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Openness of the induced map C,,(f)

Javier Camargo!
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Universidad Industrial de Santader, Bucaramanga

Dada una funcién continua entre espacios métricos compactos f : X — Y,
es posible definir la funcién inducida entre los hiperespacios de dimensién
n Cn(f) : Cp(X) — C,(Y) para cada entero positivo n. Sean A y
B clases de funciones continuas. Un problema general es encontrar las
relaciones entre las siguientes dos afirmaciones: 1. f € A; 2. C,(f) € B.
Se sabe que 1 y 2 son condiciones equivalentes si A y B son la clase de
homeomorfismos. Si A y B son la clase de funciones abiertas, entonces
2 implica 1. Ademds, existe una funcién abierta f tal que C,(f) no es
abierta. Ademds, si C,(f) es abierta y n > 3, entonces f es abierta y
monoétona. Nuestro principal resultado es el Teorema 3.2, en el cual se
demuestra que si la funcién inducida C,,(f) es abierta para algin n > 2,

entonces f es un homeomorfismo.

Palabras Claves: continuos, hiperespacios de continuos,
funciones inducidas, funciones abiertas.

Given a map between compact metric spaces f : X — Y, it is possible to
induce a map between the n—fold hyperspaces Cy,(f) : Cr(X) = C,(Y)
for each positive integer n. Let A and B be classes of maps. A general
problem is to find the interrelations between the following two statements:
1. fe A 2. C,(f) € B. Tt is known that 1 and 2 are equivalent
conditions if both A and B are the class of homeomorphisms. If A and
B are the class of open maps, then the openness of C,(f) implies the
openness of f. Furthermore, there exists an open map f such that C,, (f)
is not open. Moreover, if C,(f) is open and n > 3, then f is both
open and monotone. Our main result is Theorem 3.2, where we prove
that if the induced map C,(f) is an open map, for n > 2, then f is a

homeomorphism.
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1 Introduction

A continuum is a nonempty, compact, connected and metric space. For
a continuum X and for a positive integer n we denote by C,(X) the
hyperspace of all nonempty closed subsets of X with at most n compo-
nents. Given a map f : X — Y between continua X and Y, we define
the induced map C,(f) : Cr,(X) — Cn(Y) by Cn(f)(4) = f(A) [4, p.
783].

A map f: X — Y is called open if f maps every open set in X onto
an open set in Y. It is known that if C,(f) is open, for some positive
integer n, then f is also an open map [4, Theorem 8, p. 786].

There are some works in which the openness of Cy,(f) has been stud-
ied ([1], [2], [3], [5] and [6] for n = 1, and [4] for n > 1). In [3, Question
4, p. 68] the following question is asked:

Question 1.1. What (locally connected) continua X have the property
that if f is a map of X onto a continuum Y such that the induced map
Ci(f) : C1(X) — C1(Y) is open, then f is a homeomorphism?

There are some partial answers to Question 1.1: In [5, Theorem 1,
p. 3729] it is proved that if C1(f) is open, where f is defined between
locally connected continua, then f is monotone. Thus, if f is defined
between hereditarily locally connected continua such that C;(f) is open,
then f is a homeomorphism [5, Corollary 2, p. 3730]. It is known that if
X is a fan, then we have a positive answer to Question 1.1 [3, Theorem 9,
p. 70]. Recently, we expanded [3, Theorem 9, p. 70] proving that if f is
defined between dendroids and C4 (f) is open, then f is a homeomorphism
[2, Theorem 3.4, p. 233]. It is important to emphasize that there are
maps f defined between continua such that C;(f) is open and f is not a
homeomorphism [5, Example 3, p. 3730], even when f is defined between
locally connected continua [3, Corollary 19, p. 73].

If n > 1, then we know that [4, Theorem 10, p. 786] generalizes [5,
Theorem 1, p. 3729] proving that f is monotone, if C,,(f) is open and f
is defined between locally connected continua, for any n € N.

It is very natural to ask, what does it happen if we change 1 by any
positive integer n in Question 1.17

Our goal is to prove that if C,(f) is an open map and n > 2, then f
is a homeomorphism (see Theorem 3.2).
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2 Definitions

If (X,d) is a metric space, then given A C X, the interior, the closure
and the boundary of A are denoted by Intx(A), Clx(A) and Bdx(A),
respectively. The cardinality of A is denoted by |A|. The symbol N
denotes the set of positive integers. A map is assumed to be a continuous
function.

