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On geometric forms for Cauchy’s and Flett’s
mean value theorems

Sobre formas geométricas de los teorema del valor medio de
Cauchy y de Flett

Sergio A. Carrilloa

Abstract. We give two mean value type theorems for differentiable curves
in the Euclidean space. These unify several versions of Cauchy’s and Flett’s
mean value theorems and provide equivalent geometric statements to their
classical counterparts. We also discuss some particular cases for curves in two
and three dimensions, and some related results.

Keywords: Cauchy’s mean value theorem; Flett’s theorem; Wachnicki’s the-
orem; differentiable curves.

Resumen. Presentamos dos teoremas del valor medio para curvas diferencia-
bles en el espacio euclidiano. Estos unifican varias versiones de los teoremas
del valor medio de Cauchy y Flett y proporcionan enunciados geométricos
equivalentes a sus contrapartes clásicas. También analizamos algunos casos
particulares para curvas en dos y tres dimensiones, y algunos resultados rela-
cionados.
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1. Introduction

One of the central theorems in Calculus of one variable is Lagrange’s mean
value theorem (MVT) for derivatives. This is often explained by means of the
apparently more general statement known as:

Cauchy’s MVT. Given continuous functions f, g : [a, b] → R which are
differentiable in (a, b), there is c ∈ (a, b) such that

f ′(c)(g(b)− g(a)) = g′(c)(f(b)− f(a)). (1)
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Among its applications we highlight the proof of L’Hôpital’s rule [15]. La-
grange’s MVT corresponds to the particular case g(t) = t, having a clear ge-
ometric insight suitable for students to quickly understand its meaning. More
precisely, it assures the existence of a point (c, f(c)) for which its tangent line
to the graph of f is parallel to the line passing through (a, f(a)) and (b, f(b)).
It is often mentioned in class that these results are equivalent since both are
tantamount to Rolle’s theorem. For an alternative recent proof of the equiva-
lence between Cauchy’s and Lagrange’s theorems when g′(t) ̸= 0 for all t, see
[3].

Cauchy’s MVT admits several generalizations including higher order deriva-
tives [1] or funny looking forms [13]. The reader may consult [11], [12, Chapter
7] and the references therein for more information. Some other generalizations
have also been studied, see, e.g., [11]. The theorem also allows variants involv-
ing auxiliary functions with appealing geometric interpretations. Two of them
are Flett’s and Wachnicki’s theorems, see [6, 18]. The former can be stated as
follows:

Wachnicki’s theorem. If f and g are differentiable in [a, b], g′(t) ̸= 0, for
all t ∈ [a, b], and f ′(a)/g′(a) = f ′(b)/g′(b), then there is η ∈ (a, b) such that

f(η)− f(a)

g(η)− g(a)
=
f ′(η)

g′(η)
. (2)

The case g(t) = t is precisely Flett’s original theorem. In geometric terms,
Flett’s result assumes that the tangent lines to the graph of f at the boundary
points are parallel. Then, it proves the existence of a point (η, f(η)) for which
the tangent line of the graph of f passes through the point (a, f(a)). These two
results are equivalent in the same way that Cauchy’s and Lagrange’s theorems
are. In fact, the argument in [3] follows the same lines as the proof in [9], which
is older.

Since graphs of real-valued functions are nothing but particular cases of
curves in Euclidean space, it is natural to wonder if there are mean value type
theorems in this context. After all, the geometry of Cauchy’s MVT theorem is
usually explained by using the curve t ∈ [a, b] 7→ (f(t), g(t)) ∈ R2. It is well-
known that the MVT theorem does not extend immediately to vector-valued
maps nor with values in a Banach space. In this case, the correct and valuable
extension is called the mean value inequality. Quoting Dieudonné: ‘‘the real
nature of the mean value theorem is exhibited by writing it as an inequality, and
not as an equality” [4, p. 148]. For a quick proof of this result the reader may
consult [8]. In contrast, there are some interesting related results for vector-
valued differentiable maps, such as a complex Rolle’s theorem, see [5]. There
are also some related results in the setting of topological vector spaces, see,
e.g., [7, 10, 14] Thus it is valid to wonder for MVTs in higher dimensions.

