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C∞−Rings: an Interplay Between Geometry and
Logics

Anillos C∞ - una Interacción entre la Geometŕıa y la Lógica
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Abstract. In this work we give an overview of some logical and geometric
aspects of C∞-rings, presenting some results concerning its universal algebraic
aspects, introducing new results in Smooth Commutative Algebra and pre-
senting some categorial considerations about certain special types of them.
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Resumen. En este trabajo damos una descripción general de algunos aspec-
tos lógicos y geométricos de los anillos C∞, presentando algunos resultados
sobre sus aspectos algebraicos universales, introduciendo nuevos resultados en
Álgebra Conmutativa Suave y presentando algunas consideraciones categóricas
sobre ciertos tipos especiales de ellos.
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Introduction

This work is an overview of the main themes studied in the doctoral research
of the first author (see [3]), talking about the theory of C∞−rings and pointing
some interplays with Logic and Geometry. This is an extended abstract of
a talk given by the second author as part of the activities of the “Seminário
de Geometŕıa y Lógica”, which took place at the Universidad Nacional de
Colombia, Bogotá on February 27th, 2019.

We have studied a general class of rings of smooth functions, the class of
C∞−rings, frequently used in virtue of their applications to Singularity Theory
(rings of germs, Weil algebras, jets of smooth functions etc.) and in order to
construct topos-models for Synthetic Differential Geometry (cf. [10])1. Such
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1A first step in this direction was given by F. W. Lawvere, in a series of lectures given in
1967 (cf. Lawvere’s seminal work, “Categorical Dynamics”)
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topoi must have an internal language that is capable to provide room for some
very useful (specially for heuristic and practical purposes) “infinitesimal enti-
ties”2, such as nilpotent elements, for instance, which are not compatible with
classical logic, but rather with a “weaker” one, the intuitionistic logic, which
allows fewer deductions.

The category of C∞−rings presents many advantages as a setting in which
one can give a more intuitive treatment of Differential Geometry over the cat-
egory of all finite-dimensional smooth manifolds and smooth functions, Man.
This occurs partly because the category of C∞−rings is a variety (i.e., it is the
class of models of an equational theory) and partly because it includes, as a
full subcategory, the (dual of the) category Man.

We follow a complementary trail to the ones one usually finds nowadays
- which seem to be more “algebro-geometric” - deepening the understanding
about C∞−rings analyzing them per se, using tools of Category Theory and
describing them from an algebraic and from a logical-categorial viewpoint.

Algebraic Geometry and Commutative Algebra hold strong connections,
to the extent that one passes from algebraic varieties to commutative rings
via some well-known functors. Thus, properties of a commutative ring (al-
gebraic variety) can be translated into properties of algebraic varieties (com-
mutative rings). There is an analogous way to connect Differential Geometry
and a “smooth” version of Commutative Algebra - the commutative algebra of
C∞−rings, that we call “Smooth Commutative Algebra”.

We give some new definitions and generalize results on “Smooth Commu-
tative Algebra” (see [6]), presented in [17] and [18]: we analyze and study
“smooth” notions of “radical ideals” (C∞−radical ideal, presented by the first
time in [17]), “saturation of a multiplicative set” (smooth saturation), “ring
of fractions” (C∞−ring of fractions with respect to some subset of a C∞−ring,
generalizing the definition given by I. Moerdijk and G. Reyes in Theorem 1.4
of [17]), “reduced rings” (C∞−reduced C∞−rings), “fields” (C∞−fields), “von
Neumann regular rings” (von Neumann regular C∞−rings), “prime spectrum”
(C∞-Zariski spectrum), “real spectrum” (C∞-real spectrum), among others.
We present some results regarding preservation properties of some features of
C∞−rings under limits and colimits. We present, apart from the results of
Smooth Commutative Algebra, an interesting result that establishes a spectral
bijection from the C∞−spectrum to the C∞−analog of the real spectrum of a
C∞−ring. We also present another order-theoretical analysis of C∞-rings based
on [4].

The central notion of C∞−spectrum of a C∞−ring, introduced by I. Mo-
erdijk and G. Reyes in [17], about which they make a more detailed exposition
in later papers ( see [18], for instance) is addressed carefully. We present some
contributions to the study of this spectrum, giving an explicit description of
the “smooth” Zariski topology, and we present a result that asserts that the
C∞−spectrum of a C∞−ring is a spectral space.

2Even Alexander Grothendieck, as observed by R. Lavendhomme in [14], insisted on not
excluding nilpotent elements in Algebraic Geometry
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We introduce the notion of von Neumann regular C∞−ring and some of their
properties, together with a categorial and a logical treatment for them (see [8]).
In particular, the subcategory of C∞Rng consisting of all von Neumann regular
C∞−rings is characterized as the closure under small limits of the category of
C∞−fields, i.e., it is the smallest subcategory of C∞Rng which contains all
C∞−fields and is closed under small limits. We establish, by two different
methods, that the subcategory of von Neumann regular C∞-rings is reflective
in the category of all C∞-rings.

We present a result that says that “C∞−spectra of von Neumann regular
C∞−rings classify Boolean spaces”: a precise and even stronger result holds,
which has no analog in the purely algebraic setting of von Neumann regular
rings (see for instance [1]).

We develop the first results on the categorial-logical aspects of the theory
of C∞-rings: we describe in details the classifying toposes for the theories of
C∞−rings, adapting a proof of the analogous construction for commutative
rings given in [15]), local C∞−rings and von Neumann regular C∞−rings (see
[5]).

Finally, this work also lists some possible developments - mainly on model-
theoretic and order-theoretic aspects of the theory of C∞-rings - that, due to
the lack of time, were not developed in the first author’s thesis - but that we
intend to address in the future.

1. The Universal Algebra of C∞-Rings

In this section we present C∞-rings in two different settings, and describe
explicitly some of the constructions one can perform with them. The detailed
proofs of the results of this sections are given in [7].

There are many ways of defining a C∞-ring, depending on the the frame-
work one wants to use them. Here we give two (equivalent) definitions of this
mathematical object. We begin by making a parallel between C∞−rings and
R−algebras (which should be more familiar to the reader) by regarding them
both as Lawvere theories. Recall the following (functorial) definition of an
R−algebra:

Definition 1.1. An R−algebra A can be regarded as a finite product preserv-
ing functor from the category Pol to the category of sets, A : Pol → Set,
where Obj(Pol) = {Rn|n ∈ N} and

Pol (Rm,Rn) = {p : Rm → Rn|p is a polynomial function}

Thus, every polynomial map, p : Rm → Rn, given by an n−tuple of poly-
nomials with real coefficients, (p1, · · · , pn), can be “interpreted” in Set, as a
map A(p) : Am → An.

