee.g., [7,8]
for constraint programming and constraint reasoning references)
that allows the automated generation of the composition with
appropriate services. The resulting composition is compatible
with the constraints defined in the respective aspect (temporal,
reliability, security,...) and is dynamic in the sense that the
composition can be automatically adapted (it can be re-
instantiated) if one or more constraints are no more satisfied. It
is easier to deal with the needed adaptations as the protocol is
already defined, and the selection of services is independent
from the interactions (messages exchange, message structure,
...). In our approach, the logic of the composition already exists,
as the control flow is already defined. Therefore, the role of a
solver is to find a set of services of the right types and right
characteristics in order to generate an instantiation of the
composition that fulfills all the requirements. Constraints are
then considered to model additional properties of services.

The rest of the paper is organized as follows: in Section 2, we
detail a possible scenario. Section 3 presents our constraint-
based framework. In Section 4, we discuss related work, and
Section 5 concludes.

II. MOTIVATING EXAMPLE

We illustrate our approach by a significant example detailed
below. Let us consider a Web portal for printing digital pictures.
The actors of the scenario are the clients, the portal, the labs in
charge of printing the pictures, the delivery services, and the
bank. A printed picture has several properties, but in our example,
we only retain the following: its size, its quality, its price.

We consider given the composition that allows a client to
send a query to a portal in order to print some pictures. This
means that the workflow is already given, and that the process
specifying the schedule of the different activities is known.
However, we do not know which concrete services will make
the work. To select these services, we use a constraint solver
that will try to find the assignments (i.e., instantiation of the
Web services). The starting point is the query of the client. In
fact, the client is able to express some constraints (seen as
preferences) to be satisfied by the composition. For instance, a

client may want to get a set of printed pictures in at most 18
hours (delivery included). The type of queries that can be
expressed by the client are:

* Print and send me these 100 pictures (no temporal or quality

constraints),

* Print and send me these 100 pictures at minimum cost (no

temporal constraints),

* Print and send me these 100 pictures at the average quality

and minimum cost (no temporal constraints),

* Print and send me these 100 pictures at the average quality

and minimum cost within 24 hours,

* Print and send me these 100 pictures at the 6x7 format and

the 8,5x11 format as soon as possible.

Each actor also has a set of properties. For instance, the client
can have some fidelity points that will give him (her) a discount.
A photo lab can print different formats, but not necessarily all
ofthem. It can grant some discounts with respect to the volume
of work. The delivery service can have different levels of service
(gold service for delivery in 24 hours, silver service in 36 hours,
...) and different qualities of printings.

Roughly, the different steps of the process are given as
follows: the client will send a query to the portal service in order
to get a quote. Then, if he accepts the proposition, he will send
the files to be printed. The portal can treat the query, ask to
photo lab services their prices given the preferences of the
client, select the photo lab services that can match the query,
send the result (estimates, propositions) to the client, and then
send the files to the photo lab services. The photo lab services
receives the query from the portal, check if there are delivery
services compatible with this query, computes the time needed
to print the pictures and to send them to the client, sends some
requests to the bank service, prints the files, sends them to the
delivery, ...The bank service receives the query from the photo
lab service, checks the account, transfers the amount, and
notifies the photo lab service. Then, the delivery service receives
the query from the photo lab service, computes an estimate,
receives the order, delivers the pictures.

In this process, the scheduling of tasks as well as types of
each service (portal, photo lab, delivery, bank) are known. The
objective is to instantiate this process with concrete services
such that the constraints specified in the client query are
satisfied. Suppose that, for each service, we associate temporal
constraints: estimated execution times (min, max), availability
periods, a combination of estimated execution times for given
periods.

Ifthe client queries a given task in a specified deadline, then
the objective of the constraint solver is to find an enumeration
of services whose types are compatible with those defined in
the abstract composition, such that constraints are satisfiable.
For instance, if the query is "I want my photos in the next 12
hours", and if we suppose we have 4 photo lab services, with 2
of them that take at least 36 hours to print the pictures, then

Modelando la Composicion de Servicios Web con Restricciones — Monfroy, Perrin y Ringeissen. 175

these two services will be out of the instantiation since they do
not satisfy the temporal constraint of the query.