The goal of this note is to contribute to MVTs for curves by giving two
extra equivalent statements for both Cauchy’s and Flett’s theorems involving
curves in Euclidean space. They have the advantage of having a geometric
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flavor that might help to give students a broader understanding of the original
theorems.

The results are suitable to Calculus classes in one variable with a bare
knowledge of analytic geometry, namely, the inner product ⟨v, w⟩ = v1w1+· · ·+
vnwn = ∥v∥ ∥w∥ cos θ to measure the oriented angle θ between v = (v1, . . . , vn)
and w = (w1, . . . , wn) ∈ Rn. We will write v ⊥ w when the vectors are
orthogonal, i.e., ⟨v, w⟩ = 0. Under these notations, our results are as follows.

Theorem 1.1. Let γ : [a, b] → Rn be a continuous curve which is differentiable
in (a, b). If v ∈ Rn is such that ⟨γ(b)− γ(a), v⟩ = 0, then there is a c ∈ (a, b)
such that γ′(c) ⊥ v.

Theorem 1.2. Let γ : [a, b] → Rn be a differentiable curve. If v ∈ Rn satisfies
⟨γ′(b)− γ′(a), v⟩ = 0, then there is a η ∈ (a, b) such that

⟨γ′(η), v⟩ =
〈
γ(η)− γ(a)

η − a
, v

〉
.

Theorem 1.1 was inspired in the extension of Cauchy’s MVT involving n ≥ 2
functions presented in [17, Theorem 3], see Corollary 5.1. In fact, we arrived to
our statement by searching for a geometric interpretation of the aforementioned
result. Its formulation is not new and it can be found in [16] for higher order
derivatives. Nonetheless, we have no precise reference for Theorem 1.2.

2. Proof of the results

We start by the analogous result to Cauchy’s MVT.

Proof of Theorem 1.1. Consider the function

A(t) = ⟨γ(t)− γ(a), v⟩ ,

which is differentiable in (a, b) and continuous in [a, b]. Since A(a) = 0 and
by hypothesis A(b) = 0, by Rolle’s theorem, there is c ∈ (a, b) such that
A′(c) = ⟨γ′(c), v⟩ = 0, as required.

Remark 2.1. It may happen that γ′(c) = 0. In fact, the conclusion γ′(t0) ⊥ v
holds trivially for v = 0 or for points t0 ∈ (a, b) where γ′(t0) = 0. However, if
γ : [a, b] → Rn is regular, i.e., γ′(t) ̸= 0, for all t ∈ (a, b), γ has a well-defined
affine tangent line at every point γ(t). In this case, Theorem 1.1 gives a tangent
vector γ′(c) ̸= 0, orthogonal to v, see Figure 1.
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γ(a)

γ(b)
v

v

γ′(c)

Figure 1: The vector γ′(c) in Theorem 1.1

We prove now the analogous to Flett’s theorem. To be more self-contained, we
provide two proofs: one applying Flett’s theorem and one following Wachnicki’s
argument in [18].

Proof of Theorem 1.2. Apply Flett’s theorem to A(t) = ⟨γ(t)− γ(a), v⟩ which
is differentiable on [a, b] and satisfies A′(a) = ⟨γ′(a), v⟩ = ⟨γ′(b), v⟩ = A′(b).

For a direct proof, let B : [a, b] → R be given by B(a) = ⟨γ′(a), v⟩ and

B(t) =

〈
γ(t)− γ(a)

t− a
, v

〉
=
A(t)

t− a
, t ∈ (a, b].

Then B is continuous on [a, b] and differentiable on (a, b]. We need to show
the existence of η ∈ (a, b) such that B′(η) = 0. By contradiction assume that
B′(t) ̸= 0, for all t ∈ (a, b). By Darboux’s theorem for derivatives, the sign of
B′ is constant. Assume that B′(t) > 0, for all t ∈ (a, b). Thus, B is strictly
increasing, and in particular B(a) < B(b). However, computing B′(t) we find
that (t− a)B′(t) = ⟨γ′(t), v⟩ −B(t). Using the hypothesis we conclude that

(b− a)B′(b) = ⟨γ′(b), v⟩ −B(b) = B(a)−B(b) < 0.