Analogously, we have the following:
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Definition 1.2. A C∞−ring A is a finite product preserving functor from
C∞, the category whose objects are the Euclidean spaces, that is, Obj(C∞) =
{Rn|n ∈ N}, and whose morphisms are all smooth functions - that is,
HomC∞(Rm,Rn) = C∞(Rm,Rn), to Set, A : C∞ → Set.

In order to explicitly give constructions involving C∞-rings, we give a more
“universal-algebraic” definition, describing them in a first-order language using
only functional symbols.

Definition 1.3. A C∞−structure on a set A is a pair A := (A,Φ), where:

Φ :
⋃
n∈N C∞(Rn,R) →

⋃
n∈N Func (An;A)

(f : Rn C
∞

→ R) 7→ Φ(f) := (fA : An → A)

that is, Φ interprets the symbols of all smooth functions of n variables as
n−ary function symbols on A.

Definition 1.4. Given two C∞−structures A = (A,Φ) and B = (B,Ψ), a
morphism of C∞−structures is a function ϕ : A → B such that for every
n ∈ N and every f ∈ C∞(Rn,R) the following diagram commutes:

An
ϕ(n)

//

Φ(f)

��

Bn

Ψ(f)

��
A

ϕ
// B

that is, such that Ψ(f) ◦ ϕ(n) = ϕ ◦ Φ(f).

We are going to denote by C∞Str the category of all C∞−structures and
C∞−homomorphisms.

The theory of C∞−rings can be described within a first-order language, L,
with a denumerable set of variables, Var (L) whose non-logical symbols are the
n−ary function symbols F(n) = {f (n) | f ∈ C∞(Rn)} for each n ≥ 0.

Now, C∞-rings are exactly the C∞-structures that preserve all equations
between smooth functions. More precisely, consider the following classes of
equations:

(E1) For every n ∈ N and for every k ≤ n, denoting the projection on the
k−th coordinate by pk : Rn → R, the equations:

Eqn,k(1) = {pk(x1, · · · , xn) = xk|x1, · · · , xn ∈ Var (L)}

(E2) For every n, k ∈ N, and for every (n + 2)−tuple of symbols of smooth
functions, (f, g1, · · · , gn, h) such that f ∈ F(n), g1, · · · , gn, h ∈ F(k) e
h = f ◦ (g1, · · · , gn), the equations:

Eqn,k(2) = {h(x1, · · · , xk) = f(g1(x1, · · · , xk), · · · , gn(x1, · · · , xk))|

x1, · · · , xk ∈ Var (L)}
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Now we are able to give the following:

Definition 1.5. A C∞−ring is a C∞−structure, A = (A,Φ) such that:

• For every n ∈ N, k ≤ n, denoting the projection on the k−th coordinate
by pk : Rn → R:

A |= (∀x1) · · · (∀xn)(pk(x1, · · · , xn) = xk)

that is, Φ(pk) = πk : An → A;

• For every n, k ∈ N, f ∈ C∞(Rn,R), h, g1, · · · , gn ∈ C∞(Rk,R) such that
h = f(g1, · · · , gn):

A |= (∀~x)(h(~x) = f(g1(~x), · · · , gn(~x)))

that is, Φ(h) = Φ(f)(Φ(g1), · · · ,Φ(gn)).

The theory of C∞−rings is an equational theory, so many classical results
hold, such as:

• Birkhoff’s HSP theorem: the subclass C∞Rng of C∞Str is closed
under products, substructures and homomorphic images;

• For each n ∈ N, C∞(Rn) is the free C∞−ring on n generators;

• Whenever {(Ai,Φi)|i ∈ I} is a directed family of C∞−subrings of (A,Φ)
then

(⋃
i∈I Ai,

⋃
i∈I Φi

)
is a C∞−subring of (A,Φ)

• Given a family of C∞−subrings {(Aα,Φα)|α ∈ Λ} of (A,Φ),
(⋂

α∈ΛAα,Φ
′)

is a C∞−subring of (A,Φ)

• The ad hoc Theorem of Homomorphism and its consequences hold.

• The congruences of any C∞−ring are classified by their ring-theoretic
ideals.

Definition 1.6. A C∞−ring is finitely generated whenever there is some n ∈ N
and some ideal I ⊆ C∞(Rn) such that A ∼= C∞(Rn)/I. The category of all
finitely generated C∞−rings is denoted by C∞Rngfg.

Definition 1.7. A C∞−ring is finitely presented whenever there is some n ∈ N
and some finitely generated ideal I ⊆ C∞(Rn) such that A ∼= C∞(Rn)/I.

Whenever A is a finitely presented C∞−ring, there is some n ∈ N and some
f1, · · · , fk ∈ C∞(Rn) such that:

A =
C∞(Rn)

〈f1, · · · , fk〉
The category of all finitely presented C∞−rings is denoted by C∞Rngfp
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Remark 1.8. As a consequence of the fact that C∞Rng is a variety of of alge-
bras, the category of C∞−rings has all coproducts. Given two C∞−rings, we
denote their coproduct by:

A
ιA

((
A⊗∞ B

B

ιB

66

In order to describe concretely the coproducts in C∞Rng, we first compute
the coproduct of two finitely generated C∞−rings: given two finitely generated
C∞−rings, say A = C∞(Rn)/I and B = C∞(Rm)/J , their coproduct is given
by:

A⊗∞ B =
C∞(Rn)

I
⊗∞
C∞(Rm)

J
∼=
C∞(Rn × Rm)

〈I, J〉
where 〈I, J〉 = 〈{f ◦ π1, g ◦ π2|(f ∈ I)&(g ∈ J)}〉
Since every C∞−ring is the directed colimit of finitely generated C∞−rings,

given any A ∼= lim−→i∈I Ai and B ∼= lim−→j∈J Bj , we have:

A⊗∞ B ∼= lim−→
(i,j)∈I×J

Ai ⊗∞ Bj

Remark 1.9. Both categories C∞Rngfg and C∞Rngfp are closed under finite
coproducts.

The category C∞Rng is such that:

• For every set X there is a free C∞−ring determined by X

• any C∞−ring is a homomorphic image of some free C∞−ring;

• a C∞−homomorphism is monic if, and only if it is an injective map;

• any indexed set of C∞−rings, {(Aα,Φα)|α ∈ I} has a coproduct in
C∞Rng;

The category of all C∞−rings is a concrete category, and the forgetful func-
tor U : C∞Rng → Set has a left adjoint, L : Set → C∞Rng. Moreover,
the forgetful functor creates all limits and filtered colimits, and using a general
argument, it can be shown that the category C∞Rng has all small colimits.