Portal service
Paralle!

Bank service Q
‘\

Mo N

\,
\,
N

O Lab services

;
.
.
\\
VR
)/’ 1
.
)
]
;
,

Parallel

Figure 1: The process

This aspect is also interesting for the monitoring activity. For
instance, let us suppose a constraint is no longer satisfied during
the execution. We can adapt the flow by selecting another set
of services satisfying the query. For instance, suppose a photo
lab is out of its expected schedule. Given the horizontal
constraints (constraints for building an instantiation as opposed
to vertical constraints that model the abstract composition), we
are able to monitor this state, and to select a delivery service
that is able to deliver the photos in the expected time (e.g.,
using a "gold" service). In this case, we reschedule the flow
defined during the instantiation step.

To summarize, our objectives are twofold. First, given all the
constraints of services and the client query, we aim at finding
one (or more) topology that satisfies the query, the requirements
of the query, and the constraints induced by the chosen set of
services.

Second, once a topology has been selected, and the
corresponding services are currently executed, we verify that
the execution is consistent with the previously defined
constraints. [fthis monitoring phase reveals that a service does
not satisfy a constraint anymore, a new instantiation of the
abstract process is computed in order to maintain satisfiability
of constraints. In case this is not possible, an approximate
solution (i.e., violating some constraints) could be computed.

III. A CONSTRAINT-BASED APPROACH

In our constraint-based framework, we suppose that a
composition is already defined in an abstract way. We know the
different types of involved services, and all interactions between
them. We consider this as a vertical composition, i.e., the abstract
workflow specifies the different steps to achieve the objective.

This abstract representation provides us the topology of the
composition (the protocol and the possible connections) and
the types of services we need to instantiate. In our example,
this means that we need to find a service (or several ones)
having the type photo lab, and then a service having the type
delivery in order to send the photos to the consignees. In this
context, we are able to build an instantiation, i.e., a concrete
representation of the composition, and to build and manage
both the control and the data flow with respect to the constraints
defined by the client and services from the community.

A Constraints for the Composition Problem

We distinguish two kinds of constraints to express the
composition problem. The first kind are constraints called vertical
constraints. These constraints are needed to set up the abstract
composition, i.e., the process (see Figure 1). For instance,
constraints of this type are constraints such as "a delivery
service can be called only if the caller is a photo lab service", "a
portal can be connected to at most 20 photo lab services", "the
photo lab service X can return me a proposal from at most Y
services", or "the photo lab service must return a message to
the portal service".

The second kind of constraints are called horizontal
constraints. These constraints are needed to build an
instantiation of the composite service, in terms of management
of the data flow and the messages between the services. In this
paper we focus on horizontal constraints.

We will use the horizontal constraints to select the concrete
services and to instantiate the abstract composition. For
instance, we will only select the photo lab services that are able
to print in 8,5x11 format. This means that we may only select 4
services on the 10 photo lab services that exist in the community.
Ifthe query contains different formats to print, constraints may
also be used to select different photo lab services, for instance
one to print 4x6 format and the other one to print 8,5x11 format.

Horizontal constraints are used to manage the data flow. In
fact, since the topology is already known, these constraints
will be used by the solver to select the appropriate services of
each type. Then, we can imagine different types of horizontal
constraints in order to manage the different aspects of a
composition, specifying temporal constraints as in our case or
reliability/security constraints in a different context.

Horizontal constraints are used to instantiate the process but
also to monitor it. Clearly, these constraints have an impact on
the composition as illustrated by the following example: assume
that we want 1000 photos in 4x6 format, and 200 photos in
8,5x11. Suppose that the lab which is able to print photos in the
4x6 format is unable to print 8,5x11 format. Then, the composition
will choose two labs, and will launch in parallel the two activities.
Here, the horizontal constraints have an impact on the
composition itself, and on the data flow.

176 Revista Avances en Sistemas ¢ Informatica, Vol.5 No. 1, Edicion Especial, Medellin, Mayo de 2008, ISSN 1657-7663
III Congreso Colombiano de Computaciéon — 3CCC 2008

B Constraints modeling

In our model, we consider a community of services in which
each service is of a given type. Types of services are defined by
using unary predicates such as lab, delivery, bank, portal. For
each service, we also distinguish several types of constraints,
namely property constraints and QoS constraints.