Remark 2.1. Here every map will be assumed surjective and defined
between nondegenerate continua.

Let X be a continuum and let A and B be closed subsets of X. We
say that C C X is irreducible between A and B provided that CN A # (),
C N B # (), and no proper subcontinuum of C' intersects both A and B.

Definition 2.2. Let {4;}?°, be a sequence of subsets of X. We define
the inferior limit of {A;}:2,, denoted by liminf; .. A;, and the superior
limit of {A;}:2,, denoted by limsup,_, ., A;, as follows:

1. liminf; ;oo A; = {& € X : for any open U in X such that x €
U,UN A; # 0 for all but finitely many i};

2. limsup; ,.o Ai = {z € X : for any open U in X such that x €
U,U N A; # 0 for infinitely many i};

We say that {A4;}7°, is convergent to A in X, which we denote by
lim; ,oc A; = A, provided that liminf; ., A; = A = limsup;_,. 4;.

A proof of the following result may be found in [11, Theorem 4.32,
p. 130].

Theorem 2.3 (Eilenberg). Let f : X — Y be a map between continua.
Then f is an open map if and only if lim, oo £~ (yn) = f~1(y) for each
sequence {yn o 1 such that imy, oo Y = ¥.

Eilenberg’s theorem is a characterization of open maps and may be
written in the following way:

Theorem 2.4. Let f : X — Y be a map between continua. Then f is
open if and only if for each sequence {yn tnen inY such that lim, o yn =
y, for some point y € Y, and for any x € f~1(y) there exists a sequence
{Zp}nen in X such that limy, soo T, = 2 and x, € [~ (yn), for each
n € N.
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Proof. Suppose that f: X — Y is an open map between continua. Let
{Yn}nen be a sequence in Y such that lim, . y, = y for some y € Y.
Let 2 € f~(y). We know that lim, 500 f~(yn) = f~(y), by Theorem
2.3.

Let {Up}nen be a sequence of open subsets of X such that = €
Up, Upy1 C U,, for each n € N, and N2> U, = {z}. Since z €
liminf, o0 f~'(yn), for each m € N, there exists k,, € N such that
U N f~Y(yn) # 0 for each n > k,,. Without loss of generality, we may
assume that k; < kg, if j < ¢. We define the sequence {z,}7°; in X as
follows:

1. 2, € f~ Y (yn) if n < ky;
2. 2, € N yn) VU if by <1< kg1

Clearly, lim,,_,oo , = 2 and f(z,) = y, for all n € N. The converse
implication follows from Theorem 2.3.
O

Given a continuum X, we consider the following hyperspaces of X:

1. 2¥ = {A C X : Ais closed and nonempty};

2. Cp(X) ={A € 2% : A has at most n components},n € N.

2% is topologized with the Vietoris topology [7, p. 3], which is gene-
rated by the collection of sets (Uy, Us, - -, Uy), where Uy, Us, --- , Uy are
open sets in X and

(Uy, Uy, -+, Up) ={Ae 2% : Ac U_ UandANU; # 0 for each i}.

Clearly, C,,(X) is a subspace of 2X. The space C,(X) is called the
n—fold hyperspace of X. It is well known that if X is a continuum, then
both 2% and C,,(X) are continua. The reader may consult [7] and [8] for
general information about hyperspaces.

Notation 2.5. We denote (U1, Us, --- ,Up)NCy(X) by (U1,Usa, -+ ,Up)n
and write C'(X) instead of C1(X).

Let X be a continuum. A Whitney map for C(X) is a map p :
C(X) — [0,1] that satisfies the following two conditions:
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1. for each A, B € C(X) such that A C B and A # B, u(A) < pu(B);
2. u(A) =0if and only if |A| = 1.

In [7, Theorem 13.4, p. 107] the following important theorem is
proved.

Theorem 2.6. If X is a continuum, then there exists a Whitney map
for the hyperspace C(X).