Definition 1.10. Given any C∞−ring A and any set S, one has the C∞−ring
of C∞−polynomials with variables in S, A{S}, given by the coproduct A{S} :=
A⊗∞ L(S) = A⊗∞ C∞(RS).

This construction (together with quotients) enables us to prove that C∞−rings
of fractions exist in C∞Rng.
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2. Topics in Smooth Commutative Algebra

As mentioned in the introduction, C∞-rings have a “rich Commutative
Algebra”, which can be related to Differential Geometry in a similar way that
Commutative Algebra relates to Algebraic Geometry. In this section we present
the main results of this theory, omitting their proofs (which can be found in
[6]). We begin with the central notion of “universally” inverting elements of a
C∞-ring:

Definition 2.1. The smooth ring of fractions of A with respect to S ⊆ A
is a pair (A{S−1}, ηS) which satisfies the following conditions:

(1) (∀s ∈ S)(ηS(s) ∈ (A{S−1})×);

(2) If f : A → B is such that (∀s ∈ S)(f(s) ∈ B×), then there is a unique

f̃ : A{S−1} → B such that the following diagram commutes:

A
ηS //

f

((

A{S−1}

f̃

��
B

After the definition, we explicitly construct the C∞-ring of fractions as
follows.

Let A be a C∞−ring and let S ⊆ A be any subset. Consider the coproduct:

A
ιA // A⊗∞ L(S) L(S)

ιL(S)oo

And take A{S−1} ∼= A{S}/〈{xs · ιA(s)− 1|s ∈ S}〉, where xs := ιL(S)(s),
together with the composition C∞−homomorphism:

A
ιA //

ηS ))

A{S}

q
��

A{S}
〈{xs · ιA(s)− 1|s ∈ S}〉

It can be proved that such a construction is (up to C∞-isomorphisms) the
C∞−ring of fractions of A with respect to S ⊆ A.

The notion of C∞−saturation of a subset S makes the study of C∞−rings
of fractions more clear:

Definition 2.2. Let (A,Φ) be a C∞−ring and let S ⊆ A be any subset. The
C∞−saturation of S is:

S∞−sat := {a ∈ A : ηS(a) ∈ (A{S−1})×} = ηaS [A{S−1}×] =
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=
⋂
{fa[B×]|f : A→ B is C∞ − homomorphism s.t. f [S] ⊆ B×},

where ηaS [A{S−1}×] denotes the preimage of A{S−1}× by ηS .

The ring-theoretic saturation and the C∞−saturation are connected by the
following result:

Proposition 2.3. Given a C∞−ring A and a subset S ⊆ A, let U(A) be its
underlying R−algebra and ηS : U(A) → U(A)[S−1] be the (ordinary) ring of
fractions. We always have:
• Ssat ⊆ S∞−sat

• Whenever S∞−sat ⊆ Ssat, we have U(A)[S−1] ∼= U(A{S−1}).
Moreover, we have:

(i) A× ⊆ S∞−sat

(ii) S ⊆ S∞−sat

(iii) S ⊆ T ⇒ S∞−sat ⊆ T∞−sat

(iv) S∞−sat = 〈S〉∞−sat

Also, (S∞−sat)∞−sat = S∞−sat. Since it is inflationary, monotonic and
idempotent, we can say that (·)∞−sat is a closure operator.

Moreover, whenever {Si|i ∈ I} is a directed family of subsets of a C∞−ring
A we have:

(∪i∈ISi)∞−sat
= ∪i∈IS∞−sat

i

Remark 2.4. In general, the canonical ring homomorphism from U(A)[S−1] to
U(A{S−1}) is not an isomorphism, so in general, Ssat ( S∞−sat.

For instance, if f ∈ C∞(Rn), then C∞(Rn){{f}−1} ∼= C∞(Uf ), where Uf =
{x ∈ Rn | f(x) 6= 0}, then {f}∞−sat = {g ∈ C∞(Rn) : Z(g) ⊆ Z(f)}, where
Z(g) = Rn \ Ug = {x ∈ Rn | g(x) = 0}, but {f}sat = {g ∈ C∞(Rn) : ∃h ∈
C∞(Rn), h · g = fk for some k ≥ 1}. To be specific, consider A = C∞(R) and
f(x) = sin(x), x ∈ R. We have {f}∞−sat = {g ∈ C∞(R) : Z(g) ⊆ {n · π | n ∈
Z}) ) {g ∈ C∞(R) : ∃h ∈ C∞(R), h · g = fk for some k ≥ 1} = {f}sat, since
x3 ∈ {sin(x)}∞−sat \ {sin(x)}sat.

On the other hand, as we will see in Section 3, whenever A is a Von
Neumann regular C∞-ring we have U(A)[S−1] ∼= U(A{S−1}), so these two
saturations coincide, that is, S∞−sat = Ssat.

The notion of C∞−saturation enables us to articulate the following exten-
sion of Theorem 1.4 of [17], and to present an alternative description of
A{S−1}:

Theorem 2.5. Let A be any C∞−ring, S ⊆ A and ηS : A → A{S−1} the
universal C∞−homomorphism. We have:
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(i) (∀b ∈ A{S−1})(∃c ∈ S∞−sat)(∃d ∈ A)(b · ηS(c) = ηS(d))

(ii) (∀b ∈ A)(ηS(b) = 0→ (∃c ∈ S∞−sat)(c · b = 0))

Remark 2.6. Any f : A→ B which satisfies (i) and (ii) is (up to isomorphism)
the C∞−ring of fractions.

Remark 2.7. Using the notation:

c =
ηS(a)

ηS(b)

·
= c · ηS(b) = ηS(a)

we write A{S−1} = {ηS(a)/ηS(b)|(a ∈ A)&(b ∈ S∞−sat)}.
It can be proved that the forgetful functor:

Ũ : C∞Rng → CRing

has a left adjoint:

C∞Rng

Ũ

!!
CRing

L̃

aa

and since any C∞−ring is an R−algebra, the forgetful functor U : C∞Rng→
R−Alg has a left adjoint:

C∞Rng

U

""
R−Alg

L

bb

3. Smooth Commutative Algebra versus
Commutative Algebra

The forgetful functors U : C∞Rng→ R−Alg and Ũ : C∞Rng→ CRing
allow us to define some notions like:

• A C∞−field is a C∞−ring A such that Ũ(A) is a field;

• A C∞−domain is a C∞−ring A such that Ũ(A) is a domain;

• A C∞−local C∞−ring is a C∞−ring A such that Ũ(A) is a local ring.
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• A von Neumann regular C∞−ring is a C∞−ring A such that Ũ(A) is
a von Neumman regular ring, i.e..

