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Nueva Serie, Volumen XIII No. 2 (2006), pp. 100–110

IGUSA’S LOCAL ZETA FUNCTIONS OF THE
DU VAL-KLEIN SINGULARITIES
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Abstract. In this note we calculate Igusa’s zeta functions associated to

the Du Val-Klein singularities by using the stationary phase formula due

to Igusa.
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Resumen. En este art́ıculo calculamos funciones zeta de Igusa asociadas

a las singularidades de Du Val-Klein utilizando la fórmula de fase esta-

cionaria debida a Igusa.
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Klein, fórmula de fase estacionaria.

2000 Mathematics Subject Classification: 12E12

1. Introduction

Let K be a non-archimedean local field of arbitrary characteristic. Let OK

be the ring of integers of K and PK its maximal ideal. Let π be a fixed
uniformizing parameter of K, i.e. PK = πOK , and let the residue field of
K, i.e. OK/PK , be Fq, the finite field with q = pr elements. Let υ denote
the valuation of K such that υ(π) = 1. For x ∈ K×, let |x|K = q−υ(x) and
|0|K = 0. Let f(x) ∈ OK [x], x = (x1, . . . , xn) be a nonconstant polynomial.
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To these data one associates Igusa’s local zeta function,

Z (f, s) :=
∫
On

K

|f(x)|sK |dx|, s ∈ C, Re(s) > 0,

where |dx| denotes the Haar measure on Kn, normalized such that On
K has

measure 1. These local zeta functions were introduced by Weil and their basic
properties for general f were first studied by Igusa [7] (see also [9]). If the
char(K) > 0, the rationality of Z (f, s) is still an open problem. Zúñiga-Galindo
showed the rationality of Z (f, s) in the case in which f is a non-degenerate
polynomial with respect to its Newton polyhedron ([14], [13], see also [12]).
Igusa has showed the rationality of the local zeta function associated with
several prehomogeneous vector spaces by using the stationary phase formula, a
method that works in arbitrary characteristic [9], [8, and references therein].

Igusa’s local zeta functions are related to the number of solutions of con-
gruences modulo πmOK and to exponential sums modulo πmOK (see e.g. [6],
[9]), more precisely, if

Nm = Card
{
x ∈

(
OK/πmOK

)n | f(x) ≡ 0 mod πmOK

}
,

and P(t) is the Poincaré series P(t) =
∑∞

m=0 Nm

(
q−nt

)m, where N0 = 1, then

P(t) =
1− tZ (f, s)

1− t
,

where t = q−s [9, Theorem 8.2.2]. We might mention that the Poincaré series
of f(x) was introduced and its rationality was conjectured by Borevich and
Shafarevich [4].

In this paper, we compute explicitly the Igusa’s zeta functions corresponding
to the Du Val-Klein singularities (see Theorems 4, 5, 6 and 7)

Type Equation

E6 x4 + y3 + z2 = 0

E7 x3y + y3 + z2 = 0

E8 x5 + y3 + z2 = 0

Ar xr+1 − yz = 0, r ∈ N

Dr xr−1 − xy2 + z2 = 0, r ∈ N r {0},
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(see e.g. [3]).
This is a quasi-homogeneous singularities, in [13] Zúñiga-Galindo studied the

local zeta functions of this type of polynomials, particulary, they gave explicitly
the denominator of such a zeta function. The denominator of Z (f, s) coincides
with the one given by Zúñiga-Galindo for these cases.

2. The stationary phase formula, a short account

In [10], Ono introduced the stationary phase formula (SPF). Igusa has used this
formula systematically in the calculation of the local zeta functions associated
with prehomogeneous vector spaces [8]. The formula takes its name from the
classical method of stationary phase that is used in the study of the asymptotic
behavior of oscillatory integrals of the form∫

ueiωf dx,

where f and u are smooth, Im f ≥ 0 and ω → +∞, see for example the
surveying article by Acosta [1].

