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ON STRONGLY LAWSON AND I-LAWSON MONADS

T. RADUL(*)

ABSTRACT. We introduce classes of strongly Lawson monads and I-Lawson
monads and show that these monads have functional representation. We
investigate the connection of these classes of monads whith the class of
Lawson monads introduced in [1].
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o. Introduction

The algebraic aspect of the theory of functors in categories of topological
spaces and continuous maps was investigated in the 60's. It is based, mainly,
on the existence of a monad (or triple) structure in the sense of S.Eilenberg
and J.Moore [2].

Many classical constructions lead to monads: hyperspaces, spaces of proba-
bility measures, superextensions etc. There were many investigations of mon-
ads in categories of topological spaces and continuous maps(see for example
the survey [3]). But it seems that the main difficulty to obtain general results
in the theory of monads is the different nature of specific functors.

Sorne functional representations of the hyperspace functor were found in [4]
and [5]. There was introduced a class of Lawson monads in [1]which contains
sufficiently wide class of monads. Lawson monads have a functional representa-
tion, i.e., their functorial part F X can be naturally imbedded in IRcx. In this
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paper we investigate two other approaches to the problem of funetional repre-
sentation of monads. We introduce the classes of strongly Lawson monads and
J-Lawson monads and compare them with the class of Lawson monads.

The paper is arranged in the following manner. In 1we construet the monads
Vs and VI which will play in our paper the role of universal monads. In 2 we
introd uce the notions of strongly Lawson monad and J -Lawson monad and show
that each strongly Lawson (I-Lawson) monad is isomorphic to sorne submonad
of Vs (VI) and in 3 we compare introduced classes with the class of Lawson
monads.

1. Universal monads

By Comp we denote the category of compact Haussdorff spaces (compacta)
y' and continuous maps.

We denote by J the segment [O,lJ. Let X E Comp. We denote by CX the
Banach space of all continuous functions r.p: X ----+ lRwith the usual sup-norm:
11r.p11= sup{Ir.p(x)I I x E X} and by C(X, I) we denote the subspace of C(X)
consisting of all funetions with codomain J. In what follows, all spaces and
maps are assumed to be in Comp except for lR and maps in sets CX with X
compact Hausdorff.

We need sorne definitions concerning monads and algebras. A monad T =

(T, r¡, f1) in a category E consists of an endofunctor T : E ----+ E and natural
transformations r¡ : Idt: ----+ T (unity), f1 : T2 ----+ T (multiplication) satisfying
the relations f1 o Tr¡ = f1 o r¡T =lT and f1 o f1T = f1 o Tf1.

A natural transformation 'lj; : T ----+ T' is called a morphism from a monad
T = (T, r¡, f1) into a monad TI = (T', r¡', f1') if 'lj;or¡ = r¡' and 'lj;of1 = f1' or¡T' oT'lj;.
If all the components of 'lj; are monomorphisms then the monad T is called a
submonad of T' and 'lj; is called a monad embedding.

Let T = (T, r¡, f1) be a monad in a category E. The pair (X,~) is called
a T-algebm if ~ o r¡X = idx and ~ o f1X = ~o T~. Let (X, O, (Y, () be two
T -algebras. A map J : X ----+ Y is called a T -algebras morphism if (oT J = J o~.

The following faet is well-known [6J.

Lemma 1. Let lF= (F, r¡, f1) be a monad in a category S and X is an object of
S. Let J, 9 : (F X, f1) ----+ (Y,~) be lF-algebras morphism with Jo r¡X = 9 o r¡X =

h. Then J = 9 = ~o Fh.

By VIX we denote the power JC(X,I). For a map r.pE C(X, I) we denote
by 7r<por 7r(r.p) the corresponding projection 7r<p: VIX ----+ J. Then any map
J : Z ----+ VIX in Comp is uniquely determined by its projections J<P= 7r<po J
in C(Z, I) for every 'P E (X, I). For each map J : X ----+ Y we define the map
VI J : VIX ----+ VI Y by the formula 7r<po Vd = 7r<poffor r.pE C(Y, I). One can
check that VI is a covariant funetor in the category Comp.
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For <p E CX, by max e (min e) we denote maxxEX <p(x) (minxEx <p(x)).
By V.X we denote the product TIepECX[min <p,max <p], i.e. the set of all maps
(not necessarily continuous) l/ : CX ~ 1Ft which satisfy the condition min <p::;
l/(<p) ::; max sp for each <pE C X.