(∀a ∈ A)(∃!b ∈ A)((a2b = a)&(b2a = b))

Just as in CRing, in C∞Rng, one has the “commutation between taking
the ring of fractions and taking quotients”, as we prove in the following:

Theorem 3.1. Let A be a C∞−ring, I be an ideal of A and S ⊆ A. There

is a unique C∞−isomorphism µ :
(
A
I

)
{(S + I)

−1} → A{S−1}
〈ηS [I]〉 such that the

following diagram commutes:

A

qI

��

ηS // A{S−1}
q〈ηS [I]〉 // A{S−1}

〈ηS [I]〉

A
I

// A
I {(S + I)

−1}

µ
88

In Commutative Algebra, whenever p is a prime ideal of A, we have that

A(p) = lim−→
a/∈p

A[a−1]

is a local ring. The same is not true in C∞Rng. in order to obtain a local
C∞-ring when “localizing” it by some prime ideal, one must require an extra
property, which - differently from the ordinary Commutative Algebra, is not a
consequence of being prime. This property is given in the following:

Definition 3.2. Let A be a C∞−ring and let I ⊆ A be an ideal. The
C∞−radical of I is:

∞
√
I =

{
a ∈ A| (A/I) {a+ I−1} ∼= 0

}
Using filters and ideals, and then passing the arguments “to the colimit”,

one proves that the C∞−radical of any ideal is an ideal. One proves, similarly,
that whenever p is a prime ideal of A, ∞

√
p is a prime ideal of A.

Remark 3.3. It should be noted that there exists a C∞-ring A and a prime
ideal p ⊆ A that is not C∞-radical. For instance, if A = C∞(R) and p0 =

{f ∈ C∞(R) | d
nf
dnx (0) = 0,∀n ∈ N}, then p0 is a prime ideal in A that is not

C∞-radical (cf. Example 1.2 of [18]).

Proposition 3.4. Given a C∞−ring A and a prime C∞-radical ideal p ⊆ A,
the C∞-ring:

A{p} = A{(A \ p)−1} ∼= lim−→
a/∈p

A{a−1}

is a local C∞−ring.
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It is convenient to describe the C∞-radical of and ideal in terms of the
smooth saturation of their elements. In fact, we have the following equality:

∞
√
I = {a ∈ A|(∃b ∈ I)&(ηa(b) ∈ (A{a−1})×)} = {a ∈ A|I ∩ {a}∞−sat 6= ∅}

Remark 3.5. Let A be a C∞−ring and denote by I(A) the lattice of its ideals.
The map:

∞
√

(·) : I(A) → I(A)

I 7→ ∞
√
I

is a closure operator.

The following result shows that the smooth saturation is “preserved” by
passing to the quotient, in the sense of the following:

Proposition 3.6. Let A be a C∞−ring, let I be any ideal and qI : A→ A

I
be

the quotient C∞−homomorphism. We have:

(∀b ∈ A)(b ∈ {a}∞−sat → qI(b) ∈ {a+ I}∞−sat)

The converse of the above implication, however, is false.

Definition 3.7. Given a C∞−ringA, we say that an ideal I ⊆ A is a C∞−radical
ideal if, and only if:

I =
∞
√
I

Denoting by I∞(A) the set of all C∞−radical ideals of A, one has the
following properties:

(i) (∀α ∈ Λ)(Iα ∈ I∞(A))⇒
⋂
α∈Λ Iα ∈ I∞(A);

(ii) If {Iα|α ∈ Λ} is an upwards directed system of elements of I∞(A), then⋃
α∈Λ Iα ∈ I∞(A);

(iii) Given two C∞−rings A,B and a C∞−homomorphism f : A→ B, when-
ever J ∈ I∞(B) we have fa[J ] ∈ I∞(A).

3.1. C∞−reduced C∞−rings
Now we give the notion of “reducedness” which is proper to our notion of

C∞-radical ideal. One can think of a C∞-reduced C∞-ring as a C∞-ring that is
free of ∞−nilpotents (see [9])

Definition 3.8. A C∞−ring A is C∞−reduced if, and only if ∞
√

(0) = (0).
In the case that A = C∞(RE)/I for some set E and some ideal I ⊆ C∞(RE),
A is C∞−reduced if, and only if ∞

√
I = I
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Concerning C∞-reduced C∞-rings, we have:

(i) Every C∞−field is a C∞−reduced C∞−domain;

(ii) Any free C∞−ring is C∞−reduced;

(iii) Given two C∞−rings, A,B and a C∞−monomorphism  : A→ B, if B is
C∞−reduced then A is C∞−reduced;

(iv) Every C∞−subring of a C∞−field is C∞−reduced ;

(v) The directed colimit of C∞−reduced C∞−rings is C∞−reduced.

(vi) If D is a C∞−reduced C∞−domain and a ∈ D is such that D{a−1} ∼= 0,
then a = 0

3.2. The Smooth Zariski Spectrum

In Commutative Algebra, the Zariski (or “prime”) spectrum of a ring R
consists of the set of all prime ideals of R together with a spectral topology.
Since in this context every prime ideal is also radical, no requirement is made
as for the “radicalness”. As we have already commented, in order to A{p} to
be a local C∞-ring, one must require p to be a C∞-radical ideal. Motivated by
this, we have the following:

Definition 3.9. The Smooth Zariski Spectrum of a C∞−ring A is defined
as the set:

Spec∞ (A) := {p ∈ Spec (Ũ(A))| ∞
√
p = p}

together with the smooth Zariski topology, Zar∞ , generated by:

{D∞(a)|a ∈ A},

where D∞(a) = {p ∈ Spec∞ (A)|a /∈ p}. Such a topology is spectral.

With the concepts given so far, we can formulate the following result, which
is analogous to the separation theorems one finds in Commutative Algebra (see,
for example, [2]):

Theorem 3.10 (Separation Theorems). Let A be a C∞−ring, S ⊆ A and
I be some ideal of A.

(a) If I is a C∞−radical ideal, then: I ∩ 〈S〉 = ∅ ⇐⇒ I ∩ S∞−sat = ∅

(b) If S ⊆ A is C∞−saturated , then: I ∩ S = ∅ ⇐⇒ ∞
√
I ∩ S = ∅

(c) If S ⊆ A is C∞−saturated, then:

I ∩ S = ∅ ⇐⇒ (∃p ∈ Spec∞ (A))((I ⊆ p)&(p ∩ S = ∅)).

(d) For any p ∈ Spec∞ (A), we have A \ p = A \ p∞−sat
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(e) ∞
√
I =

⋂
{p ∈ Spec∞(A)|I ⊆ p}

The following result combines the notions of “C∞-domain” and “C∞-redu-
cedness”:

Proposition 3.11. Whenever A is a C∞−reduced C∞−domain then:
• A{A \ {0}−1} is a C∞−field;

• ηA\{0} : A→ A{A \ {0}−1} is a C∞−monomorphism;
• Given any C∞−field K and any C∞−monomorphism  : A→ K, there is

a unique C∞−homomorphism ̃ : A{A \ {0}−1} → K such that the following
diagram commutes:

A
ηA\{0} //



))

A{A \ {0}−1}

̃

��
K

Thus, Frac (A) = A{A \ {0}−1}.