The following is the exact form of the stationary phase formula SPF.

Theorem 1. (Igusa’s Stationary Phase Formula [9, pag 168])
Let E be a subset of Fn

q and let S its subset consisting of all a in E such that
f(a) = ∇f(a) = 0. Let E and S denote the preimages of E, S under the
canonical homomorphism OK → OK/πOK and let N be the number of zeros
of f(x) in E. Then we have∫

E

|f(x)|sK |dx| =q−n
(
Card(E)−N

)
+ q−n

(
N − Card(S)

) (1− q−1)q−s

1− q−1−s

+
∫

S

|f(x)|sK |dx|

3. The Calculations

Before starting the calculations required to prove the results mentionated in
the introduction, we want to recall a theorem due to Zúñiga-Galindo [13] about
the zeta function of a quasi-homogeneous polynomial. A polynomial f(x) ∈
OK [x], x = (x1, . . . , xn) is called quasihomogeneous of weight d and exponents
α1, . . . , αn if it satisfies

f(tα1x1, . . . , t
αnxn) = tdf(x1, . . . , xn), for every t ∈ K.
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The mentioned result is the following:

Theorem 2 (Zúñiga-Galindo [13], [14]). Let f(x) ∈ K[x], x = (x1, . . . , xn) be
a quasihomogeneous polynomial of weight d and exponents α1, . . . , αn. If the
origin of Kn is the only singular point of f(x), then Igusa’s local zeta function
of f(x) is a rational function of t = q−s. More precisely,

Z (f, s) =
L(t)

(1− q−1t)(1− q−|α|td)
,

where L(t) ∈ Q[t] and |α| = α1 + · · ·+ αn.

Although the proof of Theorem 2 given by Zúñiga-Galindo is mostly con-
structive, and it uses also the SPF, we use an slightly different approach. Ba-
sically we apply SPF recursively until we recover the original integral times a
function of q−s, then by bringing this expression to the left side we obtain an
explicit expression for the desired integral.

We will use the following notation due to Igusa:

[a, b] = 1− q−atb,
[a, b]+ = 1 + q−atb,

[a] = [a, 0],
[a]+ = [a, 0]+.

The following result will be used in our calculations

Theorem 3. [11, pag 12] Let q = pr, p 6= 2, then the number of solutions of
xm + yn = 0 in Fq, denoted for |N |, is

|N | =

1 + (q − 1)gcd(m,n, q − 1), if ord2(q − 1) > min{ord2(m), ord2(n)},

1, otherwise.

3.1. Calculation for E6. Before the calculation, we count the number of so-
lutions on F3

q of y3 + z2 = 0, x4 + y3 = 0, x4 + z2 = 0 and x4 + y3 + z2 = 0. By
Theorem 3 for y3 + z2 = 0 and x4 + y3 = 0 this is q2 and for x4 + z2 = 0 this is
2q2−q or q according to q ≡ 1 mod 4 or q ≡ 3 mod 4, now for x4+y3+z2 = 0
if y = 0 we have 2q−1 or 1 solutions according to q ≡ 1 mod 4 or q ≡ 3 mod 4.
If y 6= 0 and x = uy, z = vy2, we have y(u4 + v2) + 1 = 0 and in this case we
have q2−2q +1 or q2−1 solutions according to q ≡ 1 mod 4 or q ≡ 3 mod 4,
hence we always have q2 solutions.
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Now let K be a non-archimedean local field such that char
(
OK/πOK

)
6=

2, 3, then in the first application of SPF our integral becomes∫
O3

K

|x4 + y3 + z2|sK |dx dy dz| = [1] +
q−1[1][2]

[1, 1]
t + q−3t2

∫
O3

K

|π2x4 + πy3

+ z2|sK |dx dy dz|,

if we put Z (fm,n,l, s) =
∫
O3

K
|fm,n,l(x, y, z)|sK |dx dy dz|, with fm,n,l(x, y, z) =

πmx4 + πny3 + πlz2, we can write this as follows

Z (f0,0,0, s) = [1] +
q−1[1][2]

