Openness of the induced map $C_n(f)$

Javier Camargo

Escuela de Matemáticas
Universidad Industrial de Santander, Bucaramanga

Given a map between compact metric spaces $f : X \to Y$, it is possible to induce a map between the n-fold hyperspaces $C_n(f) : C_n(X) \to C_n(Y)$ for each positive integer n. Let \mathcal{A} and \mathcal{B} be classes of maps. A general problem is to find the interrelations between the following two statements: 1. $f \in \mathcal{A}$; 2. $C_n(f) \in \mathcal{B}$. It is known that 1 and 2 are equivalent conditions if both \mathcal{A} and \mathcal{B} are the class of homeomorphisms. If \mathcal{A} and \mathcal{B} are the class of open maps, then the openness of $C_n(f)$ implies the openness of f. Furthermore, there exists an open map f such that $C_n(f)$ is not open. Moreover, if $C_n(f)$ is open and $n \geq 3$, then f is both open and monotone. Our main result is Theorem 3.2, where we prove that if the induced map $C_n(f)$ is an open map, for $n \geq 2$, then f is a homeomorphism.

Keywords: continua, hyperspaces of continua, induced maps, open maps.

MSC: 54B20, 54E40.
1 Introduction

A continuum is a nonempty, compact, connected and metric space. For a continuum X and for a positive integer n we denote by $C_n(X)$ the hyperspace of all nonempty closed subsets of X with at most n components. Given a map $f : X \to Y$ between continua X and Y, we define the induced map $C_n(f) : C_n(X) \to C_n(Y)$ by $C_n(f)(A) = f(A)$ [4, p. 783].

A map $f : X \to Y$ is called open if f maps every open set in X onto an open set in Y. It is known that if $C_n(f)$ is open, for some positive integer n, then f is also an open map [4, Theorem 8, p. 786].

There are some works in which the openness of $C_n(f)$ has been studied ([1], [2], [3], [5] and [6] for $n = 1$, and [4] for $n \geq 1$). In [3, Question 4, p. 68] the following question is asked:

Question 1.1. What (locally connected) continua X have the property that if f is a map of X onto a continuum Y such that the induced map $C_1(f) : C_1(X) \to C_1(Y)$ is open, then f is a homeomorphism?

There are some partial answers to Question 1.1: In [5, Theorem 1, p. 3729] it is proved that if $C_1(f)$ is open, where f is defined between locally connected continua, then f is monotone. Thus, if f is defined between hereditarily locally connected continua such that $C_1(f)$ is open, then f is a homeomorphism [5, Corollary 2, p. 3730]. It is known that if X is a fan, then we have a positive answer to Question 1.1 [3, Theorem 9, p. 70]. Recently, we expanded [3, Theorem 9, p. 70] proving that if f is defined between dendroids and $C_1(f)$ is open, then f is a homeomorphism [2, Theorem 3.4, p. 233]. It is important to emphasize that there are maps f defined between continua such that $C_1(f)$ is open and f is not a homeomorphism [5, Example 3, p. 3730], even when f is defined between locally connected continua [3, Corollary 19, p. 73].

If $n \geq 1$, then we know that [4, Theorem 10, p. 786] generalizes [5, Theorem 1, p. 3729] proving that f is monotone, if $C_n(f)$ is open and f is defined between locally connected continua, for any $n \in \mathbb{N}$.

It is very natural to ask, what does it happen if we change 1 by any positive integer n in Question 1.1?

Our goal is to prove that if $C_n(f)$ is an open map and $n \geq 2$, then f is a homeomorphism (see Theorem 3.2).
2 Definitions

If \((X, d)\) is a metric space, then given \(A \subset X\), the interior, the closure and the boundary of \(A\) are denoted by \(\text{Int}_X(A)\), \(\text{Cl}_X(A)\) and \(\text{Bd}_X(A)\), respectively. The cardinality of \(A\) is denoted by \(|A|\). The symbol \(\mathbb{N}\) denotes the set of positive integers. A map is assumed to be a continuous function.