Theorem 3.12. Given a C∞−ring A and p ∈ Spec∞(A), we have:

A{A \ p−1}/mp
∼= (A/p)

{
A/p \ {0 + p}−1

}
We denote any of these constructions, when there is no danger of confusion,

by kp(A).

3.3. Von Neumann Regular C∞-Rings

Recall that a (commutative) von Neumann regular ring is a ring R in which
the following sentence holds:

(∀a ∈ R)(∃!b ∈ R)((a2b = a)&(b2a = b)).

A von Neumann regular C∞−ring is, analogously, a C∞-ring A such that
Ũ(A) is a von Neumann regular ring. The category of all von Neumann regular
C∞−rings is denoted by C∞vNRng. This category is closed under quotients,
so the congruences of any von Neumann regular C∞−ring are classified by ideals
(for detailed proofs of the results of this section, see [8]).

Whenever A is a von Neumann regular C∞−ring, we have:

• For every a ∈ A there is some idempotent e ∈ A such that A{a−1} =
A/〈1− e〉.

• Given any S ⊆ A, we have Ũ(A{S−1}) = Ũ(A)[S−1]. As a consequence:

• C∞vNRng is closed in C∞Rng under localizations;

• A is a C∞−reduced C∞−ring;
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• Spec∞(A) = Spec(A) = Specm(A);

• For every p ∈ Spec∞ (A), A{p} is a C∞−field;

Apart from the facts given above, we have the following results:

• The inclusion functor ι : C∞vNRng ↪→ C∞Rng creates filtered colimits

• The limit in C∞Rng of a diagram of von Neumann-regular C∞−rings is a
von Neumann-regular C∞−ring. In particular, C∞vNRng is a complete
category and the inclusion functor preserves all limits.

• The category C∞vNRng is the smallest subcategory of C∞Rng which
contains every C∞−field and is closed under limits.

Von Neumann regular C∞-rings have a C∞-spectrum with some “nice” prop-
erties. In fact, one characterizes a von Neumann regular C∞-ring by means of
the topology of its C∞-spectrum. This is the content of the following:

Theorem 3.13. A is a von Neumann regular C∞−ring if, and only if A is
C∞−reduced and Spec∞(A) is a Boolean space.

4. Order Theory for C∞-Rings

There are at least two natural (complementary) approaches to the order
theory of C∞-ring. In one hand we have a canonical binary relation on each
C∞-ring, that, under mild conditions, is a partial order. On the other hand,
we can develop a natural notion of C∞-real spectrum of a general C∞-ring.

Definition 4.1. Let A be a C∞−ring. The canonical binary relation on A
is

≺A= {(a, b) ∈ A×A | (∃u ∈ A×)(b− a = u2)}

The relation ≺ is preserved under C∞-morphisms and is compatible with
the operations + and ·:

• a ≺ b,⇒ a+ x ≺ b+ x;

• 0 ≺ x, a ≺ b⇒ a.x ≺ b.x

Proposition 4.2. Consider the C∞-reduced C∞−ring A =
C∞(RE)

I
(i.e.

I = ∞
√
I), the its canonical relation can be characterized by:

f + I ≺ g + I ⇐⇒ (∃ϕ ∈ I)(∀x ∈ Z(ϕ))(f(x) < g(x)),

where Z(ϕ) = ϕa[{0}] = {x ∈ RE | ϕ(x) = 0}.

Proposition 4.3. For any C∞-reduced C∞−ring A, we have:
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1. The relation ≺A is a strict pre-order relation, whenever A is non-trivial.

2.

1 +
∑

A2 ⊆ A×,

so every non trivial C∞−ring is semi-real.

Note that, by the above result, −1 can’t have a square root in any C∞-field.
Thus a quadratically closed field cannot be the underlying field of any C∞-field.
In particular, any algebraically closed field (like the field of complex numbers,
C) cannot be the underlying field of any C∞-field.

The order theory of C∞-fields is very interesting:

Proposition 4.4. If A is a C∞−field, then:

1. The canonical relation ≺A is a strict linear order, thus it holds the trico-
tomy law, or, equivalently:

a 6= 0⇒ (0 ≺ a) or (a ≺ 0)

2. Any C∞-field F together with its canonical preorder ≺ is such that U(F )
is a real closed field ([17], Theorem 2.10).

The above result on C∞-fields, combined with the separation theorems, is
essential to get remarkable results on other approach to the order theory of
C∞-ring based on the notion of:

Definition 4.5. Given a C∞-ring A, a C∞-ordering on A is a subset P ⊆ A
such that:

• P + P ⊆ P ;

• P · P ⊆ P ;

• P ∪ (−P ) = A;

• P ∩ (−P ) ∈ Spec∞(A).

Definition 4.6. The C∞−real spectrum of a C∞−ring A is the set:

Sper∞(A) = {P ⊆ A|P is a C∞ − ordering onA}

together with the topology Har∞, generated by:

{H∞(a)|a ∈ A},

where H∞(a) = {P ∈ Sper∞(A)|a ∈ P \ (P ∩ (−P ))}.
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Note that if A is a C∞-field, then its C∞-real spectrum is a singleton space,
where its unique ordering is PA = {a ∈ A : 0 ≺ a} ∪ {0}.

In general, we have the following remarkable result:

Theorem 4.7. Given any C∞−ring A, the function:

supp∞ : Sper∞(A) → Spec∞(A)
P 7→ P ∩ (−P )

is a continuous bijection.

5. Special topics concerning Von Neumann
regular C∞-rings

5.1. The von Neumann regular hull of a C∞-ring
We can establish, by two different methods, that the subcategory of von Neu-
mann regular C∞-rings is reflective in the category of all C∞-rings. We empha-
sise here a sheaf-theoretic construction, thus we start this subsection with the
following:

Definition 5.1. A C∞−space is a pair, (X,OX), whereX is a topological space
and OX : Open (X)op → C∞Rng is a sheaf whose stalks are local C∞−rings.

A morphism between two C∞−spaces, (X,OX) and (Y,OY ) is a pair:

(f, f ]) : (X,OX)→ (Y,OY )

where f : X → Y is a continuous function and f ] : fa[OY ] → OX is a
morphism of sheaves such that for every x ∈ X,

f ]x : fa[OY,f(x)]→ OX,x
is a local C∞−homomorphism.
The category of C∞−spaces and their morphisms is denoted by C∞Sp.