[1, 1]
t + q−3t2Z (2, 1, 0),

the systematic applications of SPF produce the following

Z (f2,1,0, s) = [1] + q−1tZ (f1,0,1, s),

Z (f1,0,1, s) = [1] + q−1tZ (f0,2,0, s),

Z (f0,2,0, s) = N + q−2t2Z (f2,0,0, s),

Z (f2,0,0, s) = [1] +
q−1[1]2

[1, 1]
t + q−2t2Z (f0,1,0, s),

Z (f0,1,0, s) = N(t) + q−2tZ (f3,0,1, s),

Z (f3,0,1, s) = [1] + q−1tZ (f2,2,0, s),

Z (f2,2,0, s) = [1] + q−1t2Z (f0,0,0, s),

where N(t) is [1]2 +2 q−1[1]2

[1,1] t or [2] according to q ≡ 1 mod 4 or q ≡ 3 mod 4,
we therefore obtain:

Theorem 4. Let K be a non-archimedean local field such that char(OK/πOK) 6=
2, 3 and let Z (s) =

∫
O3

K
|x4 + y3 + z2|sK |dx dy dz|, then we have

i) if q ≡ 1 mod 4,

Z (s) =
[1]

(
1− q−3t(1− t)(1 + q−3t3 + q−4t4 + q−6t6 − q−7t8)− q−13t11

)
[1, 1][13, 12]

ii) if q ≡ 3 mod 4,

Z (s) =
[1]

(
1− q−3t([0, 1] + q−2t3[2, 2][4, 3]+)− q−13t11

)
+ [2]q−5t4[1, 1][4, 4]+

[1, 1][13, 12]
.

This result agrees with Theorem 2 because x4 + y3 + z2 is a quasihomogeneous
polynomial of weight 12 and exponents 3, 4 and 6.
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3.2. Calculation for E7. First count the number of solutions on F3
q of y3 +

z2 = 0, x3y + y3 = 0, x3y + z2 = 0 and x3y + y3 + z2 = 0, by Theorem 3, for
y3 + z2 = 0 we have q2 zeros, for x3y + y3 = 0 we have, if y = 0, q2 zeros and if
y 6= 0 then x3 + y2 = 0 and in this case we have q2 − q zeros, for x3y + z2 = 0,
if x = 0, q zeros and if x 6= 0 and y = −v2x, z = vx2, we have q(q − 1) zeros,
therefore we have q2 zeros, and for x3y + y3 + z2 = 0 we have if y = 0, q zeros,
and if y 6= 0 and x = uy, z = vy2 we have y(u3 + v2) = −1 and then we
have q2 − q zeros, we therefore obtain q2 zeros, and if we put Z (fm,n,l, s) =∫
O3

K
|fm,n,l(x, y, z)|sK |dx dy dz|, with fm,n,l(x, y, z) = πmx3y+πny3+πlz2, then

the systematic application of SPF produces

Z (f0,0,0, s) = [1] +
q−1[1][2]

