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TEORIA DEL CONTROL (*)

ALFONSO TOCANCIPA

Prefacio

Dar una idea, en pocas lineas, sobre la teoria del control no es tarea facil .
Me propongo simplemente sugerir algunos aspectos de ésta, tratar un par de ejem-

plos y por ultimo, presentar una demostracion del llamado principio del maximo

de Pontryagin.

El principio del maximo, establecido en 1956 por el matematico ruso L. Pon-
tryagin, fue conocido a través de una serie de articulos excepcionalmente bien
escritos por L. Rozonoer en 1959. Es muy semejante al ‘‘principio de minima ac-

cion’’ de la mecanica analitica, como lo observara quien tenga alguna familiari-

dad con el formalismo de Hamilton y Jacobi.

La demostracion del principio que aqui se presenta, ha sido tomada de ‘‘ac-

tes du congres d’ automatique théorique’’ reunido en Sanclay (Francia) en Mayo

de 1965.

("
(*) Texto de la conferencia dictada por el autor en el V Coloquio Colombiano de Matematicas, Mede-

Iin 1975, N, del k.
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1. Introduccion.

No es del todo irrazonable sugerir que el hombre ha girado, en buena parte, al-
rededor de la idea de controlar a lo largo de toda su historia. Probablemente,mu -
cho antes de la aparicién de la historia escrita ya se conocian rudimentarios me -
canismos de control (de riego, por ejemplo). Se investiga y se experimenta con el
anhelo de conocer y asi establecer medios para influenciar o controlar procesos

de la mas variada naturaleza. No es otro el objetivo final de la ciencia.

La invencién del regulador automatico de velocidad de las maquinas a vapor
de James Watt, hacia mediados del siglo XVIII, es citada como la primera apari -
cion del control automatico. A partir de entonces, el control automatico hace al-
gunos progresos. En 1868 es presentado el primer tratamiento matematico de un
mecanismo de control ‘‘On governors’’. Su autor J. C. Maxwell es bien conocido

por su trabajo en teoria de campos.

En este siglo, durante los afios veinte y treinta, hubo importantes desarrollos
en areas como la teoria de circuitos, la electronica y el control de procesos qui -
micos. En 1934 H. L. Hazen publica un libro titulado ‘‘Theory of Servomechanism’’
obra que puede ser considerada como el primer esfuerzo serio por el desarrollo de
una teoria general del control automatico. Una publicacion que ha de ser conside-
rada como fundamental, por el establecimiento de modelos matematicos y analo -
gias de los procesos de control, es ‘‘Mathematics of Surge Vessel and Automatic

Control ’’ de C. E. Mason, escrita en 1941.

E] establecimiento definitivo del control como ciencia se puede situar durante
la segunda guerra mundial. Resultado natural del esfuerzo por desarrollar nue -
vos y mas precisos mecanismos que asegurasen la superioridad técnica. Las ca-
racteristicas dinamicas de los dispositivos de ‘‘alta efectividad’' propuestos en-
tonces , hicieron necesaria la creacién de una teoria completamente nueva. Sus
caracteristicas se hicieron conocidas una vez que los velos del secreto fueron

levantados después de 1945. Los afios entre 1945 y 1950 se caracterizaron por el
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esfuerzo para consolidar los avances recién logrados.

Viene luego la apertura hacia nuevas areas de aplicacién ; la economia, la
biologia y la navegacion aeroespacial entre ellas. No se puede omitir, por supues-
to, la entrada en escena de los computadores y de las técnicas de simulacion. Al
punto que hoy no se puede concebir estudiar o investigar en el area del control

sin el auxilio de adecuados servicios de simulacion y computacion.

El enorme numero de libros y monografias publicado sobre el tema del control,
impide hacer siquiera un breve sumario sobre el estado de cosas. Cabe, sin em -
bargo, mencionar que las iniciativas de investigacion han sido, en su mayoria,to-
madas por matematicos aplicados. Algo muy explicable si se tiene en cuenta que
la teoria de control moderna, ofrece numerosos problemas que hacen las delicias
del matematico. Asi se han logrado preciosos tratamientos del tema y el desarro-
llo de un lenguaje formal apropiado, pero como resultado, muy lamentable por

cierto, se ha hecho dificilmente accequible para los ingenieros de control.

2. Sistemas de Control.

Uno de los aspectos mas atractivos de la teoria del control es su aplicabili -
dad a procesos de tipo general. Entenderemos por proceso algin movimiento o
accion que tenga lugar a medida que el tiempo transcurre. En general tendremos
a considerar una ‘“‘planta’’ o ‘‘sistema’’, cuyo estado se describe por un punto

en un espacio usualmente llamado espacio de fase.