Proposition 5.2. Given a C∞−ring A, we have a (essentially) unique sheaf

ΣA : Open (Spec∞(A))op → C∞Rng

such that for every a ∈ A one has:

ΣA(D∞(a)) ∼= A{a−1}
Moreover, this sheaf is such that all its stalks, A{p} , are local C∞−rings.

We have a left-adjoint full and faithful functor:

Σ : C∞Rng→ C∞Sp

Thus Γ(Σ(A)) ∼= A.
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We have already seen that whenever A is a von Neumann regular C∞−ring,

• Spec∞ (A) is a Boolean space;

• For every p ∈ Spec∞ (A), A{p} is a C∞−field.

Definition 5.3. Given a C∞−ring A, a von Neumann regular C∞−ring V
together with a C∞−homomorphism g : A→ V is a von Neumann regular
hull of A if, and only if given any von Neumann regular C∞−ring W and
any C∞−homomorphism f : A → W , there is a unique C∞−homomorphism
f̃ : V →W such that the following diagram commutes:

A
g //

f
''

V

f̃
��
W

Remark 5.4. • Using free C∞−rings, coproducts, quotients and colimits,
one proves that every C∞−ring A has a von Neumann regular
hull, (vN(A), ν : A→ vN (A)).

• It follows that ι : C∞vNRng ↪→ C∞Rng has a left adjoint (say, ν), i.e.,
C∞vNRng is a reflective subcategory of C∞Rng.

• The forgetful functor U : C∞vNRng→ Set has a left-adjoint, L : Set→
C∞vNRng.

We have the following diagram:

C∞Rng
ν //

U ′
((

C∞vNRng
ι

oo

U
uu

Set

L′
hh

L
55

Given any C∞−ring A, we know that Spec∞(A) is a spectral space. We can
refine this topology in order to obtain a Boolean space. Such a topology is called
the constructible topology, and it is generated by {D∞(a) ∩ Z∞(b)|a, b ∈
A}, where Z∞(b) = Spec∞(A) \D∞(b). The smooth spectrum together with
the constructible topology will be denoted by Spec∞−const(A).

Next we give some remarks that allows us, with a sheaf-theoretic method,
to obtain the von Neumann-regular hull of a C∞-ring.

• For each C∞−ring, A, we build a presheaf PA on the basis of the topology
of Spec∞−const (A) such that its stalks at each p ∈ Spec∞ (A) are the
C∞−fields kp(A).
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• Given any basic open set V of Spec∞−const (A), there are a, b ∈ A such
that V = D∞(a) ∩ Z∞(b), so we define:

PA(V ) = lim−→
V=D∞(a)∩Z∞(b)

(
A/ ∞

√
(b)
)
{a+ ∞

√
(b)
−1
}

• The stalk of this pre-sheaf at each p ∈ Spec∞(A) is the C∞−field:

(PA)p = (A/p)
{
A/p \ {0 + p}−1

}
∼= kp(A)

Now we proceed as follows:
• For each C∞-ring A, PA : (B(Spec∞−const (A)),⊆)op → C∞Rng3 is a

presheaf on the (canonical) basis of the constructible topology on Spec∞(A),
whose stalks are isomorphic to kp(A), p ∈ Spec∞(A). Moreover there is a
canonical C∞-homomorphism:

φA : A→ PA(Spec∞−const (A))) ∼= A/ ∞
√

(0)

in such a way that we obtain a functor A
F7→ PA(Spec∞−const (A))) and a

natural transformation φ : Id⇒ F.
• For each C∞-ring A, let GA be the sheaf functor associated with the

presheaf PA - both defined on the basis of the constructible topology of the C∞-
spectrum of A, and both share the same (up to isomorphisms) stalks. Moreover,
since there is a natural transformation PA ⇒ GA, there is a canonical C∞-
homomorphism γA : A→ GA(Spec∞−const (A))), in such a way that we obtain

a functor A
G7→ GA(Spec∞−const (A))) and a natural transformation γ : Id⇒ G.

• For each C∞-ring A, take HA the (unique, up to isomorphism) sheaf
extension GA from the basis of the constructible topology to all the opens sets
of this topology, so HA �∼= GA, and both functors keep the same stalks (up to
isomorphism).

Moreover, since there is a natural transformation (isomorphism) GA ⇒
HA �, there is a canonical C∞-homomorphism µA : A→ HA(Spec∞−const (A))),
in such a way that we obtain a functor:

A
H7→ HA(Spec∞−const (A)))

and a natural transformation µ : Id⇒ H.
• Since HA is a sheaf of C∞-rings, defined over all the open subsets of a

Boolean space, and whose stalks are C∞-fields, H(A) = HA(Spec∞−const (A)))

is a Von Neumann regular C∞-ring. Thus, A
H7→ HA(Spec∞−const (A))) deter-

mines a functor C∞Rng→ C∞vNRng and we have a natural transformation
µ : Id⇒ i ◦H.

3Here, B(Spec∞−const (A)) denotes the basic open sets of Spec∞−const (A)
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Theorem 5.5. (bis) The inclusion functor C∞vNRng ↪→ C∞Rng has a
left adjoint functor vN : C∞Rng → C∞vNRng. In more details: let A be
any C∞−ring. The pair (H(A), µA : A → H(A)) is the C∞−von Neumann
regular hull of A, that is, for every von Neumann-regular C∞−ring V and for
every C∞−homomorphism f : A → V there is a unique C∞−homomorphism
f̃ : H(A)→ V such that the following diagram commutes:

A
µA //

f
''

H(A)

∃!f̃
��
V

Proposition 5.6. The functor vN : C∞Rng → C∞vNRng preserves all col-
imits. In particular it preserves:

• directed inductive limits;

• coproducts (= C∞-tensor products in C∞Rng);

• coequalizers/quotients.

The following results are specific to the functor vN, i.e., they are not general

consequences of it being a left adjoint functor4:

• vN preserves localizations;

• vN preserves finite products.

5.2. Von Neumann regular C∞−rings and Boolean
Algebras

We apply von Neumann regular C∞-rings to naturally represent Boolean
Algebras in a strong sense: i.e., not only all Boolean algebras are isomorphic
to the Boolean algebra of idempotents of a von Neumann regular C∞-ring, also
every homomorphism between such boolean algebras of idempotents is induced
by a C∞-homomorphism.

