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Openness of the induced map Cn(f)
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Dada una función continua entre espacios métricos compactos f : X → Y ,

es posible definir la función inducida entre los hiperespacios de dimensión

n Cn(f) : Cn(X) → Cn(Y ) para cada entero positivo n. Sean A y

B clases de funciones continuas. Un problema general es encontrar las

relaciones entre las siguientes dos afirmaciones: 1. f ∈ A; 2. Cn(f) ∈ B.
Se sabe que 1 y 2 son condiciones equivalentes si A y B son la clase de

homeomorfismos. Si A y B son la clase de funciones abiertas, entonces

2 implica 1. Además, existe una función abierta f tal que Cn(f) no es

abierta. Además, si Cn(f) es abierta y n ≥ 3, entonces f es abierta y

monótona. Nuestro principal resultado es el Teorema 3.2, en el cual se

demuestra que si la función inducida Cn(f) es abierta para algún n ≥ 2,

entonces f es un homeomorfismo.

Palabras Claves: continuos, hiperespacios de continuos,

funciones inducidas, funciones abiertas.

Given a map between compact metric spaces f : X → Y , it is possible to

induce a map between the n–fold hyperspaces Cn(f) : Cn(X) → Cn(Y )

for each positive integer n. Let A and B be classes of maps. A general

problem is to find the interrelations between the following two statements:

1. f ∈ A; 2. Cn(f) ∈ B. It is known that 1 and 2 are equivalent

conditions if both A and B are the class of homeomorphisms. If A and

B are the class of open maps, then the openness of Cn(f) implies the

openness of f . Furthermore, there exists an open map f such that Cn(f)

is not open. Moreover, if Cn(f) is open and n ≥ 3, then f is both

open and monotone. Our main result is Theorem 3.2, where we prove

that if the induced map Cn(f) is an open map, for n ≥ 2, then f is a

homeomorphism.
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1 Introduction

A continuum is a nonempty, compact, connected and metric space. For

a continuum X and for a positive integer n we denote by Cn(X) the

hyperspace of all nonempty closed subsets of X with at most n compo-

nents. Given a map f : X → Y between continua X and Y , we define

the induced map Cn(f) : Cn(X) → Cn(Y ) by Cn(f)(A) = f(A) [4, p.

783].

A map f : X → Y is called open if f maps every open set in X onto

an open set in Y . It is known that if Cn(f) is open, for some positive

integer n, then f is also an open map [4, Theorem 8, p. 786].

There are some works in which the openness of Cn(f) has been stud-

ied ([1], [2], [3], [5] and [6] for n = 1, and [4] for n ≥ 1). In [3, Question

4, p. 68] the following question is asked:

Question 1.1. What (locally connected) continua X have the property

that if f is a map of X onto a continuum Y such that the induced map

C1(f) : C1(X) → C1(Y ) is open, then f is a homeomorphism?

There are some partial answers to Question 1.1: In [5, Theorem 1,

p. 3729] it is proved that if C1(f) is open, where f is defined between

locally connected continua, then f is monotone. Thus, if f is defined

between hereditarily locally connected continua such that C1(f) is open,

then f is a homeomorphism [5, Corollary 2, p. 3730]. It is known that if

X is a fan, then we have a positive answer to Question 1.1 [3, Theorem 9,

p. 70]. Recently, we expanded [3, Theorem 9, p. 70] proving that if f is

defined between dendroids and C1(f) is open, then f is a homeomorphism

[2, Theorem 3.4, p. 233]. It is important to emphasize that there are

maps f defined between continua such that C1(f) is open and f is not a

homeomorphism [5, Example 3, p. 3730], even when f is defined between

locally connected continua [3, Corollary 19, p. 73].

If n ≥ 1, then we know that [4, Theorem 10, p. 786] generalizes [5,

Theorem 1, p. 3729] proving that f is monotone, if Cn(f) is open and f

is defined between locally connected continua, for any n ∈ N.
It is very natural to ask, what does it happen if we change 1 by any

positive integer n in Question 1.1?

Our goal is to prove that if Cn(f) is an open map and n ≥ 2, then f

is a homeomorphism (see Theorem 3.2).
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2 Definitions

If (X, d) is a metric space, then given A ⊂ X, the interior, the closure

and the boundary of A are denoted by IntX(A), ClX(A) and BdX(A),

respectively. The cardinality of A is denoted by |A|. The symbol N
denotes the set of positive integers. A map is assumed to be a continuous

function.

Remark 2.1. Here every map will be assumed surjective and defined

between nondegenerate continua.

Let X be a continuum and let A and B be closed subsets of X. We

say that C ⊂ X is irreducible between A and B provided that C ∩A 6= ∅,
C ∩B 6= ∅, and no proper subcontinuum of C intersects both A and B.