Remark 2.1. Here every map will be assumed surjective and defined between nondegenerate continua.

Let \(X\) be a continuum and let \(A\) and \(B\) be closed subsets of \(X\). We say that \(C \subset X\) is irreducible between \(A\) and \(B\) provided that \(C \setminus A \neq \emptyset\), \(C \setminus B \neq \emptyset\), and no proper subcontinuum of \(C\) intersects both \(A\) and \(B\).

Definition 2.2. Let \(\{A_i\}_{i=1}^{\infty}\) be a sequence of subsets of \(X\). We define the inferior limit of \(\{A_i\}_{i=1}^{\infty}\), denoted by \(\liminf_{i \to \infty} A_i\), and the superior limit of \(\{A_i\}_{i=1}^{\infty}\), denoted by \(\limsup_{i \to \infty} A_i\), as follows:

1. \(\liminf_{i \to \infty} A_i = \{x \in X : \text{for any open } U \text{ in } X \text{ such that } x \in U, U \cap A_i \neq \emptyset \text{ for all but finitely many } i\}\);

2. \(\limsup_{i \to \infty} A_i = \{x \in X : \text{for any open } U \text{ in } X \text{ such that } x \in U, U \cap A_i \neq \emptyset \text{ for infinitely many } i\}\);

We say that \(\{A_i\}_{i=1}^{\infty}\) is convergent to \(A\) in \(X\), which we denote by \(\lim_{i \to \infty} A_i = A = \limsup_{i \to \infty} A_i\).

A proof of the following result may be found in [11, Theorem 4.32, p. 130].

Theorem 2.3 (Eilenberg). Let \(f : X \to Y\) be a map between continua. Then \(f\) is an open map if and only if \(\lim_{n \to \infty} f^{-1}(y_n) = f^{-1}(y)\) for each sequence \(\{y_n\}_{n=1}^{\infty}\) such that \(\lim_{n \to \infty} y_n = y\).

Eilenberg’s theorem is a characterization of open maps and may be written in the following way:

Theorem 2.4. Let \(f : X \to Y\) be a map between continua. Then \(f\) is open if and only if for each sequence \(\{y_n\}_{n \in \mathbb{N}}\) in \(Y\) such that \(\lim_{n \to \infty} y_n = y\), for some point \(y \in Y\), and for any \(x \in f^{-1}(y)\) there exists a sequence \(\{x_n\}_{n \in \mathbb{N}}\) in \(X\) such that \(\lim_{n \to \infty} x_n = x\) and \(x_n \in f^{-1}(y_n)\), for each \(n \in \mathbb{N}\).
Proof. Suppose that \(f : X \to Y \) is an open map between continua. Let \(\{y_n\}_{n \in \mathbb{N}} \) be a sequence in \(Y \) such that \(\lim_{n \to \infty} y_n = y \) for some \(y \in Y \). Let \(x \in f^{-1}(y) \). We know that \(\lim_{n \to \infty} f^{-1}(y_n) = f^{-1}(y) \), by Theorem 2.3.

Let \(\{U_n\}_{n \in \mathbb{N}} \) be a sequence of open subsets of \(X \) such that \(x \in U_n \), \(U_{n+1} \subset U_n \), for each \(n \in \mathbb{N} \), and \(\bigcap_{n=1}^{\infty} U_n = \{x\} \). Since \(x \in \lim \inf_{n \to \infty} f^{-1}(y_n) \), for each \(m \in \mathbb{N} \), there exists \(k_m \in \mathbb{N} \) such that \(U_m \cap f^{-1}(y_n) \neq \emptyset \) for each \(n \geq k_m \). Without loss of generality, we may assume that \(k_j < k_{j+1} \), if \(j < \ell \). We define the sequence \(\{x_n\}_{n=1}^\infty \) in \(X \) as follows:

1. \(x_n \in f^{-1}(y_n) \) if \(n < k_1 \);
2. \(x_n \in f^{-1}(y_n) \cap U_m \) if \(k_m \leq n < k_{m+1} \).