Given any C∞−ring A, let B̃(A) = {e ∈ Ũ(A)|e2 = e},

B̃ : C∞Rng → Bool

A 7→ B̃(A)

A
f // A′ 7→ B̃(A)

B̃(f) // B̃(A′)

is a (covariant) functor.
Now, ifA is any C∞−ring, we define the following homomorphism of Boolean

algebras:

4The last one can be established by a analysis of the sheaf-theoretic construction of the Von
Neumann regular hull.
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A : B̃(A) → Clopen (Spec∞(A))
e 7→ D∞(e) = {p ∈ Spec∞ (A)|e /∈ p}

The map A : B̃(A) → Clopen(Spec∞ (A)) suggests that the idempotent

elements of the Boolean algebra B̃(A) associated with a C∞−ring A hold a
strong relationship with the canonical basis of the Zariski topology of Spec∞(A).

We have the following:

Theorem 5.7. Let A be a von Neumann regular C∞−ring. The map:

A : B̃(A) → Clopen (Spec∞(A))
e 7→ D∞(e) = {p ∈ Spec∞ (A)|e /∈ p}

is an isomorphism of Boolean algebras.

Theorem 5.8. We have the following diagram of categories, functors and
natural isomorphisms:

C∞vNRng

B̃

++

Spec∞ // BoolSp

Clopen

��



2:

Bool

,

where BoolSp denotes the category of all Boolean spaces and their morphisms.

Lemma 5.9. Let (X, τ) be a Boolean topological space. Define RX :={
R ⊆ X ×X|(R is an equivalence relation onX) & (

X

R
is a

discrete(= finite) quotient space)
}
,

which is partially ordered by inclusion. Whenever Ri, Rj ∈ R are such that
Rj ⊆ Ri, we have the continuous surjective map:

µRjRi :
X

Rj
�

X

Ri
[x]Rj 7→ [x]Rj

so we have the inverse system { XRi ;µRjRi : X
Rj
→ X

Ri
}. By definition

lim←−
R∈R

X

R
=

{
([x]Ri)Ri∈R ∈

∏
R∈R

X

R
|(Rj ⊆ Ri → (pRi

(([x]Ri)Ri∈R) = µRjRi ◦ pRj (([x]Ri)Ri∈R)))

}
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Let X∞ denote lim←−R∈R
X
R , so we have the following cone:

X∞
µRj

~~

µRi

  
X
Rj

µRjRi // X
Ri

We consider X∞ together with the induced subspace topology of
∏
R∈R

X
R .

By the universal property of X∞, there is a unique continuous map δX :
X → X∞ such that the following diagram commutes:

X

qRj

��

qRi

��

∃!δX
��

X∞
µRj

xx

µRi

&&X

Rj µRjRi
// X

Ri

Then δX : X → X∞ is a homeomorphism, so:

δX : X
≈→ lim←−

R∈R

X

R

that is, X a profinite space.

Theorem 5.10. Let K be a C∞−field and define the contravariant functor:

k̂ : BoolSp → C∞vNRng

(X, τ) 7→ RX := lim−→R∈RKU(XR ) ,

where U(X/R) denotes the underlying set of X/R. Then there is a natural
isomorphism:

ε : IdBoolSp

∼=⇒ Spec∞ ◦ k̂.

Thus, the functor Spec∞ : C∞vNRng → BoolSp is full and
isomorphism-dense, that is, for each Boolean space(X, τ)there is a von Neumann-
regular C∞−ring, RX , such that:

Spec∞ (RX) ≈ (X, τ).

Theorem 5.11. Let K be a C∞−field. Define the covariant functor (composi-
tion of contravariant functors):
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Ǩ = k̂ ◦ Stone : Bool→ C∞vNRng.

There is a natural isomorphism:

θ : IdBool

∼=⇒ B̃ ◦ Ǩ.

Thus, the functor B̃ : C∞vNRng→ Bool is full and isomorphism-dense.
In particular: given any C∞−field K and any Boolean algebra B, there is a

von Neumann regular C∞−ring which is a K−algebra, Ǩ(B), such that

B̃(Ǩ(B)) ∼= B.

The following diagram summarizes the main functorial connections stab-
lished in this section:

ε
��

BoolSp

IdBoolSp

((
k̂ // C∞vNRng

Spec∞ //

B̃

))

BoolSp

Clopen

��


4<

Bool

Stone

OO

Ǩ

88

IdBool

00

θ

KS

Bool

6. Some Logical Aspects of C∞−rings
It is a well-known fact that any first-order geometric mathematical theory

admits a (unique up to equivalence) classifying topos, which contains a universal
model of the theory (cf. [16] and [15], for example). Since C∞-rings can be
described as models of geometric axioms, such a theory has a classifying topos.
The next result describes the classifying topos of the theory of C∞-rings.

Theorem 6.1. The category

C∞Rngop
fp

is a category with finite limits freely generated by the C∞−ring-object C∞(R),
i.e., for any category with finite limits C, the evaluation of a left-exact functor
F : C∞Rngop

fp → C at C∞(R) yields the following equivalence of categories:

evC∞(R) : Lex (C∞Rngop
fp , C) → C∞ − Rings (C)

F 7→ F (C∞(R))
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Theorem 6.2. The presheaf topos SetsC
∞−Rngfp is a classifying topos for

C∞−rings, and the universal C∞−ring R is the C∞−ring object in SetsC
∞−Rngfp

given by the forgetful functor from C∞Rngfp to Set. Thus, for any Grothendieck
topos E there is an equivalence of categories, natural in E:

Geom (E ,SetsC
∞−Rngfp) → C∞Ring (E)

f 7→ f∗(R)

6.1. The Smooth Zariski Site

Let C = C∞Rngfp
op be the (skeleton of the) opposite category of the finitely

presented C∞−rings. We are going to describe the smooth Grothendieck-
Zariski pretopology on C∞Rngfp

op.
Given a finitely presentable C∞-ring A, we will define the collection of all

cocovering families of A, denoted by coCov (A). Together this will yield a map:

coCov : Obj (C∞Rngfp) → ℘(℘(Mor (C∞Rngfp)))
A 7→ coCov (A)

For every n−tuple of elements of A, (a1, · · · , an) ∈ A×A×· · · ,×A, n ∈ N,
such that 〈a1, a2, · · · , an〉 = A, a family of C∞−homomorphisms ki : A → Bi
such that:

(i) For every i ∈ {1, · · · , n}, ki(ai) ∈ Bi×;

(ii) For every i ∈ {1, · · · , n}, if ki(a) = 0 for some a ∈ A, there is some
si ∈ {ai}∞−sat such that a · si = 0;

(iii) For every b ∈ Bi there are c ∈ {ai}∞−sat and d ∈ A such that b · ki(c) =
ki(d).

will be a co-covering family of the finitely presentable C∞−ring A.
In terms of diagrams, the “generators” of the co-covering families are:

〈a1, · · · , an〉 = A
KS

��⋃n
i=1D

∞(ai) = Spec∞(A)

A{a1
−1}

A{a2
−1}

A

ηa1

>>

ηa2

77

ηan

''

...