[1, 1]
t + q−3t2Z (f2,1,0, s),

Z (f2,1,0, s) = [1] + q−1tZ (f1,0,1, s),

Z (f1,0,1, s) = [1] + q−1tZ (f1,2,0, s),

Z (f1,2,0, s) = [1] + q−1tZ (f0,1,1, s),

Z (f0,1,1, s) = [1]2 +
q−1[1]2

[1, 1]
t + q−1tZ (f2,0,0, s),

Z (f2,0,0, s) = [1] +
q−1[1]2

[1, 1]
t + q−2t2Z (f1,1,0, s),

Z (f1,1,0, s) = [1] + q−1tZ (f0,0,1, s),

Z (f0,0,1, s) = [1]2 + 2
q−1[1]2

[1, 1]
t + q−2tZ (f3,2,0, s),

Z (f3,2,0, s) = [1] + q−1t2Z (f1,0,0, s),

Z (f1,0,0, s) = [1] +
q−1[1]2

[1, 1]
t + q−2t2Z (f0,1,0, s),

Z (f0,1,0, s) = [1] +
q−1[1]2

[1, 1]
t + q−2tZ (f2,0,1, s),

Z (f2,0,1, s) = [1] + q−1tZ (f2,2,0, s),

Z (f2,2,0, s) = [1] + q−1t2Z (f0,0,0, s),

we therefore obtain
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Theorem 5. Let K be a non-archimedean local field such that char(OK/πOK) 6=
2, 3 then we have ∫

O3
K

|x3y + y3 + z2|sK |dx dy dz| =

[1]
(
1− q−3t(1− t)(1 + q−4t4 + q−6t6 + q−8t8 + q−10t10 + q−12t12)− q−19t17

)
[1, 1][19, 18]

.

This result agrees with Theorem 2 because x3y+y3+z2 is a quasihomogeneous
polynomial of weight 18 and exponents 4, 6 and 9.

3.3. Calculation for E8. This calculations appear in Igusa’s book [9, pag 172]
and for the sake of completeness we present them here:∫

O3
K

|x5 + y3 + z2|sK |dx dy dz| =

[1]
(
1− q−3t(1− t)(1 + q−6t6 + q−10t10 + q−12t12)

)
[1, 1][31, 30]

+
[1]

(
−q−3t(1− t)(q−16t16 + q−18t18 + q−22t22)− q−31t29

)
[1, 1][31, 30]

.

Again x5+y3+z2 is a quasihomogeneous polynomial of weight 30 and exponents
6, 10 and 15.

3.4. Calculation for Ar. Again as xr+1 − yz = 0, r ∈ N has q2 solutions in
F3

q, we obtain

Z (s) =
∫
O3

K

|xr+1 − yz|sK |dx dy dz| = [1] +
q−1[1][2]

[1, 1]
t

+ q−3t2
∫
O3

K

|πr−1xr+1 − yz|sK |dx dy dz|.

Let

Im(s) =
∫
O3

K

|πmxr+1 − yz|sK |dx dy dz|, m ∈ N,
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then the application of SPF produces

I2l(s) = [1]2
(
1 + 2

q−1t

[1, 1]

) l−1∑
i=0

(q−1t)2i + (q−1t)2lZ (s),

I2l+1(s) = [1]2
(
1 + 2

q−1t

[1, 1]

) l−1∑
i=0

(q−1t)2i + (q−1t)2lI1(s),

and two applications of SPF produce

I1 = [1]2
(
1 + 2

q−1t

[1, 1]

)
+ q−2t[1] + q−3t2Ir(s),

we therefore obtain

Theorem 6. Let K be a non-archimedean local field such that char(OK/πOK) -
r + 1, r ∈ N and let Z (s) =

∫
O3

K
|xr+1 − yz|sK |dx dy dz|, then we have

i) if r = 2l + 1,

Z (s) =
[1]

(
[3, 1] + q−3t2[1][1, 1]+

∑l−1
i=0(q

−1t)2i
)

[1, 1][2l + 3, 2l + 2]
;

ii) if r = 2l,

Z (s) =

[1]
(
q−1t[2] + [1, 1][2l + 3, 2l + 1]+ + q−3t2[1][1, 1]+[2l + 1, 2l]+

∑l−1
i=0(q

−1t)2i
)

[1, 1][4l + 4, 4l + 2]
.

Again x2l+2 − yz is a quasihomogeneous polynomial of weight 2l + 2 and
exponents 1, 2 and 2l and x2l+1 − yz is a quasihomogeneous polynomial of
weight 4l + 2 and exponents 2, 2 and 4l.