Property constraints correspond to the static properties
attached to a service. A service is defined with an input port, an
output port, and a set of aspect constraints. For instance, a
service of type photo lab can declare that it is able to deliver
photos of size 4x6. This means that another service that will
send to this service a set of JPEG images will receive photos of
size 4x6. The size of the photos is a static property of the service.

QoS constraints depend on the operational behavior of a
service, and is by nature, expressed with a set of dynamic
constraints. These properties may vary given the operational
context of the service. For instance, a photo lab service L1 will
take 12 hours if the query arrives before 8PM, and 24 hours if
the query arrives between 8PM and 6AM or if it arrives on
saturday or sunday.

Constraints occur in input messages (as queries) and in output
ones (as answers). For instance, when the client queries the 4x6
format, the data 4x6 belongs to the query. Similarly, when a
photo lab service says it needs 24 hours to deliver the printed
photos, the data 24 hours becomes a data connected to the
message. The properties of a service X are defined by predicates
of the form: propertyName(X, value [,value]). We can consider
many predicates. In our example, maxDuration(X, t) is a predicate
meaning that the service X will take at most t units of time to be
executed. The predicate format(X, 4x6) is another predicate to
define that the service X supports the 4x6 format.

Given the community of services, and their associated
properties, we can define this community using a base of facts
expressed as follows:

portal(p).

lab(11), lab(12), lab(13).

delivery(dl), delivery(d2).

bank(bl).

format(11,4x6), format(12,4x6), format(12,8x12).
maxDuration(11,24h), maxDuration(12,48h).
customer(l1,individual), customer(12,individual).
customer(13, professional)

Note that this base of facts does not contain any dynamic
property. We consider that these dynamic properties can evolve
during time and cannot be coded. The service can only raise
the corresponding constraints when queried.

C. Abstract composition

The abstract composition defines only the way the different
types of services are coordinated, i.e., the messages that will be

exchanged between the different services, and their ordering. It
can be considered as a skeleton, or a coordination pattern of a set
of services. In our model, the flow can be defined using all the
classical operators, i.e., sequence, parallel, choice, etc. ([9,10]).

Concerning our example, the abstract composition is as

follows:

Sequence

Client

v

()

Parallel‘

Portal service

\
\
\
\
] \
’
D R

Q Q Lab services

a
S o

T TN
Q Delivery services

Figure 2: Abstract Composition

The portal knows that it will have a conversation with one or
possibly several lab services (i.e. it has to send an appropriate
message to at least one lab service), and a lab service knows
that it has to send a message to a delivery service, and that
before a lab finishes its work, it has to contact a bank in order to
be paid. Thus, in the coordination pattern, we have all the
conversations that have to be instantiated later.

Our main idea is that we can associate to each (composed)
service S a constraint (program) specifying how S (here, the
portal) makes use of its sub-services, and how to compute
answers to queries sent to S. This constraint program, executed
via a constraint solver, defines the composition of a service
with its direct sub-services (here, the photolab services).
Therefore, the composition is defined in an incremental way,
since at each node of the composition, we define the connection
with the successor nodes of the composition. It is important to
note that solutions computed by sub-services are obtained
dynamically by sending queries to their associated constraint
programs, and by collecting solutions. Besides dynamic facts
obtained via message passing, we also use the previous base
of facts in which one can find different properties establishing
the type of each concrete service and constraints connecting
data and services.

Modelando la Composicion de Servicios Web con Restricciones — Monfroy, Perrin y Ringeissen. 177

In our model, we consider a binary predicate connect(X,Y) to
specify that services X,Y can be connected. Moreover, we use
a set of composition operators, like a sequential operator and a
parallel operator parallel(X | C) meaning that all services X
satisfying C are executed in parallel. For instance, the constraint
cp=parallel(X | lab(X) /\ connect(p,X)) allows us to execute in
parallel all labs that can be connected to p. Note that it is possible
touse other classical composition operators, e.g., choice, repeat,
or if (guarded execution) [9,10].