Let p be a Whitney map for C(X). Let Ap, 41 € C(X). A map
o :10,1] = C(X) is said to be a segment in C(X) with respect to p from
Ag to Ay provided that o has the following three properties:

1. 0(0) = Ap and o(1) = Ay;
2. p(o(t)) = (1 —t)u(e(0)) + tu(o(1)) for each t € [0, 1];
3. o(t) C o(s) whenever 0 <t <s <1.

The following result may be found in [7, Theorem 16.9, p. 131].

Theorem 2.7. Let X be a continuum and let p be a Whitney map for
C(X). Let Ag, A1 € C(X). Then there is a segment with respect to
from Ag to A1 if and only if Ay C A;.

Let f : X — Y be a map between continua. Then the function
2/ : 2X — 2V given by 27/(A) = f(A) for each A € 2%, is called the
induced map between 2% and 2Y. The function 2F ‘Cn( x) is denoted by
Cn(f) and it is called the induced map between the hyperspaces Cp(X)
and Cp(Y). In [7, Lemma 13.3, p. 106] it is shown that 2/ is a map.
Since 27 (C(X)) C Co(Y), Cn(f) is a map between C,,(X) and C,,(Y),
for each n € N.

3 Openness of C,(f) for n > 2

We begin this section with a theorem that will be used in the proof of
our main result.

Theorem 3.1. Let f : X — Y be a map between continua and letn € N,
such that Cy(f) : Cp(X) — Cn(Y) is open. If there is a pointy € Y
such that |f~1(y)| > 1, then there exist two subcontinua D and E of X
such that DNE = 0 and f(D) = f(E) = L, where L is a proper and

irreducible subcontinuum between y and some point yg #y of Y.
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Proof. Let f : X — Y be a map between continua and let n € N such
that C,(f) : Cp(X) — Cn(Y) is open. Let by, by, -+ ,b,—1 and y be
different points in Y such that |f~(y)| > 1. Let a1, a2, - ,a,_1, 71 and
x9 be points in X such that f(a;) = b;, for each i € {1,2,--- ,n — 1},
and 1,22 € f~!(y), where 1 # x5. We denote by B, the open ball
in Y about y of radius =. Let C, be the component of Cly (B,,) such
that y € C),. Notice that C,, N Bdy (B;,) # 0, by [10, Theorem 5.4,
p. 73]. Let D,, be an irreducible subcontinuum of C), between y and
some point of Bdy (By,) [10, Proposition 11.30, p. 212]. Observe that
limy, 00 D, = {y}. Hence, we have that:

mlgnoo(DmU {bb ba, -+, bnfl}) = {ya b1, bg, -+, bnfl}'
Since {x1,a1,+-,an—1} and {x9,a1,---,a,—1} both belong to

Co(f) *({y,b1, -+ ,by_1}), by Theorem 2.4, there are two
sequences {E,}tmen and  {Fp}men of Cp(X) such  that
lirnm%oo E, = {1‘1, atg,: - 7an71}7 11Inm%oo = {1323 ag,--- aanfl} and:

Em, Fp € Co(f) M (Dy U {by, bg, -++ , by_1}), for each m € N.

Let Uy,Us, Vi, -+, Vo and V,,_1 be open and pairwise disjoint sub-
sets of X such that z1 € Uy, z9 € Us and a; € V; foreachi € {1,2,--- ;n—
1}. Thus, there is £ € N such that Ey, C Uy UV, U---UV,_1 and
F, Cc UpUuVi U---UV,_q, for each k& > ¢ [11, Theorem 7.2, p. 12].
Hence, both Ej and F} have exactly n components, for each k > ¢. Let
ko be a sufficiently large number such that if £ and F' are the compo-
nents of Ey, and F},, respectively, such that &' C Uy and F' C Us, then
f(E) = f(F) = Dy,. Note that ENF = (), Dy, is irreducible between y
and some point yg # y and we may suppose that Dy, # Y. The proof is
complete.

O

In [6, Theorem 4.3, p. 243] it is proved that 2/ is open if and only if
f is open. Furthermore, there is an open map f such that C,(f) is not
open, for any n € N [4, Remark 9, p. 786].