For a map <pE CX we denote by 7repor 7r(<p)the corresponding projection
7rep: V X ~ 1Ft. Then any map I :Z ~ V X in Comp is uniquely determined
by its projections lep = 7rep° I in CZ for every <p E CX provided only that
[min lep,max lep] e [min ip, max <p]for all <p.

Now, for each map I : X ~ Y define a map V.I : V.X ~ V.Y by the
formula 7rep° V.I = 7repof for <p E CY. Since [min7r(<p ° !),max7r(<p o!)] =
[rnín c o j.max e c j'] e [min o.rnax e], the map V.I is well defined. One can
check that V. is a covariant functor on the category Comp.

Now we shall build the natural transformations h t : Idcomp ~ VI, h. :
I dcomp ~ V. and m t : V¡ V¡ ~ V¡, ms : V. V. ~ V. of units and multiplications
which complete the functors V¡ and V. to the monads V¡ = (V¡, h¡, m¡) and
Vs = (V.,h.,ms) correspondingly.

For a compactum X we define components h¡X and mi X (hsX and msX)
by 7rep° h iX = <pand 7rep° tru X = 7r(7rep)for all <pE C(X, I) (7rep° h.X = sp
and 7repomsX = 7r(7rep)for all <pE CX). The map msX is well defined because
[min 7r(<p),max 7r(<p)]= [min <p,max o].

Proposition 1. The triples V¡ = (V¡,h¡,m¡) and Vs = (V.,h.,ms) form
monads in the category Comp. o
Proof We will prove the proposition only for V¡. For V s the proof is analogous.

Let us check the naturality of h-t and m.], Let 1: X ~ Y be a map. Then we
have 7repoh¡Yo 1= <po1= 7repofoh¡X = 7repoV¡(f)oh¡X and 7repom¡Yo V¡ V¡ 1=
7r(7rep)° V¡V¡f = 7r(7rep°VI!) = 7r(7repof)= 7repof°m¡X = 7rep° V¡I °m.i X. for
each sp E C(X, I). Hence h¡ and m¡ are natural transformation.

The equality m.rX ° h¡V¡X = m.i X ° V¡h¡X = idvIX follows from the next""
two equalities: 7rep° tn.i X ° h¡V¡X = 7r(7rep)° h¡V¡X = 7rep= 7rep° idvIX and ,~
7rep°mq X °V¡h¡X = 7r(7rep)°V¡h¡X = 7r(7rep° h¡X) = 7rep= 7rep° id"IX. ~

The equality mi X ° V¡m¡X = m iX ° m¡V¡X follows from the equality ~.
7rep°m¡X ° V¡m¡X = 7r(7rep)° V¡m¡X = 7r(7rep°m¡X) = 7r(7r(7rep))= 7r(7rep)°
m¡V¡X = 7rep° m.i X. ° m¡V¡X for each <p E C(X,I). The proposition is
proved. O

2. Classes of monads with functional representations

We introduce classes of I-Lawson and strongly Lawson monads in this section
and prove that the monads V¡ and V s are universal in corresponding classes.

Definition 1. A monad IF = (F, 71,J-l) is an I-Lawson monad if there exists
a map ~ : F I ~ I such that the pair (I, O is an IF-algebra and for each
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X E Comp there exists a point-separating family of F-algebras morphisms
{fa; : (FX,f.LX) ----t (1,') I a E A}. (Let us recall that a family of maps
{fa; : X ----t 1 I a EA} is called point-separating if for each pair of distinct
points Xl, x2 E X there exists a E A such that la; (Xl) =1= la; (X2)')
Definition 2. A monad lF = (F, r¡, f.L) is a strongly Lawson monad if for each
tI, t2 E IR with tI :::; t2 there exists a map '[ti hJ : F[h, t21 ----t [tI, t21 such
that the pair ([tl,t2],'[t¡,t2J) is an lF-algebra, for each tI, t2, t3, t4 E IR with
tI :::;t2 :::;t3 :::;t4 the natural embedding j : [t2, t31 ----t [tI, t41 is an F-algebras
morphism and for each X E Comp there exists a point-separating family of
F-algebras morphisms {fa;: (FX,f.LX) ----t ([h(a),t2(a)],'[t¡(a;).t2(a;)J) I a E A}.