Here, we can notice that the composition is still abstract since
services are not yet instantiated (for instance, the variable X is
not instantiated). To obtain an instantiation, we have to use a
base of facts, stating a set of ground constraints. Back to our
example, a possible base of facts could be:

portal(p).

lab(11), lab(12), lab(13).

delivery(dl), delivery(d2).

bank(b1).

format(11,4x6), format(12,4x6), format(12,8x12).
maxDuration(11,24h), maxDuration(12,48h).
customer(l1,individual), customer(12,individual).
customers(13, professional).

connect(p,11), connect(p,12).

connect(l1,b1), connect(l1,d1), connect(l1,d2).
connect(12,b1), connect(12,d2).

Given these facts, the solution of constraint cp executes in
parallel 11 and 12.

The general principles of our approach can be summarized as
follows: assume a query is sent to a composed service S. Ifit is
an estimate query, then S asks direct sub-services for estimate
queries in order to compute solutions for the client. Together
with an estimate for the client, S returns a trace information
describing the way concrete services are executed. This
information is a constraint that can be processed by an
execution query sent by the client to S. This constraint is used
to model the workflow. The execution of service is monitored to
check whether the constraint is satisfiable or not. When a
problem occurs during execution, at least one constraint is
violated. In that case, the monitor tries to change the execution
process for the remaining tasks. A part of the whole constraint
can be considered as "'rigid" since it corresponds to tasks which
cannot be undone. Given this rigid constraint, the idea is then
to ask for a new estimate (an updated constraint) in order to get
a new execution plan for the remaining tasks. Instantiation of
abstract compositions and monitored execution of concrete
compositions are discussed below.

D Instantiating compositions

We present how an abstract composition can be instantiated
to obtain a concrete one. Roughly speaking, this abstract

composition is instantiated by analyzing a query that asks for
an estimate. To illustrate the instantiation step, let us consider
our example. Assume the portal gets the following query from
the client: "Give me the price for printing 1000 photos in the 4x6
format, and I can get the printed result within 24 hours." Here,
we have two constraints: the format constraint, and the temporal
constraint. In order to fulfill the query, the portal will initiate a
conversation with the instances of the lab services, in order to
get the information necessary to return a price to the client.
Following its constraint solver, the portal will only contact the
services that are able to print the 4x6 format, in at least 1000
batches, and in less than 24 hours. So we may obtain for instance
the following instantiation:

Portal service

@ @ @ @ \@ Lab services

Figure 3: Instantiated and executable coordination patterns.

Figure 3 (left) says that only the labs L2, LS5, and L7 are able to
satisfied the constraints specified in the client query. The portal
will then choose one of the available services. In Figure 3 (right),
the portal chooses the lab service LS. The services L2 and L7
are no longer needed by the portal service. The flow of the
composition has been set and the execution is now launched.
As previously mentioned, the environment is naturally dynamic,
and we also use the constraints to ensure the monitoring and
the correct execution of the instantiation of the composite
service. Let us explain how we deal with the monitoring and the
real-time adaptation of the instantiation. Suppose the abstract
composition given in Figure 4.a. This composition, determined
by the vertical constraints, says that once the service L1 is
finished, either the service D1 or the service D2 is started.

178 Revista Avances en Sistemas ¢ Informatica, Vol.5 No. 1, Edicion Especial, Medellin, Mayo de 2008, ISSN 1657-7663
III Congreso Colombiano de Computaciéon — 3CCC 2008

c: The services can have
a conversation

The services have a

* N conversation

o The services had a
conversation

Figure 4: Dynamic selection of services.

The initial flow, computed with the horizontal constraints that
are specified in the query, defines a conversation between the
photo lab L1 and the delivery service D2 (Figure 4.b).

The instantiation step can be more generally described as
follows. When a client initiates a query, the constraint solver
associated to the service will first instantiate the abstract
composition by solving constraints of the abstract composition
together with the client query. The process is as follows:

1. the solver instantiates the constraint defining the
composition, i.e., it finds some concrete services that fulfill
the constraint,

2. the solver forwards the client query to selected concrete
sub-services of the composition,

3. each sub-service computes solutions to their constraints,

4. finally, solutions are processed by the service, and the
result is forwarded to the client.