Again by Darboux’s theorem, the inequality B′(b) < 0 is impossible since
B′(t) > 0 for all t ∈ (a, b). The case B′(t) < 0 follows the same lines, thus
completing the proof.

Remark 2.2. In both theorems we can assume v ̸= 0 to avoid a trivial statement.
Moreover, the previous proofs are meaningful only when A(t) ̸≡ 0 and B(t) ̸≡ 0.
Otherwise, the trace of γ is contained in the hyperplane P orthogonal to v and
passing through γ(a). Thus A′(t) = ⟨γ′(t), v⟩ ≡ 0, i.e., the tangent vectors to
γ are also in P , so Theorems 1.1 and 1.2 vacuously hold for any c ∈ (a, b).

We conclude this section with the case of closed curves. What happens
when γ(a) = γ(b)? Assuming also that γ is not contained in a hyperplane,
i.e., A(t) ̸≡ 0, we see that v ∈ Rn can be chosen arbitrarily in Theorem 1.1.
Therefore, we have the following result.
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Corollary 2.3. Let γ : [a, b] → Rn be continuous and differentiable in (a, b).
If γ is closed, for every v ∈ Rn, there is c ∈ (a, b) such that γ′(c) ⊥ v.

This is particularly interesting when n = 2. For instance, assume that
γ : [a, b] → R2 is differentiable in (a, b) and that the right derivative γ′+(a)
exists and it is non-zero. Then, we can choose v ∈ R2 such that γ′+(a) ⊥ v.
The previous result asserts the existence of c ∈ (a, b) such that γ′(c) ⊥ v. If
γ′(c) ̸= (0, 0), this vector is parallel to γ′+(a). The same result is true if γ′−(b)
exists and it is non-zero. In particular, if γ′(a) = γ′(b) and γ is regular, there
is c ∈ (a, b) such that the tangent line to γ at t = c is parallel to the tangent
line to γ at t = a.

3. The case of plane curves

Theorem 1.1 is equivalent to Rolle’s theorem. In fact, let f : [a, b] → R be
continuous, differentiable in (a, b), and such that f(a) = f(b). Then the curve
γ(t) = (t, f(t)) is regular and satisfies γ(b) − γ(a) = (b − a, 0) ⊥ (0, 1). Our
result provides a c ∈ (a, b) such that γ′(c) = (1, f ′(c)) ⊥ (0, 1), i.e., f ′(c) = 0,
as needed. In conclusion, we obtain.

Corollary 3.1. Rolle’s theorem, Lagrange’s MVT, Cauchy’s MVT and Theo-
rem 1.1 are equivalent statements.

In the same way, Theorem 1.2 is equivalent to Flett’s result. In fact, if
f : [a, b] → R is differentiable and f ′(a) = f ′(b), then curve γ(t) = (t, f(t)) is
also differentiable and γ′(b) = γ′(a). Thus we can choose v ∈ R2 arbitrary. By

taking v = (0, 1), we see that there is η ∈ (a, b) such that γ′(η) − γ(η)−γ(a)
η−a ⊥

(0, 1), i.e., f ′(η) = f(η)−f(a)
η−a , as wanted.

Corollary 3.2. Flett’s theorem, Wachnicki’s theorem and Theorem 1.2 are
equivalent statements.

Let us now apply Theorems 1.1 and 1.2 to a plane curve

γ(t) = (f(t), g(t)) ∈ R2.

Recall first that given any vector w = (w1, w2) ̸= (0, 0), there is a natural or-
thogonal vector w⊥ := (−w2, w1) to it such that {w,w⊥} is oriented positively,
i.e., det(w,w⊥) = ∥w∥2 > 0.

Let us assume first that f and g are as in Cauchy’s MVT. If γ(b) ̸= γ(a)
(the curve is not closed), we can choose

v = (γ(b)− γ(a))⊥ = (g(a)− g(b), f(b)− f(a)),

as a valid vector. Thus, there is c ∈ (a, b) such that γ′(c) ⊥ v, i.e., (1) holds.
Since we are in R2, if γ′(c) ̸= (0, 0), then γ′(c) is parallel to γ(b)−γ(a). In this
way, we recover the usual geometric interpretation of Cauchy’s MVT in (1): if
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γ(a) ̸= γ(b) and γ is regular, there is a point γ(c) on the curve such that the
tangent line to γ at t = c is parallel to the segment passing through γ(b) and
γ(a).