Theorem 1. Let lF = (F, r¡, f.L) be a monad. Then there exists a monad em-
bedding l : lF ----t V¡ iff lF is 1-Lawson.

Proof. Sufficiency. Fix a map , : F(1) ----t 1 from the definition of I-Lawson
monad. For X E Comp define a map lX : F X ----t V¡X by the formula 1r<polX =
, o Fep, for sp E C(X,I).

Let us show that l = {LX} : F ----t V¡ is a natural transformation. Let
1 : X ----t Y be a map. Then for each 'lj; E C(Y,I) we have 1r1/Jo Vd o lX =
1r1/JofolX = 'oF('lj;of) = 'oF'lj;oFI = 1r1/JolYoFf. Hence V¡lolX = lYoFI
and l is a natural transformation.

Now we have to show that l is a monad morphism. The equality lo r¡ = h:
follows from the equalities 1r1/JolXor¡X = 'oF'lj;or¡X = 'or¡lo'lj; = 'lj; = 1r1/Joh¡X
for every X E Comp and 'lj; E C(X, I).

For every X E Comp and epE C(X, I) we also have 1r<p«mi X olV X oFlX =
1r(1r<p)oLVXoFlX = 'oF(1r(ep)oFlX = 'circF(1r(ep)olX) = ,0F(~oF(ep)) = 'o
F~oFFep = ~0f.LloFFep = ~oFep0f.LX = 1r<polXof.LX. Hencem¡olV¡oFl = lo p.
and l is a monad morphism.

Finally we have to show that the map lX is injective. Let al, a2 E FX and
al =1= a2· Since lF is an I-Lawson monad, there exists an lF-algebras morphism
1: (FX,f.LX) ----t (1,') for sorne t > O with I(al) =1= l(a2)' Since 1 is an lF-
algebras morphism, we have 1=( by Lemma 1)= ~oF(for¡X) = 1r(for¡X)olX.
Hence 1r(for¡X)olX(ad = I(al) =1= l(a2) = 1r(for¡X)olX(a2).The sufficiency
is proved.

Necessity. Let l : lF ----t V¡ be a monad embedding. Define a map ~ : F 1 ----t 1
by the formula' = 1r(id¡) o lI. Then we have ~ o r¡l = 1r(id¡) o II o r¡l =
1r(id¡) o hl = id¡ and ~ o f.LI = 1r(id¡) o II o f.LI = 1r(id¡) o mIl o LV¡1 o FlI =
1r(1r(id¡)) o LVII o FlI = 1r(id¡ o1r(id¡)) o LV¡lo FlI = 1r(id¡) o V¡ (1r(id¡)) o LV¡lo
FlI = 1r(id¡) o II o F(1r(id¡) o lI) = ~o F'. Hence (1,O is an lF-algebra.

Finally one can check that for each X E Comp the family {(1r<po LX) lepE
CX} is a point separating family of lF-algebras morphisms. The theorem is
proved. O

The proof of the following theorem is analogous to the previous one.



ON THE STRONGLY LAWSON AND I-LAWSON MONADS 73

Theorem 2. Let IF= (F, n, fl) be a monad. Then there exists a monad em-
bedding l : IF-+ V s iff IF is strongly Lawson.

3. Connections between the introduced classes of monads

In this section we discuse sorne connections between the classes of strongly
Lawson, I-Lawson and Lawson monads. We need the definition of Lawson
monad and the construction of monad V which is universal for the class of
Lawson monads. For any real t 2:: O,wedenote by It the segment [-t, t]. By VX
we denote the product D<¡?ECX I!!<¡?!!,i.e. the set of all mappings (not necessarily
continuous) v : CX -+ IRwhich satisfy the condition -II'PII :::; v('P) :::; II'PII for
each 'P E CX.