Definition 2.2. Let {Ai}∞i=1 be a sequence of subsets of X. We define

the inferior limit of {Ai}∞i=1, denoted by lim infi→∞Ai, and the superior

limit of {Ai}∞i=1, denoted by lim supi→∞Ai, as follows:

1. lim infi→∞Ai = {x ∈ X : for any open U in X such that x ∈
U,U ∩Ai 6= ∅ for all but finitely many i};

2. lim supi→∞Ai = {x ∈ X : for any open U in X such that x ∈
U,U ∩Ai 6= ∅ for infinitely many i};

We say that {Ai}∞i=1 is convergent to A in X, which we denote by

limi→∞Ai = A, provided that lim infi→∞Ai = A = lim supi→∞Ai.

A proof of the following result may be found in [11, Theorem 4.32,

p. 130].

Theorem 2.3 (Eilenberg). Let f : X → Y be a map between continua.

Then f is an open map if and only if limn→∞ f−1(yn) = f−1(y) for each

sequence {yn}∞n=1 such that limn→∞ yn = y.

Eilenberg’s theorem is a characterization of open maps and may be

written in the following way:

Theorem 2.4. Let f : X → Y be a map between continua. Then f is

open if and only if for each sequence {yn}n∈N in Y such that limn→∞ yn =

y, for some point y ∈ Y , and for any x ∈ f−1(y) there exists a sequence

{xn}n∈N in X such that limn→∞ xn = x and xn ∈ f−1(yn), for each

n ∈ N.
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Proof. Suppose that f : X → Y is an open map between continua. Let

{yn}n∈N be a sequence in Y such that limn→∞ yn = y for some y ∈ Y .

Let x ∈ f−1(y). We know that limn→∞ f−1(yn) = f−1(y), by Theorem

2.3.

Let {Un}n∈N be a sequence of open subsets of X such that x ∈
Un, Un+1 ⊂ Un, for each n ∈ N, and ∩∞

n=1Un = {x}. Since x ∈
lim infn→∞ f−1(yn), for each m ∈ N, there exists km ∈ N such that

Um ∩ f−1(yn) 6= ∅ for each n ≥ km. Without loss of generality, we may

assume that kj < k`, if j < `. We define the sequence {xn}∞n=1 in X as

follows:

1. xn ∈ f−1(yn) if n < k1;

2. xn ∈ f−1(yn) ∩ Um if km ≤ n < km+1.

Clearly, limn→∞ xn = x and f(xn) = yn for all n ∈ N. The converse

implication follows from Theorem 2.3.

Given a continuum X, we consider the following hyperspaces of X:

1. 2X = {A ⊂ X : A is closed and nonempty};

2. Cn(X) = {A ∈ 2X : A has at most n components}, n ∈ N.

2X is topologized with the Vietoris topology [7, p. 3], which is gene-

rated by the collection of sets 〈U1, U2, · · · , U`〉, where U1, U2, · · · , U` are

open sets in X and

〈U1, U2, · · · , U`〉 = {A ∈ 2X : A ⊂ ∪`
i=1UiandA ∩ Ui 6= ∅ for each i} .

Clearly, Cn(X) is a subspace of 2X . The space Cn(X) is called the

n–fold hyperspace of X. It is well known that if X is a continuum, then

both 2X and Cn(X) are continua. The reader may consult [7] and [8] for

general information about hyperspaces.

Notation 2.5. We denote 〈U1, U2, · · · , U`〉∩Cn(X) by 〈U1, U2, · · · , U`〉n
and write C(X) instead of C1(X).

Let X be a continuum. A Whitney map for C(X) is a map µ :

C(X) → [0, 1] that satisfies the following two conditions:
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1. for each A,B ∈ C(X) such that A ⊂ B and A 6= B, µ(A) < µ(B);

2. µ(A) = 0 if and only if |A| = 1.

In [7, Theorem 13.4, p. 107] the following important theorem is

proved.

Theorem 2.6. If X is a continuum, then there exists a Whitney map

for the hyperspace C(X).

Let µ be a Whitney map for C(X). Let A0, A1 ∈ C(X). A map

σ : [0, 1] → C(X) is said to be a segment in C(X) with respect to µ from

A0 to A1 provided that σ has the following three properties:

1. σ(0) = A0 and σ(1) = A1;

2. µ(σ(t)) = (1− t)µ(σ(0)) + tµ(σ(1)) for each t ∈ [0, 1];

3. σ(t) ⊂ σ(s) whenever 0 ≤ t ≤ s ≤ 1.

The following result may be found in [7, Theorem 16.9, p. 131].

Theorem 2.7. Let X be a continuum and let µ be a Whitney map for

C(X). Let A0, A1 ∈ C(X). Then there is a segment with respect to µ

from A0 to A1 if and only if A0 ⊂ A1.