Clearly, \(\lim_{n \to \infty} x_n = x \) and \(f(x_n) = y_n \) for all \(n \in \mathbb{N} \). The converse implication follows from Theorem 2.3.

Given a continuum \(X \), we consider the following hyperspaces of \(X \):

1. \(2^X = \{A \subset X : A \text{ is closed and nonempty}\} \);
2. \(C_n(X) = \{A \in 2^X : A \text{ has at most } n \text{ components} \}, n \in \mathbb{N} \).

\(2^X \) is topologized with the Vietoris topology [7, p. 3], which is generated by the collection of sets \(\langle U_1, U_2, \ldots, U_\ell \rangle \), where \(U_1, U_2, \ldots, U_\ell \) are open sets in \(X \) and

\[
\langle U_1, U_2, \ldots, U_\ell \rangle = \{A \in 2^X : A \subset \bigcup_{i=1}^\ell U_i \text{ and } A \cap U_i \neq \emptyset \text{ for each } i \}.
\]

Clearly, \(C_n(X) \) is a subspace of \(2^X \). The space \(C_n(X) \) is called the \(n \)-fold hyperspace of \(X \). It is well known that if \(X \) is a continuum, then both \(2^X \) and \(C_n(X) \) are continua. The reader may consult [7] and [8] for general information about hyperspaces.

Notation 2.5. We denote \(\langle U_1, U_2, \cdots, U_\ell \rangle \cap C_n(X) \) by \(\langle U_1, U_2, \cdots, U_\ell \rangle_n \) and write \(C(X) \) instead of \(C_1(X) \).

Let \(X \) be a continuum. A **Whitney map** for \(C(X) \) is a map \(\mu : C(X) \to [0, 1] \) that satisfies the following two conditions:
1. for each \(A, B \in C(X) \) such that \(A \subseteq B \) and \(A \neq B \), \(\mu(A) < \mu(B) \);

2. \(\mu(A) = 0 \) if and only if \(|A| = 1 \).

In [7, Theorem 13.4, p. 107] the following important theorem is proved.

Theorem 2.6. If \(X \) is a continuum, then there exists a Whitney map for the hyperspace \(C(X) \).

Let \(\mu \) be a Whitney map for \(C(X) \). Let \(A_0, A_1 \in C(X) \). A map \(\sigma : [0, 1] \to C(X) \) is said to be a segment in \(C(X) \) with respect to \(\mu \) from \(A_0 \) to \(A_1 \) provided that \(\sigma \) has the following three properties:

1. \(\sigma(0) = A_0 \) and \(\sigma(1) = A_1 \);
2. \(\mu(\sigma(t)) = (1-t)\mu(\sigma(0)) + t\mu(\sigma(1)) \) for each \(t \in [0, 1] \);
3. \(\sigma(t) \subseteq \sigma(s) \) whenever \(0 \leq t \leq s \leq 1 \).

The following result may be found in [7, Theorem 16.9, p. 131].

Theorem 2.7. Let \(X \) be a continuum and let \(\mu \) be a Whitney map for \(C(X) \). Let \(A_0, A_1 \in C(X) \). Then there is a segment with respect to \(\mu \) from \(A_0 \) to \(A_1 \) if and only if \(A_0 \subseteq A_1 \).

Let \(f : X \to Y \) be a map between continua. Then the function \(2^f : 2^X \to 2^Y \) given by \(2^f(A) = f(A) \) for each \(A \in 2^X \), is called the induced map between \(2^X \) and \(2^Y \). The function \(2^f|_{C_n(X)} \) is denoted by \(C_n(f) \) and it is called the induced map between the hyperspaces \(C_n(X) \) and \(C_n(Y) \). In [7, Lemma 13.3, p. 106] it is shown that \(2^f \) is a map. Since \(2^f(C_n(X)) \subseteq C_n(Y) \), \(C_n(f) \) is a map between \(C_n(X) \) and \(C_n(Y) \), for each \(n \in \mathbb{N} \).