Assume now that g′(t) ̸= 0, for all t. Using Darboux’s theorem as in the

proof of Theorem 1.2 we see that g(b)−g(a)
g′(c) > 0. Since

γ(b)− γ(a) =
g(b)− g(a)

g′(c)
· γ′(c),

we conclude that, not only γ(b)−γ(a) and γ′(c) are parallel, but they also have
the same direction, as one vector is a positive multiple of the other.

Let us assume now that f and g satisfy the conditions of Wachnicki’s theo-
rem. Here the hypothesis means that γ′(a) and γ′(b) have the same direction.
Indeed, since

γ′(b) = λ · γ′(a), where λ =
g′(b)

g′(a)
=
f ′(b)

f ′(a)
,

and the hypothesis requires that g′(t) ̸= 0, for all t, Darboux’s theorem implies
λ > 0. Then, Wachnicki’s theorem gives a point η ∈ (a, b) such that (2) holds,
i.e.,

γ(η)− γ(a) =
g(η)− g(a)

g′(η)
· γ′(η).

As before, this means that γ(η)−γ(a) and γ′(η) have the same direction, i. e.,
they are parallel.

4. The case of curves in R3

Another version of Cauchy’s MVT for three functions can be expressed in terms
of determinants. In fact, given a continuous curve γ = (f, g, h) : [a, b] → R3

which is differentiable in (a, b), there is a point c ∈ (a, b) such that∣∣∣∣∣∣
f(a) g(a) h(a)
f(b) g(b) h(b)
f ′(c) g′(c) h′(c)

∣∣∣∣∣∣ = 0. (3)

Cauchy’s MVT corresponds to h(t) ≡ 1. The existence of c follows by applying
Rolle’s theorem to D(t) = det(γ(a), γ(b), γ(t)), since D(a) = D(b) = 0 and
D′(t) = det(γ(a), γ(b), γ′(t)). Equation (3) and this argument are only mean-
ingful when γ(a) and γ(b) are linearly independent —otherwise, D(t) ≡ 0—.
Indeed, the geometric content of (3) is clear in this case: there is c ∈ (a, b) such
that γ′(c) lies on the subspace E generated by γ(a) and γ(b).

We can also use Theorem 1.1 to draw these conclusions. In the first case,
use the cross product v0 = γ(a) × γ(b) ̸= (0, 0, 0), which is orthogonal to E,
and in particular to γ(b)− γ(a). By Theorem 1.1 there is c ∈ (a, b) such that

⟨γ(a)× γ(b), γ′(c)⟩ = det(γ(a), γ(b), γ′(c)) = 0.
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Therefore, γ′(c) ∈ E, i.e., (3) holds for this c. Note also that A(t) = D(t) for
this v0.

In the second case, assume that γ(a) and γ(b) lie on the same half-line L
emerging from the origin. Then, for every vector w ∈ R3 in the orthogonal
plane to L, there is c ∈ (a, b) such that γ′(c) ⊥ w.

5. Other consequences

We conclude this note with a simple proof of the original motivation for The-
orem 1.1, namely, a Cauchy MVT for n ≥ 2 functions.

Corollary 5.1 (Theorem 3, [17]). Let γ = (f1, . . . , fn) : [a, b] → Rn be a
continuous curve, differentiable in (a, b). Assume that fj(b) ̸= fj(a), for all
j = 1, . . . , n. If α1, . . . , αn ∈ R are such that α1 + · · · + αn = 0, then there is
c ∈ (a, b) such that

n∑
j=1

αj

fj(b)− fj(a)
f ′j(c) = 0.

Proof. It follows from the Theorem 1.1 by choosing

v =
(

α1

f1(b)−f1(a)
, . . . , αn

fn(b)−fn(a)

)
.

Corollary 5.2. Let γ = (f1, . . . , fn) : [a, b] → Rn be a differentiable curve.
Assume that f ′j(b) ̸= f ′j(a), for all j = 1, . . . , n. If α1, . . . , αn ∈ R are such that
α1 + · · ·+ αn = 0, then there is c ∈ (a, b) such that

n∑
j=1

αj

f ′j(b)− f ′j(a)

(
f ′j(η)−

fj(η)− fj(a)

η − a

)
= 0.