Now, for each map f : X -+ Y define a map V f : V X -+ VY by the formula
1T<¡?o Vf = 1T<¡?offor 'P E CY.

For a compactum X we define components hX and mX of natural transfor-
mations h: IComptoV and m: VV -+ V by 1T<¡?ohX = 'P and 1T<¡?omX = 1T(1T<¡?)
for all 'P E C(X). It is proved in [1] that the triple V = (V, h, m) forms a
monad.

If h, t2 are real numbers with O :::;tI :::; t2, by ji~ we denote the natural
embedding ji~ : t., -+ It2•

A monad IF= (F, r¡, fl) is called Lawson if for each t 2:: Othere exists a map
~t : F I¡ -+ It such that the pair u; ~t) is an IF-algebra, for each tI, t2 E IR
with O :::;tI :::; t2 the embedding ji: is an IF-algebras morphism and for each
X E Comp there exists a point-separating family of IF-algebras morphisms
{ja; : (FX,flX) -+ (It(a;),~t(a;») I a E A}[1].

It is proved in [1] that there exists a monad embedding l : IF -+ V iff IF is
Lawson.

It is evidently that each strongly Lawson monad is a Lawson monad. Since
the functor V does not preserve one-point spaces, V can not be represented as
a submonad of Vs. Hence V is not a strongly Lawson monad.

Now we are going to prove that V is not an I-Lawson monad. For t 2:: O
define the map ~t : V It -+ It by the formula ~t = 1T(id1t).

Lemma 2. The pair (It, ~t) is a V-algebra such that 1T,¡;= ~t o V(1/I) for each
X E Comp and 1/1 E C(X, It).

Proof. Evidently that ~t o nl¡ = idI,. We also have ~t o V(~t) = 1T(id1t) o
V(1T(idI,)) = 1T(1T(idI,)) = 1T(idI,) o p.I¡ = ~t o fll¡. Hence the pair (It,~t) is a
V-algebra.

Let X E Comp and 1/1 E C(X, It). It follows from Lemma 1 that it is enough
to prove that 1T,¡;: (VX,flX) --> (lt,~t) is an V-algebras morphism. The next
equalities finish the proofofthe lemma: ~tOV(1T,¡;) = 1T(idI,)oV(1T,¡;) = 1T(1T,¡;)=
~o~. O
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Lemma 3. Each V-algebra (I,~) is isomorphic to (lt, ~t) for sorne t > O.

Proof. Let us consider the set M = {f : 1 -+ I, I t > O and f : (I,~) -+ (lt, ~t)
is a V-algebras morphism }. Assume that f(O) = f(l) for all f E M. Let us
consider two subsets Al,A2 e e(vI) defined as follows: Al = {7r,¡,I 'IjJE el}
and A2 = {'P0~ I 'P E el}.

Consider any cJ? E Al n A2. Then we have that 7r,¡,= cJ? = 'P o ~ for sorne
'IjJ, 'P E el. Using the previous equality for the points from hl(I), we obtain
that 'P = 'IjJ. We have 7rrp= 'P o ~ or, by Lemma 2, ~t o V('P) = 'P o~. Hence
'P E M and we obtain that Al n A2 = {7rrpI 'P E M} = {'P o ~ I 'P E M}. Then
we have by our assumption that cJ?(hl(O)) = cJ?(hl(l)) for each cJ? E Al n A2

and we can define W E VVI such that 7r(7r,¡,)(W) = 7r,¡,(hl(O)) = 'IjJ(0) and
7r('IjJo ~)(W) = 'IjJo ~(hl(l)) = 'IjJ(1) for each 'IjJE el. We obtain ~(hl(O)) =
~ oml(W) = ~oV~(W) = ~(hl(l)). This is a contradiction with the properties
of the map ~ and our assumption is falseo Hence there exists a V-algebras
morphism g: (l,~) -+ (It,~t) with g(O) -=f. g(l). We can suppose that t = IlglI.
Let us show that 9 is a homeomorphism.