In our example, a client sends a query estimate(number=1000,
format=4x6, maxtime=24) which means that the client wants to
print 1000 photos in the 4x6 format in less than 24 hours. The
portal p receives the query, and it tries to solve this query in
conjunction with cp, where cp defines the abstract composition
constraint (using the parallel combinator of Section 3.3). At this
stage of the reasoning process, we know that some photolabs
satisfy the query. We proceed similarly for the instantiation of
the delivery services.

To find services satisfying a given constraint, we proceed
using a standard principle in constraint programming. Since a
service comes with its properties, we check them in conjunction
with the current constraint store. Ifthis conjunction is satisfiable,
the service can be selected, otherwise another service is tried.
One can remark that constraints are first propagated to sub-
services in a top-down manner; then solved constraints are
propagated back in a bottom-up manner.

E Executing and monitoring instantiated compositions

Once the abstract composition had been instantiated, the

client is able to choose one of the possible instances according
to its preferences. The composition is executed using the
selected services. The composition is controlled by a monitor
which checks the satisfiability of constraints during the
execution process.

Using constraints is very powerful for monitoring the
composition, and modifying it when something goes wrong. To
illustrate the interest of monitoring, consider again our example.
Assume that the client query is to have its photos in 24 hours.
The instantiation process has selected the photolab that claims
it will take 8 hours to print the photos and to send them to the
delivery. The selected delivery service (D2) takes 16 hours to
deliver the photos. Now, assume the photo lab service (L1) is
late, and it will send the photos in 12 hours. In order to be sure
that the horizontal constraints are still satisfied, the instantiation
is adapted and the flow is modified and redirected to the delivery
service D1 since it is faster than D2. Our model is flexible enough
to handle these kinds of problems. In fact, the constraint store
is updated with new constraints. Due to its estimate delivery of
12 hours, D1 becomes the new delivery service. Dynamically,
the new flow is calculated using the horizontal constraints
available on services (shown in Figure 4.c) without any impact
on the client.

FE Handling cost constraints

In our framework, the idea is to use time-dependent cost
functions to express different kinds of costs. For simplicity, we
restrict ourselves to functions which are constants over some
time intervals. Costs could be for instance the price of items or
the (estimated) execution time of Web services. To each service
S, we associate a cost function fS, which is constructed
according to cost functions of sub-services S1,...,Sn, and how
S composes its sub-services S1,...,Sn. For instance, if a service
S calls two sub-services S1 and S2 sequentially, then costs are
additive, and fS(t)=fS1(t) + £S2(t). When the cost functions are
interpreted as execution time, the execution time of a service S
calling S1 and then S2 is fS(t) = fS1(t) + fS2(t+fS1(t)), which
means that S2 is called at time t+fS1(t) to determine the execution
time. Note that if S1 and S2 are composed via a parallel construct,
then the cost function of S is no longer additive.

To illustrate the computation of time cost functions, consider
the following scenario. A photo lab service receives a query for
1000 printed pictures in 6x7 format. The service must give an
answer to the query that includes how much time it will need to
fulfill the work. This time will depend on its current workload,
and on planned workload. The photo lab service will also query
how much time a delivery service will need to deliver the photos
to the client. It will include this time within its estimation. The
time cost functions of a photo lab service and a delivery service
can be expressed as functions which are constant over some
intervals. By composing the photo lab service and the delivery,
the execution time function is also given as a function which is
constant over some intervals.

Modelando la Composicion de Servicios Web con Restricciones — Monfroy, Perrin y Ringeissen. 179

G Optimization Problem

The selection of Web services, at each layer of the vertical
composition, can be expressed as a constraint optimization
problem. Given our example, several optimization criteria are
possible:

* The portal sends all solutions to the client, who is in charge
of choosing his preferred solution.

* Theportal can automatically optimize one criterion, like the
price or the estimated duration, in order to give an answer
to a query such as *'I want an item x in less than 24 hours,
with the cheapest price".

* The portal is capable of performing multi-criteria
optimizations. In that case, one could introduce (1) priorities
on costs or (2) a balance on costs. For (1), we first optimize
according to the criterion with the highest priority, it yields
solutions which are optimized according to the remaining
criteria. For (2), the portal has to optimize an objective
function defined as a balanced sum of the different costs.