Sobre el sistema se formulara una estructura que permitira, una vez se espe-
cifique una ‘‘politica de control’’, determinar el curso posterior del proceso en
base al conocimiento del estado previo del sistema. Dicha estructura sera llama-
da la dindmica. Una politica de control, o simplemente un control que determina
el comportamiento dinamico pertenecera a un conjunto dado de funciones del
tiempo. Conjunto cuya naturaleza no es preciso definir ain. Sin embargo insisti -

remos en que, a cada punto del espacio de fase corresponda una ‘‘trayectoria’’
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bien determinada en dicho espacio, para cada control admisible.

Otro elemento requerido en la formulacion del problema general de control es
un objetivo . Esto es, la especificacion de ciertos requisitos que el proceso ha
de satisfacer a través de la adecuada escogencia de un control. Un objetivo sue-
lz 'ser un subconjunto del espacio de fase, conjunto que en ocasiones varia con

el tiempo.

Surge entonces una inquietud muy natural ; ; son los medios disponibles sufi-
cientes para lograr que el proceso alcance el objetivo especificado ? Si tales
medios existen, la estructura de control ha sido apropiadamente formulada. Con -
sidérese el conjunto de todos los estados alcanzables, a partir de un cierto es-
tado, mediante la aplicacion de las diferentes politicas de control disponibles .
Dicho conjunto se llama conjunto alcanzable del proceso, relativo al estado ini-
cial especifico. Si un estado del conjunto objetivo se encuentra en el conjunto

alcanzable, relativo al estado presente, el proceso es controlable.

Usualmente un proceso es controlable en varias formas. Dentro del conjunto
de politicas de control que satisfacen un objetivo, es deseable escoger la ‘‘me -
jor’’ con respecto a un criterio de comportamiento. Un problema de control opti -
mo pretende seleccionar el mejor control, con respecto a un criterio dado, entre

aquellos que hacen satisfacer un objetivo al proceso.
Ejemplo 1.

Considérese un tranvia que ha de ser llevado a una determinada estacion. Su-
péngase que estd dotado de dos motores iguales que actian en sentidos contra -

rios y que son utilizados tanto para acelerar como para frenar.

Dentro de la formulacién del problema general de control podemos identificar
al tranvia con este sistema. Nos interesa su posicion y su velocidad con respec-
to a la estacion que ha de ser llevado, luego describiremos su estado por la pa-
reja (x,v) ¢ R? distancia a la estacién y velocidad respectivamente.
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Si convenimos despreciar las fuerzas de rozamiento y demas detalles, la se-

gunda ley de Newton nos permite formular la dindmica del sistema

donde # esla fuerza ejercida por los motores. Esta fuerza, naturalmente, sera
limitada, asumamos entonces que -1 < u < 1. Luego resulta muy natural es-
coger como conjunto de controles admisibles a las funciones continuas a trozos
definidos sobre un intervalo cualquiera | 1.t 1 wu=u(t) te irfo,ll | tales que

-1 < u < 1. Finalmente, es claro que el objetivo del prdblema es {(0,0)}

Supongamos que la tnica limitacion es la duracién de viaje. En esas condi -

ciones, el conjunto alcanzable relativo al estado inicial (so,no) sera el rectan-

gulo :

s ‘o 7'-'1‘2//2‘ s < s _tuv 7"'1‘2/2

donde 1 es ta maxima duracion de viaje permitida.

Asi, el proceso es controlable si y soio si el punto (0,0) esta en dicho rec-

tangulo.

Av Proceso Controlable

(.S°Jvo ) a( %-*. VOT’ So)

Conjunto Alcanzable




El problema de escoger el mejor control segun un criterio de comportamiento
dado ofrece varios aspectos interesantes. A la teoria del control 6ptimo corres -
ponde, entre otras, estudiar bajo qué condiciones un proceso cuenta con un con-
trol 6ptimo. Se conocen numerosas proposiciones que garantizan dicha existen -
cia. También podriamos preguntarnos : ¢ Si existe un control 6ptimo, qué propie-
dades debe satisfacer ? El principio del maximo de Pontryagin es precisamente

una respuesta a este tipo de interrogante.