Theorem 3.2. Let f : X = Y be a map between continua and let n > 2.
If Co(f) : Cp(X) — Cp(Y) is open, then f is a homeomorphism.
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Proof. Let f : X — Y be a map between continua and let n > 2,
such that C,(f) : Ch(X) — Co(Y) is open. Suppose that f is not a
homeomorphism and take a point y € Y such that |f~!(y)| > 1, for
some point y € Y. Hence, there are two subcontinua D and E of X
such that DN E =0 and f(D) = f(E) = L, where L is an irreducible
continuum between y and yg, where y # yo, by Theorem 3.1. Notice that
L is a nondegenerate subcontinuum of Y and D\ (f~(y)U f~(yo)) # 0.
Let d € D\ (f~*(y) U f~1(y0)). We consider two cases:

1. n = 2. Observe that {d} and f~!(y) UEU f~!(yo) are disjoint and
closed subsets of X. Thus, there are two open and disjoint sets U
and V of X such that d € U and f~'(y) UE U f~1(yg) C V. We
show that Ca(f)((U,V)2) is not open. Note that {d}UE € (U, V).
Therefore, Co(f)({d} UE) =L € Co(f)((U,V)2).

Let v be a Whitney map in C'(X) (see Theorem 2.6). Since {y} and
{yo} are subsets of L, there are two segments o1, 03 : [0,1] — C(X),
with respect to p, from {y} to L and from {yo} to L, respectively,
by Theorem 2.7. Since o1(1) = o2(1) = L, it is not difficult to
prove that there exists a point s € [0, 1] such that o1(s)Noa(s) # 0
and o1(t) Noa(t) = 0, for each ¢t < s. Observe that o1(0) U o2(0) =
{y,y0}. Hence, s > 0. Since L is irreducible between y and yo,
and y,y0 € o1(s) U oa(s), we have that o1(s) U oa(s) = L. Let
{tm }men be an increasing sequence in [0, 1] such that lim,, 0ty =
s. Clearly, o1(tm) U oa(ty) € Co(Y) \ C(Y), for each m € N. We
denote Ly, = 01(tm)Uo2(ty,). Since o1 and o9 are both continuous
function, and lim,, s t;, = S, we have that lim,, oo Ly, = L.

We show that L, ¢ Ca(f)((U,V)2), for any m € N. Suppose that
there exists D € (U, V) such that Cao(f)(D) = Ly, for some k € N.
Since UNV =0, DNU #  and DNV # (), D has two components.
Let E and F' be the components of D such that ¥ C U and F C V.
Note that y and yo belong to Li. Thus, DN f~'(y) # 0 and
DA Y yo) # 0. Since U N (f~1(5) U~ (30) = 0 and B C U,
we have that F'N f~1(y) # 0 and F N f~(yo) # 0. Hence, f(F)
is connected such that y,yo € f(F') C Lg, but this contradicts the
fact that y and yo belong to different components of Lj. Thus,
L, ¢ Co(f)((U,V)2), for any m € N. Since limy, o0 Lin = L
and L € Cy(f)((U,V)2), we have that L is not an interior point of
Ca(f)((U, V)a).

2. n > 2. Observe that L # Y by Theorem 3.1. Hence, X \ f~(L) #



Bol. Mat. 16(2), 115-123 (2009) 122

(. Let 21,22, -+ ,p—3 and 2 be different points in X \ f~1(L).
Let U, V,Wy,--- ,W,_3 and W,,_o be open and disjoint subsets
of X such that d € U, f~'(y) UE U f~Y(yo) C V and z; € W;,
for each i € {1,2,---,n — 2}. Let us remind that each point in
(U, V,Wy,--- ,Wy_2), has n components. Therefore, using an ar-
gument similar to that in the case n = 2 in 1, we may conclude
that Cp(f)((U,V, Wy, --- ,Wp_2)p) is not an open set.

Thus Cy,(f) is not open, for any n > 2, by 1 and 2. Hence, |f~(y)| =
1 for each y € Y. Since f is defined between continua, f is closed.
Therefore, f is a homeomorphism.

O]

Corollary 3.3. Let f : X — Y be a map between continua and let n > 2.
The following conditions are equivalent:

1. C,(f) is open;
2. f is a homeomorphism;
3. Cu(f) is a homeomorphism.

Proof. That 1 implies that 2 follows from Theorem 3.2. Using [4, The-
orem 46, p. 801], we have that 2 implies that 3. Finally, since every

homeomorphism is open, we have that 3 implies that 1.
O
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