In all these cases, the constraint reasoning engine associated
to a Web service is capable of computing optimized solutions
when the query sent by the client involves an optimization
problem.

IV. RELATED WORK

Web service composition is nowadays a very active research
direction. Many approaches have been investigated including
techniques based on planning in Al [1], situation calculus [2,3,4],
conversational transition systems [5,11], or symbolic model-
checking applied to planning [6]. Some other works are more
related to the use of constraint solving techniques [12,13,14].
Asin [12], we do not consider all the dimensions of the problem,
since we assume that a pattern composition is already known,
and we restrict ourselves to the problem of instantiating the
variables of the pattern, i.e. the different kinds of Web services.

V. CONCLUSION

In this paper, we promote the use of constraint reasoning to
implement a form of pattern instantiation. With respect to
classical configuration problems, our approach has to cope with
the dynamic aspect of Web services. We have proposed a
framework where Web services interact via queries and answers,
which are respectively the input and output messages
exchanged by Web services. Hence, our approach relies on the
analogy between the computation performed by a Web service
and the execution of a constraint (logic) program. In order to
take into account the dynamic behavior of Web services, the
facts needed to execute the constraint reasoning engine of each
Web service are not static, but are obtained dynamically by
calling sub-services. Moreover, the process is monitored, to
possibly change on-the-fly the current selection of Web
services. This monitoring phase is also supported by the
constraint engine associated to the Web service.

REFERENCES

[1] Evren Sirin, Bijan Parsia, Dan Wu, James A. Hendler, and Dana
S. Nau, "HTN planning for web service composition using shop2.,"
J. Béb Sem., vol. 1, no. 4, pp. 377-396, 2004.

[2] Srini Narayanan and Sheila A. Mcllraith, **Simulation, verification
and automated composition of web services,"
in Proc. of WWW 2002, pp. 77-88.

[3] Sheila A. Mcllraith and Tran Cao Son, '‘Adapting golog for
composition of semantic web services.," in Proc. of KR. 2002,
pp. 482-496, Morgan Kaufmann.

[4] Meghyn Bienvenu, Christian Fritz, and Sheila A. Mcllraith,
“'Planning with qualitative temporal preferences," in Proc. of
KR, 2006, pp. 134-144.

[5] Tevfik Bultan, Xiang Fu, Richard Hull, and Jianwen Su,
“"Conversation specification: a new approach to design and
analysis of e-service composition," in Proc. of WWW 2003, pp.
403-410.

[6] Marco Pistore, Annapaola Marconi, Piergiorgio Bertoli, and Paolo
Traverso, '"Automated composition of web services by planning
at the knowledge level.," in IJCAL 2005, pp. 1252-1259.

[7] Krzysztof R.Apt, Principles of Constraint Programming,
Cambridge Univ. Press, 2003.

[8] Rina Dechter, Constraint Processing, Morgan Kaufmann, 2003.

[9] Eric Monfroy and Carlos Castro, "'A component language for
hybrid solver cooperation," in Proc. of ADVIS. 2004, vol. 3261
of LNCS, pp. 192-202, Springer.

[10] Tony Andrews et al., "BPEL4WS: Business Process Execution
Language for Web Services," Tech. Rep., July 2002.

[11] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Richard
Hull, and Massimo Mecella, "‘Automatic composition of
transition-based semantic web services with messaging,"
in Proc. of VLDB. 2005, pp. 613-624, ACM.

[12] Ahlem Ben Hassine, Shigeo Matsubara, and Toru Ishida,

“"A constraint-based approach to horizontal web service
composition.," in Proc. of Semantic Web Conference. 2006, vol.
4273 of LNCS, pp. 130-143, Springer.

[13] Nizamuddin Channa, Shanping Li, Abdul Wasim Shaikh, and
Xiangjun Fu, “Constraint satisfaction in dynamic web service
composition.," in Proc. of DEXA. 2005, pp. 658-664, IEEE.

[14] Rohit Aggarwal, Kunal Verma, John A. Miller, and William Milnor,
“"Constraint driven web service composition in meteor-s.," in
Proc. of SCC. 2004, pp. 23-30, IEEE.