Veamos como influyen las condiciones de un problema dado en la existencia
de un control 6ptimo. Regresemos a nuestro ejemplo del tranvia; aqui podriamos
pensar en varios criterios diferentes de comportamiento. Tomemos como criterio
la cantidad de combustible utilizada en el viaje, por ejemplo. Para medir la can-

tidad de combustible consumido emplearemos la funcional

b \‘Iiu(f)\ dt (\’l-’-ctt) > 0)

donde (1) es el control que llevara al tranvia a la estacion. Es claro que el me-

jor control sera el que menos combustible gaste.

Después de analizar un poco el problema llegamos a la siguiente conclusion :

i) Si el estado inicial es (xo,n()) y x,v,> 0 con .\'O# 0, no existe opti-

mo.
ii) Perosi x,v < 0, cualquier control que frene al tranvia justo en
x,=0 sin acelerar, es 6ptimo.

Otra funcional que podriamos tratar de minimizar podria ser :

g
F 8\ 2 \ 3 >
I Ny ut(1) dt (Ay=ctec 2 0).

0
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Esta corresponde a una estimacion del desgaste sufrido por el equipo debido
a las aceleradas o a las frenadas. En este caso tendremos que, a partir de
(xo y Up) ¥ (0,0) , dado un control, que lleve al tranvia a la estacién, siempre

habrd uno mejor.

Pero si utilizamos como criterio de comportamiento la cantidad de tiempo em-

pleado en ir de (x,v,) a (0,0) es decir:

el resultado es bien diferente. La estrategia a seguir seria acelerar y luego fre-

nar al maximo, es decir, l u(t) | =1. Por lo tanto, siempre tendremos un control
optimo unico.

Debemos agregar que resultaria quizas mas natural emplear como funcional
de ‘“‘costo’’ una que pondere los tres factores. Una funcional de éstas tomaria
la forma :

.
Ot w |ty Wt ) dr Ao tAgt Ay =1
PRAT R 42 T B St

!
4]

Claro, aqui la intuicién ya no basta para hacer afirmaciones sobre la optima-

lidad de un control, se requiere desarrollar un instrumental matematico apropiado.

Ejemplo 2. Estudiaremos el caso de una compaiiia que suministra energia
eléctrica a un gran nimero de usuarios. Su sistema consiste de una red de distri-

bucién a la que suministran energia » generadores GG, ..., G, .

n
El estado del sistema sera descrito por el vector (x;, Xp,...,%,) € R don-

de x, representa la potencia que el generador G, esta entregando.

El sistema es controlado por la potencia suministrada al generador k para

que opere u, . Debido al tipo de combustible usado, a las caracteristicas de di-
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sefio o a la longitud de las lineas de transmision, el costo de operacion di
fiere de un generador al otro. La potencia #, que ha de suministrarse al gene -

rador k podemos considerarla funcion de la potencia eléctrica x, que suminis-

tra ”k:”k(xk) k=1 ..., n.

[
l
|
|
l
L

— — — — — — — — — — S—

La energia eléctrica en grandes cantidades no es almacenable, luego la pro-
duccién debe igualar al consumo en cada momento. Si P(#) representa la poten -

cia demandada en el instante ¢, el objetivo de proceso se escribe :

n

2 x.(1) = P(1).
i=1 *?

Sea ¢, el valor del kilowatio-hora de suministro del generador & . Entonces
el valor de la energia eléctrica entregada durante el intervalo trto, 1] I por el
generador k£ es:

d
' (/e uy (.\'k (1) dt k=1, sus" M
!
]
Luego la compaiia eléctrica desea entregar la potencia requerida en cada
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instante, de manera que minimice la funcional :

"1

) n

AR 2 i () ) dr.
0

H > . n
El objetivo del sistema es, en este caso, una subvariedad lineal de R que
n

es funcionde t 2 x,(1) = P(1) .
k=1"k

Si admitimos que la rapidez de cambio en la demanda es muy inferior a la ra-
pidez conque se pueden operar los generadores, el problema admite una solucién
relativamente simple. Podemos considerar a P(#) como funcion escalonada de
t. Asi tendremos una trayectoria 6ptima (x4(1), ..., x,(t)) que es funcién cons-

tante a trozos de .