Proof. Apply Theorem 1.1 using the vector v =
(

α1

f ′
1(b)−f ′

1(a)
, . . . , αn

f ′
n(b)−f ′

n(a)

)
.

Example 5.3. A classical application of Rolle’s theorem is to show that a
polynomial

p(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n

has at least one root in (0, 1) provided that c0 + c1
2 + c2

3 · · · + cn
n+1 = 0.

We can prove this using Theorem 1.1. In fact, consider the curve γ(t) =
(t, t2, . . . , tn, tn+1) and the vector v = (c0,

c1
2 , . . . ,

cn
n+1 ) in Rn+1. Since

⟨γ(1)− γ(0), v⟩ = 0, there is c ∈ (0, 1) such that ⟨γ′(c), v⟩ = p(c) = 0, as
required.
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6. The case of antiderivatives of curves

As well as there are MVTs for differentiable functions, there are related results
when dealing with functions given by the antiderivative of a continuous func-
tion. These are known as MVTs for integrals. We conclude this work with a
brief discussion of this case.

For instance, let f, g : [a, b] → R be continuous. Then, there is c ∈ (a, b)
such that

f(c) ·
∫ b

a

g(t)dt = g(c) ·
∫ b

a

f(t)dt.

This follows from Cauchy’s MVT applied to F (x) =
∫ x

a
f(t)dt, G(x) =

∫ x

a
g(t)dt,

since F ′(x) = f(x) and G′(x) = g(x), by the fundamental theorem of Calculus.
In particular, if g(t) ≡ 1, there is c ∈ (a, b) such that

f(c) =
1

b− a

∫ b

a

f(t)dt,

which is nothing but the usual MVT for integrals. Another related statement is
Wayment’s theorem first proved in [19], and obtained applying Flett’s theorem
to F (x) under the assumption that f(a) = F ′(a) = F ′(b) = f(b). Surprisingly,
it was only recently that this theorem was generalized by means of Wachnicki’s
theorem, see [2]. More precisely, we have the following result:

Wayment’s generalized theorem [2]. Let f, g : [a, b] → R be continuous
and g(x) ̸= 0, for all x ∈ [a, b]. If f(a) = f(b), then there exists at least one
point c ∈ (a, b) such that∫ c

a

f(t)g(t)dt = f(c)

∫ c

a

g(t)dt.

The result follows usingWachnicki’s theorem for the functions F̃ (x) =
∫ x

a
f(t)g(t)dt

and G(x) =
∫ x

a
g(t)dt which are differentiable in [a, b]. In particular, there is

c ∈ (a, b) such that

(c− a)f(c) =

∫ c

a

f(t)dt.

This is the original statement of Wayment, corresponding to g(t) ≡ t.
In our setting, we offer the following result that follows intermediately from

Theorem 1.2 when applied to the curve ψ(t) =
∫ t

a
γ(s)ds (the integral is taken

component-wise) and also from Wayment’s theorem using f(t) = ⟨γ(t), v⟩.

Corollary 6.1. Let γ : [a, b] → Rn be a continuous curve. If v ∈ Rn satisfies
⟨γ(b)− γ(a), v⟩ = 0, then there is a η ∈ (a, b) such that

⟨γ(η), v⟩ = 1

η − a

∫ η

a

⟨γ(t), v⟩ dt.

Additionally, note that by taking n = 1, γ(t) = f(t), and v = 1, Corollary
6.1 implies Wayment’s theorem. Thus, these are equivalent statements.
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Bolet́ın de Matemáticas 32(1) 1-10 (2025)



10 Sergio A. Carrillo

[16] D. E. Sanderson, A versatile vector mean value theorem, The American
Mathematical Monthly 79 (1972), no. 4, 381–383.

[17] J. Tong, Cauchy’s mean value theorem involving n functions. in: Class-
room capsules, The College Mathematics Journal 35 (2004), no. 1, 43–54.

[18] Eugeniusz Wachnicki, Une variante du théorème de Cauchy de la valeur
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Bolet́ın de Matemáticas 32(1) 1-10 (2025)