Let a E lt. Consider u E VI such that 7r9 (v) = a. Then we have a =
7rg(v) = 7r(idIt og)(v) = 7r(idI,) o Vg(v) = ~t o Vg(v) = 9 o ~(v). Hence gis a
surjective map.

Consider b, e E 1 with b -=f. C. For each t E 1 consider Vt E VI defined by
Vt = (1 - t)hl(O) + thl(l). We have that ~(vo) = O and ~(V1) = 1. There exist
ll, l2 E 1 with ~(vld = b and ~(VI2) = C. Then we have g(b) = 9 o ~(Vll) =
~t o Vg(V1J = ~t((l - ll)hlt(g(O)) + llhlt(g(l))) = (1 - lt)g(O) + llg(1) -=f.
(since lt -=f. l2 and g(O) -=f. g(l)) -=f. (1 - l2)g(0) + l2g(1) = ~t((1 -l2)hlt(g(0)) +
l2hlt(g(1))) = ~t o Vg(V12) = 9 o ~(V1J = g(b). Hence gis a homeomorphism
and the lemma is proved. O

Theorem 3. The monad V is not I-Lawson.

Proof. Assume the contrary. Let ~ : VI -+ 1 be a map from the defini-
tion of I-Lawson monad. By Lemma 3 there exists a V-algebra isomorphism
9 : (I,~) -+ (It, ~t) for sorne t > O.

Consider any al, a2 E VI such that al -=f. a2 but 7r,¡,(ad = 7r,¡,(a2) for each
'IjJE el with 11'IjJ11 s; t. There exists a V-algebras morphism f : (VI, p1) -+ (I, O
such that f(a¡) -=f. f(a2)' Then we have that 9 o f : (VI, p1) -+ (It, ~¡) is a
V-algebras morphism with 9 o f(a1) -=f. 9 o f(a2)' Put 'IjJ= 9 o f o hl. By
Lemma 1 we have 9 o f = ~t o V'IjJ and ~t o V'IjJ(a1) -=f. ~t o V'IjJ(a2). On the other
hand it follows from Lemma 3 that ~t o V'IjJ(a1) = 7r,¡,(ad = (since 11'ljJ11 S; t)
= 7r,¡,(a2)= ~t o V'IjJ(a2). Hence we obtain a contradiction and the theorem is
proved. O

Now we are going to prove that VI is not a Lawson monad, thus the classes
of Lawson and I-Lawson monads are incomparable.
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Define the map ~o : V¡J -7 J by the formula ~o = 7r(id¡). The proofs of two
following lemmas are similar to the proofs of Lemmas 2 and 3 correspondly.

Lernrna 4. The pair (J, ~o) is a V¡-algebra such that 7r'" = ~oo V¡('l/J) for each
X E Comp and 'l/J E C(X, 1).

Lernrna 5. Each V¡-algebra (J, O is isomorphic to (1, ~o)·

Lernrna 6. Let (X,~) be aV ¡-algebra and f : (X,~) -7 (J, ~o) be a morphism.
Then f is a surjective map.

Proof. Consider any t E J. Choose v E V¡X such that 7r¡(v) = t. Then we
have f o ~(v) = ~o o Vf(v) = 7r(id¡) o Vf(v) = 7r¡(v) = t. The lemma is
proved. D

Theorern 4. The monad V¡ is not Lawson.

Proof. Assume the contrary. Consider a family (lt, ~t) of V¡-algebras satisfying
the definition of a Lawson monad. Choose any tI, t2 ~ Owith tI < t2. The
algebra (Jt2, ~t2) is isomorphic to (J, ~o) by Lemma 6. Since the inclusionj:~: le, -7 Jt2 is a V¡-algebras morphism, there exists a morphism from (1t¡, ~t¡)
to (1, ~o) which is not onto. We obtain a contradiction with Lemma 6 and the
theorem is proved. D

The auihor is thankful to T.Banakh [or stimulating discussions.
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