Sea th= T, <y < wse 7, = t; una particion de ”o"I] tal que
P(1) sea constante en cada subintervalo (de la particién) | g '/'j] * De esta
manera la expresion de la funcional de costo se reduce a :

1] '
2 | (lr('(t))dt'-'s\Acu(x])('-“ )
i i i R AT v it Rl NN
t 7"
]
. U j S . j
Luego si escogemos £ = (x 1o X, ) de tal manera que 2 c; up(x; ) sea

i .
minimo (f = I,..., n) y 2 \’/ = P(1) "j-I St 3 ] el control sera optimo .
i

s 35 - ] -
Se trata en resumen de minimizar una funcion f() = 2 c;u; (x; ) son X
1

4 7 1 . G
restringido por g(®) = > x.- P = 0., Si u; es funcién continuamente derivable
24 P i

1
de x;, el método de los multiplicadores de Lagrange nos dice que sobre ese

minimo V/ =) Vg, es decir

d d
(¢ 2,... &y o 18 T I L
d.r] d.\'”
Ahora G %‘i representa el costo adicional de produccion de un 4 4 en el
xk
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generador k. Luego la estrategia a seguir por la compafiia consiste en redistri-
buir la potencia entre los generadores de tal manera que los costos incrementales

sean iguales.

th

Curvas de nivel de
CyUfX) +Cyuf Xy)

Cohdicidn
. . J.
- x]+ X3= P

3. Algunos aspectos geométricos del control éptimo.

Consideremos un sistema cuyo estado es representado por un punto en R" :
Recordemos que la evolucién T (t)de las variables de estado, en cuanto el tiem-
po transcurre, es regido por una regla perteneciente a un conjunto dado de re-
glas o politicas de control. Asi, a cada regla r corresponde un trayecto p des-

. n
crito por ¥(t) en R"” cuando ¢ transcurre.

Nos interesamos por el problema de transferir el sistema de un estado ¥ cual-
quiera a un punto ?f dado del espacio de fase. En general, algunos controles
. - . o - .
transferiran el sistema de X a Xjy aotros corresponden trayectorias que nunca

pasan por '.{'f ;

Tomemos ahora una funcicnal V que asocie a cada trayecto p, correspon -
diente a un control admisible r, un nimero real V(¥ ?/ . p). Este nimero sera
llamado costo de la transferencia. Diremos que la regla 7* es dptima si el tra-
yecto correspondiente p* sale de ¥, termina en .‘\"f y V(Sc“,?f/, P*) < V(,\",Tf, p)

para cualquier otro control admisible 7.
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Un control 6ptimo no necesariamente es dnico, sin embargo el costo minimo

si lo es. En consecuencia se puede escribir :

* *

v"(w,y/) = v (&

=b

de manera que se destaque la dependencia del costo minimo de ¥ y ?f unica -
mente.
Llamaremos E al conjunto de puntos % ¢ IR” a partir de los cuales es posi-

ble alcanzar ?/-

Al conjunto de puntos ¥ que pueden ser llevados a ‘:?f por una trayectoria Gp-

tima lo denotaremos E".

Principio de Optimalidad. Sea p una trayectoriade ¥ a ?f. Si # esun

punto sobre p , resulta razonable suponer que :

HoovE L - v R, ) vra?l-,?/,p)

(aditividad de la funcional de costo)

ii) lim V(fi , Y/ ,p) =0
?l "*?f

Lema 1: Sean p* una trayectoria 6ptima de ® a ?/ y ., ‘!”] dos pun-
tos sobre p*. Entonces p*, la trayectoria p* restringida a ir de X a "f]- -
es Optima. ¥
La demostracién de este lema es muy sencilla, pero el lema es de gran utili -

dad. Es conocido como el principio de optimalidad. En otras palabras dice que
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todo segmento de una trayectoria éptima es también una trayectoria 6ptima. Permi-

te resolver un problema de control 6ptimo por trozos, como implicitamente fue he-
cho en el ejemplo 2.

+
Trayectoria en el espacio de fase aumentado. Al espacio R” ! de puntos
3 = (xo,?) lo llamaremos espacio de fase aumentado. Consideremos la curva [’

en R"'1 ge puntos z’. = (xoi,‘koi) asociada a un trayecto p en R” defini-
da

F={2%:2%p y T vl R, p)-c)

donde C es una constante. La proyeccion a lo largo del eje x, sobre R” de

[ esla trayectoria P. La curva correspondiente a una trayectoria 6ptima la de-

a %
notaremos |

- .
) [ -1
s e &

. * . . *
pxtV(EL ¥y =C y ¥eP'}
Definamos sobre E° la funcién F(®) = V*(?’, ?f) . La ecuacién x,tF(®) =
C ( C . cte) defineen R x E" una variedad 2 c¢ de dimensién » de una sola

hoja. El lugar geométrico Sc de los puntos % ¢ £" tales que F®) = C es, en

general, una variedad de dimension #»-1 .
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Cuando el valor de C cambia obtenemos dos familias de variedades :

{ Sc } las variedades de isocosto éptimo

{3c } las variedades limite.