3 Openness of \(C_n(f) \) for \(n \geq 2 \)

We begin this section with a theorem that will be used in the proof of our main result.

Theorem 3.1. Let \(f : X \to Y \) be a map between continua and let \(n \in \mathbb{N} \), such that \(C_n(f) : C_n(X) \to C_n(Y) \) is open. If there is a point \(y \in Y \) such that \(|f^{-1}(y)| > 1 \), then there exist two subcontinua \(D \) and \(E \) of \(X \) such that \(D \cap E = \emptyset \) and \(f(D) = f(E) = L \), where \(L \) is a proper and irreducible subcontinuum between \(y \) and some point \(y_0 \neq y \) of \(Y \).
Proof. Let \(f : X \to Y \) be a map between continua and let \(n \in \mathbb{N} \) such that \(C_n(f) : C_n(X) \to C_n(Y) \) is open. Let \(b_1, b_2, \ldots, b_{n-1} \) and \(y \) be different points in \(Y \) such that \(|f^{-1}(y)| > 1 \). Let \(a_1, a_2, \ldots, a_{n-1}, x_1 \) and \(x_2 \) be points in \(X \) such that \(f(a_i) = b_i \), for each \(i \in \{1, 2, \ldots, n-1\} \), and \(x_1, x_2 \in f^{-1}(y) \), where \(x_1 \neq x_2 \). We denote by \(B_m \) the open ball in \(Y \) about \(y \) of radius \(\frac{1}{m} \). Let \(C_m \) be the component of \(\text{Cl}(B_m) \) such that \(y \in C_m \). Notice that \(C_m \cap \text{Bdy}(B_m) \neq \emptyset \), by [10, Theorem 5.4, p. 73]. Let \(D_m \) be an irreducible subcontinuum of \(C_m \) between \(y \) and some point of \(\text{Bdy}(B_m) \) [10, Proposition 11.30, p. 212]. Observe that \(\lim_{m \to \infty} D_m = \{y\} \). Hence, we have that:

\[
\lim_{m \to \infty} (D_m \cup \{b_1, b_2, \ldots, b_{n-1}\}) = \{y, b_1, b_2, \ldots, b_{n-1}\}.
\]

Since \(\{x_1, a_1, \ldots, a_{n-1}\} \) and \(\{x_2, a_1, \ldots, a_{n-1}\} \) both belong to \(C_n(f)^{-1}\{y, b_1, \ldots, b_{n-1}\} \), by Theorem 2.4, there are two sequences \(\{E_m\}_{m \in \mathbb{N}} \) and \(\{F_m\}_{m \in \mathbb{N}} \) of \(C_n(X) \) such that \(\lim_{m \to \infty} E_m = \{x_1, a_1, \ldots, a_{n-1}\} \), \(\lim_{m \to \infty} F_m = \{x_2, a_1, \ldots, a_{n-1}\} \) and:

\[
E_m, F_m \in C_n(f)^{-1}(D_m \cup \{b_1, b_2, \ldots, b_{n-1}\}), \text{ for each } m \in \mathbb{N}.
\]