3.5. Calculation for Dr. Let ν = q−3(q3 − N) and σ = q−3(N − 1), where
N is the number of zeros of xr−1 − xy2 + z2, r ∈ N r {0} in F3

q, then the first
application of SPF gives

Z (s) =
∫
O3

K

|xr−1 − xy2 + z2|sK |dx dy dz| = ν + σ
[1]

[1, 1]
t

+ q−3t2
∫
O3

K

|πr−3xr−1 − πxy2 + z2|sK |dx dy dz|.

Let
Im(s) =

∫
O3

K

|πmxr−1 − πxy2 + z2|sK |dx dy dz|, m ∈ N
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then two applications of SPF produce the following

Im(s) = [1] + q−1[1]2t +
q−2[1]2

[1, 1]
t2 + q−2t2Im−2(s),

and then by an easy induction, we have

I2m(s) =
(
[1] + q−1[1]2t +

q−2[1]2

[1, 1]
t2

) m−1∑
i=0

(q−1t)2i + (q−1t)2mI0(s),

I2m+1(s) =
(
[1] + q−1[1]2t +

q−2[1]2

[1, 1]
t2

) m−1∑
i=0

(q−1t)2i + (q−1t)2mI1(s),

and then by Theorem 3, if r = 2l + 1 we have

I0(s) =

[1]2 + 2 q−1[1]2

[1,1] t + q−2t2Kr−3(s) if q ≡ 1 mod 4,

[2] + q−2t2Kr−3(s) if q ≡ 3 mod 4,

on the other hand, if r = 2l, three applications of SPF produce

I1(s) = [1]
(
1 + q−1t + q−3t2 + 3

q−1[1]
[1, 1]

t
)

+ q−4t4Kr−4(s),

where

Km(s) =
∫
O3

K

|πmxr−1 − xy2 + z2|sK |dx dy dz|, m ∈ N

then one application of SPF produces

Km(s) = [1] + q−1 [1]2

[1, 1]
t + q−2t2Km−2(s),

therefore

K2m(s) =
(
[1] + q−1 [1]2

[1, 1]
t
) m−1∑

i=0

(q−1t)2i + (q−1t)2mZ (s),

we therefore obtain

Theorem 7. Let K be a non-archimedean local field such that char(OK/πOK) -
r− 1, 2, r ∈ N r {0} and let Z (s) =

∫
O3

K
|xr−1 − xy2 + z2|sK |dx dy dz|, then we

have



LOCAL ZETA FUNCTIONS 109

i) if r = 2l + 1 and q ≡ 1 mod 4,

Z (s) =
ν[1, 1] + σ[1]t + [1]2[1, 1]+q−2l−1t2l

[1, 1][4l + 1, 4l]

+
q−3t2[1]

(
1− q−2t + q−2lt2l − q−2l−2t2l+1

) ∑l−2
i=0(q

−1t)2i

[1, 1][4l + 1, 4l]
;

ii) if r = 2l + 1 and q ≡ 3 mod 4,

Z (s) =
ν[1, 1] + σ[1]t + q−2l−1t2l[2]

[1, 1][4l + 1, 4l]

+
q−3t2[1]

(
1− q−2t + q−2lt2l − q−2l−2t2l+1

) ∑l−2
i=0(q

−1t)2i

[1, 1][4l + 1, 4l]
;

iii) if r = 2l,

Z (s) =
ν[1, 1] + [1]

(
σt + q−2l+1t2l−2 + 2q−2l−1t2l[1]− q−2l−3t2l+1

)
[1, 1][4l − 1, 4l − 2]

+
q−3t2[1]

(
1− q−2t + q−2lt2l − q−2l−2t2l+1

) ∑l−3
i=0(q

−1t)2i

[1, 1][4l − 1, 4l − 2]
.

Again x2l−xy2 + z2 is a quasihomogeneous polynomial of weight 4l and expo-
nents 2, 2l− 1 and 2l and x2l−1 − xy2 + z2 is a quasihomogeneous polynomial
of weight 4l − 2 and exponents 2, 2l − 2 and 2l − 1.
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