Sc no es otra cosa que el conjunto de puntos de E cuyo costo minimo de
transférencia a ’f es C . Las variedades >c se obtienen mediante translacio -
nes paralelas al eje x, de una de ellas. Ademas toda trayectoria 6ptima [ * que
encuentre a la recta R x T/ en el punto (c,'.‘t/) ., esta completamente conteni-

daen 2c. Luego tenemos el

Lema 2. Las variedades limite > c¢ son los lugares geométricos de las tra-

- . T *
yectorias optimas |

Es claro que una trayectoria 6ptima que tenga un punto sobre una variedad

>. ¢ , esta completamente contenida en esa variedad.

Una variedad 2> ¢ separa IR x £ en dos regiones abiertas /2 ¢ (sobre

2.¢) y B/ 2c (bajo 2 c) definidas

$/5c=1{2:2 >C-F¥ ., %cE" )}

]
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*

B/2c={2:7 <C-F®.,TcE }
o

Un punto & en $/2c (en B/ 2 c) serd llamado puntos de tipo § (tipo B)

con respectoa 2 c.

Tenemos, en fin, la proposicién fundamental .

Teorema 1. Una trayectoria [' que salga de un punto de > c , no puede te-

ner puntos de tipo B con respectoa 2 c.

Este teorema expresa el caracter de frontera de las variedades 2 . Una va-
riedad 2 pertenece a la frontera de la region que contiene los puntos sobre tra-

yectorias salidas de 2.

- - £ <
Dindmica de la forma ®* = f(®*, %) . Sea Tl =(f;.fp,---.f,) un campo
vectorial continuo definido sobre IR” x IR™ , que supondremos continuamente
diferenciable con respecto a x . Consideremos de ahora en adelante los siste -

mas cuya dinamica es de la forma :

() = [, (R(), ®0)

Aqui 7 = (uy,...,u,) representa la variable de control. Sea U un subconjunto
cerrado de R™ , tomaremos como conjunto de controles (! todas las funciones
?(1) continuas a trozos que toman valores en U y estan definidas sobre un in -

tervalo [to.tl} cualquiera.

Dadas estas condicicnes podemos afirmar que, para un control especifico

® = M1), el problema de valor inicial
=/ T, ) =7,

tiene solucidn unica cualquiera que sea ¥,* . Luego se trata de una estructura

dinamica apropiadamente definida.



Funcional de costo en forma de integral. Sea /., una funcién continua de
IR" « R™ en R . Entonces, la integral
4

[ @@, %) dt

‘o

asigna a cada trayectoria ¥(#) que sigue un control #%(#) un real dnico. Es obvio

que el principio de optimalidad vale cuando la funcional de costo tiene forma de

integral.

La coordenada x_ sobre una trayectoria [ en el espacio de fase aumenta -
do satisface
s
- c. |
x, () =C- | [ (x(1), M) ) dt
t

Luego

dx() i ik
A = 1 @), u))

Relacion que nos permite escribir :
E=/(Z,2)

Donde /(Z,7) = (f, . %), 7, (*,7)). Nétese que 7 es independiente de

X .
0

Hamiltoniano del sistema. Supongamos que la funcion /, tenga derivadas

parciales continuas con respecto a Npveos X, Sea

A) - DT | ult) € ()

(AR (1), B(1) )



donde Dsf= ( fide

e ) 0<i.j< n esla matriz Jacobiana de 7 con respec-
to a E y 7
Consideremos ahora el sistema de ecuaciones lineales
P=-ATw I

donde ff} representa un vector columna con n»+t1 componentes. El sistema tiene

-
solucién dnica para todo problema de valor inicial ¢ 1,3 = ‘#0 La solucion
puede escribirse

P-= E_ 17,

E_AT(I) es una matriz no singular de orden (n11) x (n+ 1) paratodo ¢ en
e, 1]
Sea & (1) una trayectoria en an” correspondiente a un control (). Defi-
nimos

e

HP.2)=<P.T>=357 f,@a)
1

7

H es llamado el hamiltoniano del sistema, 17 (1) vy {?(t) satisfacen
TW=veH(}D, T)
I {CER M TS
Podemos ahora enunciar el teorema del maximo de Pontryagin.