Eric Monfroy. Is professor at the University of Nantes. He did a PhD on
"Solver Collaboration for Constraint Logic Programming", defended in
1996. His research interests include decision support systems, cooperative
constraint problem solving, constraint programming, constraint
satisfaction and constrained optimization, constraint language design,
hybrid constraint solving, rule based computation. He is currently on
leave at UTFSM, Valparaiso, Chile.

Olivier Perrin. Is assistant professor at University Nancy 2 since 1995,
and works at LORIA, a laboratory common to CNRS, INRIA and
Universities of Nancy, in the ECOO project. His research interests include
various topics in Virtual Organizations, Web Services Technologies,
Workflow Management, and Enterprise Application. He has published
several articles in international conferences and journals, and he was
involved in many international and European projects. His current work
is on extending Web services and Grid computing with constraints
programming concepts.

Christophe Ringeissen. Is researcher at INRIA, and works at LORIA.
He got his PhD in 1993 at the University of Nancy 1. The subject of his
PhD was on the "Combination of constraint solving techniques". His
research interests are automated deduction, constraint solving, semantics
of declarative programming languages (algebraic and logia programming,
constraint programming), and combination of constraint solvers.

Universidad Nacional de Colombia Sede Medellin
Facultad de Minas

]ED afos X s

Resena Historica

La Escuela Nacional de Minas fue fundada el 11 de abril de
1887, bajo la direccién del general Pedro Nel Ospina como
rector y como Vice-rector Luis Tisnés, aunque el general Pedro
Nel Ospina ho se posesiono, elaboro con ayuda de su hermano
Tulio los estatutos y reglamentos de la escuela, los cuales fueron
una adaptacion de los estatutos y reglamentos de la Escuela
de Minas de California (Berkeley)los cuales fueron cambiando
de acuerdo a las necesidades de cada década, en ellos se
fomento una filosofia con valores civicos, éticos y de orden por
medio del estimulo y el ejemplo que comprometian el
comportamiento del estudiante no solo dentro de la escuela
sino fuera de ella, a demds se infrodujeron hdbitos de
sobriedad, de economia y principios morales de honradez,
honestidad y respeto.

En sus inicios contd con 22 alumnos matriculados, vy luego d e fres meses fue cerrada
por la poca cantidad de estudiantes, fue reabierta un ano despué s, el 2 de enero de
1888, baijo la rectoria de Tulio Ospina V, esta vez contd con 27 alumnos matriculados y
con un plan de estudios de 4 anos de un mejor control de los pro gramas curriculares y
adaptarlos a nuevas condiciones adelantdndose a las necesidades futuras de la
educacion y asegurando asi un buen desempeno de los futuros profesionales.

En 1906 la Escuela Nacional de Minas se anexo a la universi dad de Antioquia, ala
gue pertenecid durante cinco anos mas, en 1911 paso a ser de nue VO una entidad
independiente.

En 1940 la institucion fue incorporada a la Universidad Nac ional y continUo con el
nombre de Escuela Nacional de Minas, ese mismo ano comenzé la co nstruccion de la
actual sede, la cual fue inaugurada el 192 de diciembre de 1944, en el marco del primer
Congreso Nacional de Ingenieros.

Entre 1941 y 1950 se crean las carreras de ingenieria geold gica y petrdleos y
arquitectura, la cual se separo de la facultad de Minas en 1954, enl1960 se creala
carrera de ingenieria administrativa, luego se crearon los progr amas de ingenieria

industrial, ingenieria mecdanica e ingenieria quimica y se separ aron los programas de
ingenieria geoldgica y petrdleos en dos programas diferentes, ac tualmente la Facultad
de Minas Administra 11 programas de pregrado en ingenieria, 17 d e posgrado y cuatro
doctorados.

La Facultad a lo largo de su existencia ha sido motora deldesarrollo de la ciudad, del
departamento y del pais, a través de sus 12.000 egresados quiene s han constituido la
mayor parte del personal dirigente y técnico en las explotacione s mineras, las
construcciones de distinto tipo, la infraestructura vial, los de sarrollos hidroeléctricos, las
obras de abastecimiento de agua, las obras sanitarias y la indus tria, asi como en los
planes de desarrollo fisico, econdmico vy social.