Let \(U_1, U_2, V_1, \ldots, V_{n-2} \) and \(V_{n-1} \) be open and pairwise disjoint subsets of \(X \) such that \(x_1 \in U_1, x_2 \in U_2 \) and \(a_i \in V_i \) for each \(i \in \{1, 2, \ldots, n-1\} \). Thus, there is \(\ell \in \mathbb{N} \) such that \(E_k \subset U_1 \cup V_1 \cup \cdots \cup V_{n-1} \) and \(F_k \subset U_2 \cup V_1 \cup \cdots \cup V_{n-1} \), for each \(k \geq \ell \) [11, Theorem 7.2, p. 12]. Hence, both \(E_k \) and \(F_k \) have exactly \(n \) components, for each \(k \geq \ell \). Let \(k_0 \) be a sufficiently large number such that if \(E \) and \(F \) are the components of \(E_{k_0} \) and \(F_{k_0} \), respectively, such that \(E \subset U_1 \) and \(F \subset U_2 \), then \(f(E) = f(F) = D_{k_0} \). Note that \(E \cap F = \emptyset, D_{k_0} \) is irreducible between \(y \) and some point \(y_0 \neq y \) and we may suppose that \(D_{k_0} \neq Y \). The proof is complete.

\[\square\]

In [6, Theorem 4.3, p. 243] it is proved that \(2^\ell \) is open if and only if \(f \) is open. Furthermore, there is an open map \(f \) such that \(C_n(f) \) is not open, for any \(n \in \mathbb{N} \) [4, Remark 9, p. 786].

Theorem 3.2. Let \(f : X \to Y \) be a map between continua and let \(n \geq 2 \). If \(C_n(f) : C_n(X) \to C_n(Y) \) is open, then \(f \) is a homeomorphism.
Proof. Let \(f : X \to Y \) be a map between continua and let \(n \geq 2 \), such that \(C_n(f) : C_n(X) \to C_n(Y) \) is open. Suppose that \(f \) is not a homeomorphism and take a point \(y \in Y \) such that \(|f^{-1}(y)| > 1 \), for some point \(y \in Y \). Hence, there are two subcontinua \(D \) and \(E \) of \(X \) such that \(D \cap E = \emptyset \) and \(f(D) = f(E) = L \), where \(L \) is an irreducible continuum between \(y \) and \(y_0 \), where \(y \neq y_0 \), by Theorem 3.1. Notice that \(L \) is a nondegenerate subcontinuum of \(Y \) and \(D \setminus (f^{-1}(y) \cup f^{-1}(y_0)) \neq \emptyset \).

Let \(d \in D \setminus (f^{-1}(y) \cup f^{-1}(y_0)) \). We consider two cases:

1. \(n = 2 \). Observe that \(\{d\} \) and \(f^{-1}(y) \cup f^{-1}(y_0) \) are disjoint and closed subsets of \(X \). Thus, there are two open and disjoint sets \(U \) and \(V \) of \(X \) such that \(d \in U \) and \(f^{-1}(y) \cup f^{-1}(y_0) \subset V \). We show that \(C_2(f)(\{U, V\}_2) \) is not open. Note that \(\{d\} \cup E \in \{U, V\}_2 \). Therefore, \(C_2(f)(\{d\} \cup E) = L \in C_2(f)(\{U, V\}_2) \).

Let \(\mu \) be a Whitney map in \(C(X) \) (see Theorem 2.6). Since \(\{y\} \) and \(\{y_0\} \) are subsets of \(L \), there are two segments \(\sigma_1, \sigma_2 : [0, 1] \to C(X), \) with respect to \(\mu \), from \(\{y\} \) to \(L \) and from \(\{y_0\} \) to \(L \), respectively, by Theorem 2.7. Since \(\sigma_1(1) = \sigma_2(1) = L \), it is not difficult to prove that there exists a point \(s \in [0, 1] \) such that \(\sigma_1(s) \cap \sigma_2(s) \neq \emptyset \) and \(\sigma_1(t) \cap \sigma_2(t) = \emptyset \), for each \(t < s \). Observe that \(\sigma_1(0) \cup \sigma_2(0) = \{y, y_0\} \). Hence, \(s > 0 \). Since \(L \) is irreducible between \(y \) and \(y_0 \), and \(y, y_0 \in \sigma_1(s) \cup \sigma_2(s) \), we have that \(\sigma_1(s) \cup \sigma_2(s) = L \). Let \(\{t_m\}_{m \in \mathbb{N}} \) be an increasing sequence in \([0, 1] \) such that \(\lim_{m \to \infty} t_m = s \). Clearly, \(\sigma_1(t_m) \cup \sigma_2(t_m) \in C_2(Y) \setminus C(Y) \), for each \(m \in \mathbb{N} \). We denote \(L_m = \sigma_1(t_m) \cup \sigma_2(t_m) \). Since \(\sigma_1 \) and \(\sigma_2 \) are both continuous function, and \(\lim_{m \to \infty} t_m = s \), we have that \(\lim_{m \to \infty} L_m = L \).