Teorema 2. Si T(t) es un control ptimo, entonces existe ? tal que
* ’
'\ﬁo(to) =¢O(t) <o, H(J.Z) < 0 para toda trayectoriay H(7,Z ) es idén-

*
ticamente cero a lo largo de toda la trayectoria Sptima correspondiente & (1) .
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= -~
La condicion 1/ (z,) < 0 exige que /' (1) apunte hacia la region B/> que

corresponde a la (superficie) variedad en la que se encuentra |’ Tenemos que
)

Por otra parte, el vec -

Yy (t,) = ), (t) ¥t porque o - g f=0L, b, "
24 0 x; )
tor £ (t) es en todo punto tangex{te a la trayectoria |, luego la relacién
E — -
H(\/(1), £(t)) < 0 significa que el dngulo entre la trayectoriay /(1) es
cuando menos recto. Para que la trayectoria sea 6ptima el angulo ha de ser

siempre el minimo de 77/2.

Xo

2,)?‘) Xy

n

t
g { X

J

Xy

Demostracion. Recordemos la ecuacion que define > ¢

x 1t F(x) = C F(x) = V(.\',.\'/)

7]

Supongamos, ademas que I’ es diferenciable con respecto a ¥, esto solo con

el objeto de simplificar un poco la demostracion.

Sea entonces u(#) t, < 1< t; un control 6ptimo que lleva ¥, a X . Sea
* -
[ la trayectoria correspondiente en > ¢ descrita por el punto & (7).

p- i e
Consideremos un camino regular 7/, (7) en 5 ¢ con 7 como parametro) que
0

pase por = (1) para 7=0. Los puntos del camino 71; (7) son llevados por el
o
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control #*(#), a puntos sobre un camino en E* x IR regular también. En vir -
tud del principio de optimalidad y del teorema 1 podemos asegurar que 7}, (0) -

& 0 y en general 7,(7) €2 U s/Zc

Escribamos : '77,(7) # -77,(0) =79 (2) +0(7) (¢, 7). La funcién h(t, 7)
es continua y tiene derivada parcial continua con respecto a . El vector Ply)=

Z’ﬁ (0) es tangente a 77',(7) en £ (1).
T

Los vectores (t,) , tangentes a las diferentes trayectorias regulares en
> ¢ quepasen por & (1,), forman la variedad lineal de dimensién #» T ((*’Ty(to))

tangente a 2. ¢ en el punto ‘?(to ).

X

(-]

Por ser [ diferenciable con respecto a & podemos escribir
76 (1) 7 W)= T, (0,55 0) = T (A0 + ([T €))

EI:’-"1(“55(1).'*7’(1))"0 [7-0]

Aproximacién de Taylor de primer orden. A(t) es D .- f( 71 0), u"(t)) la

matriz Jacobiana f con respecto a
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Dicha relacion nos permite concluir que T (1) satisface la ecuacién lineal
-~ — - ik
© (1) = A1) 9 (1) VAL N
cuya solucion existe, es unica y podemos escribir

Q)= F (1) ¢
A 0

La matriz F 4 (#) define una transformacién lineal no singular de R"! en

R”'! . Por lo tanto la transformada de Tg,. ( = (t,)) por F4(t) es tambien

una variedad de dimension » .

Xo

: \S\’frﬁ‘m)
X2

Re

[Z0)
TEEE'(Q

Xy

b

Como ",,(0) = ¢

estanen 2 c U S/ 2> ¢ podemos concluir que

(1) y puesto que, en virtud del teorema 1, los puntos de 7,7,(7)

5 . (ZT ) ) E

" aa .
La transformada por F 4(1) de la variedad tangente en & (7)) es la variedad

tangente en 5 (1) .
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Ahora es bien sabido que las soluciones de los sistemas D =A() F (1) y
B

Yy = - AT kz.(t) satisfacen :

<TW; Qu)>=< (/T(,O ), 0 (t,) > = Ctc.

e

Luego si escogemos ' (0) normal a o *(to ) ), Y (1) sera siempre nor-
mala Ty (& (1) ). Ademds sabemos que el vector f( ‘.‘7:*(1) L u (D)) es tangen-

te a f'(t) , asi que :

<YW EW>=HYW; EW)=o0

2
Empleemos nuevamente el teorema 1 que nos cuenta que para un control (1),
no necesariamente 6ptimo, el vector = (1) = f( (1), a(t) ) no puede apuntar ha-

cia la region B/2 c , luego :

ST HEM, a1))>=H(D @), E())< 0

—

si pedimos que /' (0) apunte hacia B/>. c.