A{an−1}
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Given a finitely presented C∞−ringA, a covering family forA in C∞Rngop
fp

is given by:

Cov (A) = {fop
i : Bi → A|(fi : A→ Bi)i∈I ∈ coCov (A)}.

We prove that Cov is a Grothendieck pretopology on the category5 C∞Rngop
fp .

We have the Grothendieck topology on C∞Rngop
fp :

JCov : Obj (C∞Rngfp)→ ℘(℘(Mor (C∞Rngfp)))

given by:

JCov (A) := {
←−
S ⊆

⋃
B∈Obj (C∞Rngfp)

HomC∞Rngfp
(B,A)|S ∈ Cov (A)},

where
←−
S denotes the sieve completion of S, turning (C∞Rngop

fp , JCov) into a
small site, that we denote by Z∞.

The forgetful functor O : C∞Rngfp → Sets is called the structure sheaf
of the Grothendieck-Zariski smooth topos. The smooth Grothendieck-Zariski
topology JCov constructed above is subcanonical.

The Mitchell-Bénabou language motivates us to define a local C∞−ring object
in a topos E : it is a C∞−ring object R in E for which the (geometric) formula:

(∀a ∈ R)((∃b ∈ R)(a · b = 1) ∨ (∃b ∈ R)((1− a) · b = 1))

is valid. By definition, this means that the union of the subobjects:

{a ∈ R|∃b ∈ R(a · b = 1)}� R,

{a ∈ R|∃b ∈ R((1− a) · b = 1)}� R

of R is all of R. Equivalently, consider the two subobjects of the product R×R
defined by: {

U = {(a, b) ∈ R×R|a · b = 1}� R×R
V = {(a, b) ∈ R×R|(1− a) · b = 1}� R×R

(1)

The C∞−ring object R is local if, and only if, the two composites U �
R×R π1→ R and V � R×R π1→ R form an epimorphic family in E .

Theorem 6.3. The smooth Grothendieck-Zariski topos, Z∞ is a classifying
topos for local C∞−rings, i.e., for any Grothendieck topos E, there is an equiv-
alence of categories:

Geom (E ,Z∞) ' C∞LocRng (E) (2)

5In fact, a locally small category that is equivalent to a small category.
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where C∞LocRng (E) is the category of local C∞−ring-objects in E.

The universal local C∞−ring is the structure sheaf O of the Grothendieck-
Zariski smooth topos

Theorem 6.4. The category

C∞vNRngop
fp

is a category with finite limits freely generated by the von Neumann regular
C∞−ring vN(C∞(R)), i.e., for any category with finite limits C, the evaluation
of a left-exact functor F : C∞vNRngop

fp → C at vN (C∞(R)) yields the following
equivalence of categories:

evvN(C∞(R)) : Lex (C∞vNRngop
fp , C) → C∞ − vNRng (C)

F 7→ F (vN (C∞(R)))

Theorem 6.5. The presheaf topos SetsC
∞vNRngfp is a classifying topos for von

Neumann regular C∞−rings, and the universal von Neumann regular C∞−ring
R is the von Neumann regular C∞−ring object in

SetsC
∞−vNRngfp

given by the forgetful functor from C∞vNRngfp to Set. Thus, for any Grothendieck
topos E there is an equivalence of categories, natural in E:

Geom (E ,SetsC
∞vNRngfp) → C∞vNRng (E)

f 7→ f∗(R)

7. Future Works

As a continuation of the former research topics, we describe some promising
topics on which we are focusing next. The quest for answering the following
questions and researching the following topics is the next step of our research.

(I) Analyze special classes of C∞-rings.

(II) Develop Real Algebraic Geometry and Quadratic Form Theory of C∞-
rings.

(III) Is a Gelfand C∞−ring the global section of locally ringed space over a
compact Hausdorff space?

(IV) If so, can we obtain from that, by sheaf theoretic methods, a (C∞−Gelfand
hull for each (C∞−)ring?

(V) Can we apply these ideas and methods to the case of sheaf of C∞-rings
whose stalks are archimedian local C∞−rings (see [18], [12])?
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(VI) And in the vein of Grothendieck topologies, are there natural and useful
versions of étale ([11]) and/or real-étale ([20]) sites in the setting of C∞-
rings?

(VII) Are there other sensible descriptions of classifying toposes for other dis-
tinguished classes of C∞−rings?

(VIII) In particular, is there a nice description of the theory of von Neumann
regular C∞−rings in the language of C∞-rings?

(IX) It is natural to ask if the class of C∞-fields is model-complete in the
language of C∞-rings or even admits elimination of quantifiers (possibly
in the language expanded by a unary predicate for the positive cone of a
ordering). If the former holds, then the relation R between pairs of mor-
phism with the same source and targets C∞-fields, considered in Section
5 of Chapter 2 of [3], that encodes Sper∞, is already a transitive re-
lation (as occurs in the algebraic case). If the latter holds, then it is
possible to adapt the definition and results provided in [19] on “Model-
theoretic Spectra” and describe “logically” the spectral topological spaces
Spec∞(A) and/or Sper∞(A) as certain classes of equivalence of homomor-
phisms ofA into models of a nice theory T . Moreover, since the techniques
in this paper provide structural sheaves of “definable functions”, we could
compare them with others previously defined and determine other new
natural model-theoretic spectra in C∞-structures.

(X) After a good understanding of the model-theory of distinguished classes
of C∞-rings, it is natural consider model-theoretic aspects of simple con-
structions/structures related to the C∞. In particular, should be better
studied the class of modules over C∞-rings, that has been considered by
D. Joyce in the recent development of the Algebraic Geometry of C∞-
rings ([12]). It will be interesting start the model-theoretic analysis of
Modules over Finitely Generated C∞-rings in the vein of [13]: by defining
a 2 sorted language that contains axioms for a C∞-ring part and a mod-
ule of it and (at least) symbols for the Grassmanians to express linear
(in)dependence without the need of quantifiers

(XI) Finally there is also a mathematical aspect of C∞-rings that seems to
be only laterally considered: since each free C∞-ring C∞(RX) encodes
many possible R-derivations, every “smooth polynomial ring” A{X} in
the set of variables X with coefficients over a C∞- ring A admits many A-
derivations. Thus classes of C∞-rings endowed with derivations should be
interesting and deserve a systematic study under many aspects, including
the model-theoretic one.
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localizations ii, Mathematical Logic and Theoretical Computer Science
106 (1987), no. X, 277–300.

[19] R. O. Robson, Model theory and spectra, ournal of Pure and Applied Al-
gebra 106 (1990), no. X, 301–327.

[20] C. Scheiderer, Real and Étale Cohomology, Springer Verlag, 1994.
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