We show that \(L_m \notin C_2(f)(\{U, V\}_2) \), for any \(m \in \mathbb{N} \). Suppose that there exists \(D \in \{U, V\}_2 \) such that \(C_2(f)(D) = L_k \), for some \(k \in \mathbb{N} \). Since \(U \cap V = \emptyset \), \(D \cap U \neq \emptyset \) and \(D \cap V \neq \emptyset \), \(D \) has two components. Let \(E \) and \(F \) be the components of \(D \) such that \(E \subset U \) and \(F \subset V \). Note that \(y \) and \(y_0 \) belong to \(L_k \). Thus, \(D \cap f^{-1}(y) \neq \emptyset \) and \(D \cap f^{-1}(y_0) \neq \emptyset \). Since \(U \cap (f^{-1}(y) \cup f^{-1}(y_0)) = \emptyset \) and \(E \subset U \), we have that \(F \cap f^{-1}(y) \neq \emptyset \) and \(F \cap f^{-1}(y_0) \neq \emptyset \). Hence, \(f(F) \) is connected such that \(y, y_0 \in f(F) \subset L_k \), but this contradicts the fact that \(y \) and \(y_0 \) belong to different components of \(L_k \). Thus, \(L_m \notin C_2(f)(\{U, V\}_2) \), for any \(m \in \mathbb{N} \). Since \(\lim_{m \to \infty} L_m = L \) and \(L \in C_2(f)(\{U, V\}_2) \), we have that \(L \) is not an interior point of \(C_2(f)(\{U, V\}_2) \).

2. \(n > 2 \). Observe that \(L \neq Y \) by Theorem 3.1. Hence, \(X \setminus f^{-1}(L) \neq \emptyset \).
Let $x_1, x_2, \ldots, x_{n-1}$ and x_{n-2} be different points in $X \setminus f^{-1}(L)$. Let $U, V, W_1, \ldots, W_{n-1}$ and W_{n-2} be open and disjoint subsets of X such that $d \in U, f^{-1}(y) \cup E \cup f^{-1}(y_0) \subset V$ and $x_i \in W_i$, for each $i \in \{1, 2, \ldots, n-2\}$. Let us remind that each point in $(U, V, W_1, \ldots, W_{n-2})_n$ has n components. Therefore, using an argument similar to that in the case $n = 2$ in 1, we may conclude that $C_n(f)(U, V, W_1, \ldots, W_{n-2})_n$ is not an open set.

Thus $C_n(f)$ is not open, for any $n \geq 2$, by 1 and 2. Hence, $|f^{-1}(y)| = 1$ for each $y \in Y$. Since f is defined between continua, f is closed. Therefore, f is a homeomorphism.

\[\square \]

Corollary 3.3. Let $f : X \to Y$ be a map between continua and let $n \geq 2$. The following conditions are equivalent:

1. $C_n(f)$ is open;
2. f is a homeomorphism;
3. $C_n(f)$ is a homeomorphism.

Proof. That 1 implies that 2 follows from Theorem 3.2. Using [4, Theorem 46, p. 801], we have that 2 implies that 3. Finally, since every homeomorphism is open, we have that 3 implies that 1.

\[\square \]

Acknowledgements

The author thanks Dr. Sergio Macías for his valuable remarks. This research was partially supported by the grant C–2010–1 of VIE, UIS.

References