Let f : X → Y be a map between continua. Then the function

2f : 2X → 2Y given by 2f (A) = f(A) for each A ∈ 2X , is called the

induced map between 2X and 2Y . The function 2f |Cn(X) is denoted by

Cn(f) and it is called the induced map between the hyperspaces Cn(X)

and Cn(Y ). In [7, Lemma 13.3, p. 106] it is shown that 2f is a map.

Since 2f (Cn(X)) ⊂ Cn(Y ), Cn(f) is a map between Cn(X) and Cn(Y ),

for each n ∈ N.

3 Openness of Cn(f) for n ≥ 2

We begin this section with a theorem that will be used in the proof of

our main result.

Theorem 3.1. Let f : X → Y be a map between continua and let n ∈ N,
such that Cn(f) : Cn(X) → Cn(Y ) is open. If there is a point y ∈ Y

such that |f−1(y)| > 1, then there exist two subcontinua D and E of X

such that D ∩ E = ∅ and f(D) = f(E) = L, where L is a proper and

irreducible subcontinuum between y and some point y0 6= y of Y .
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Proof. Let f : X → Y be a map between continua and let n ∈ N such

that Cn(f) : Cn(X) → Cn(Y ) is open. Let b1, b2, · · · , bn−1 and y be

different points in Y such that |f−1(y)| > 1. Let a1, a2, · · · , an−1, x1 and

x2 be points in X such that f(ai) = bi, for each i ∈ {1, 2, · · · , n − 1},
and x1, x2 ∈ f−1(y), where x1 6= x2. We denote by Bm the open ball

in Y about y of radius 1
m . Let Cm be the component of ClY (Bm) such

that y ∈ Cm. Notice that Cm ∩ BdY (Bm) 6= ∅, by [10, Theorem 5.4,

p. 73]. Let Dm be an irreducible subcontinuum of Cm between y and

some point of BdY (Bm) [10, Proposition 11.30, p. 212]. Observe that

limm→∞Dm = {y}. Hence, we have that:

lim
m→∞

(Dm ∪ {b1, b2, · · · , bn−1}) = {y, b1, b2, · · · , bn−1} .

Since {x1, a1, · · · , an−1} and {x2, a1, · · · , an−1} both belong to

Cn(f)
−1({y, b1, · · · , bn−1}), by Theorem 2.4, there are two

sequences {Em}m∈N and {Fm}m∈N of Cn(X) such that

limm→∞Em = {x1, a1, · · · , an−1}, limm→∞ Fm = {x2, a1, · · · , an−1} and:

Em, Fm ∈ Cn(f)
−1(Dm ∪ {b1, b2, · · · , bn−1}), for each m ∈ N .

Let U1, U2, V1, · · · , Vn−2 and Vn−1 be open and pairwise disjoint sub-

sets ofX such that x1 ∈ U1, x2 ∈ U2 and ai ∈ Vi for each i ∈ {1, 2, · · · , n−
1}. Thus, there is ` ∈ N such that Ek ⊂ U1 ∪ V1 ∪ · · · ∪ Vn−1 and

Fk ⊂ U2 ∪ V1 ∪ · · · ∪ Vn−1, for each k ≥ ` [11, Theorem 7.2, p. 12].

Hence, both Ek and Fk have exactly n components, for each k ≥ `. Let

k0 be a sufficiently large number such that if E and F are the compo-

nents of Ek0 and Fk0 , respectively, such that E ⊂ U1 and F ⊂ U2, then

f(E) = f(F ) = Dk0 . Note that E ∩ F = ∅, Dk0 is irreducible between y

and some point y0 6= y and we may suppose that Dk0 6= Y . The proof is

complete.

In [6, Theorem 4.3, p. 243] it is proved that 2f is open if and only if

f is open. Furthermore, there is an open map f such that Cn(f) is not

open, for any n ∈ N [4, Remark 9, p. 786].

Theorem 3.2. Let f : X → Y be a map between continua and let n ≥ 2.

If Cn(f) : Cn(X) → Cn(Y ) is open, then f is a homeomorphism.
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Proof. Let f : X → Y be a map between continua and let n ≥ 2,

such that Cn(f) : Cn(X) → Cn(Y ) is open. Suppose that f is not a

homeomorphism and take a point y ∈ Y such that |f−1(y)| > 1, for

some point y ∈ Y . Hence, there are two subcontinua D and E of X

such that D ∩ E = ∅ and f(D) = f(E) = L, where L is an irreducible

continuum between y and y0, where y 6= y0, by Theorem 3.1. Notice that

L is a nondegenerate subcontinuum of Y and D \ (f−1(y)∪f−1(y0)) 6= ∅.
Let d ∈ D \ (f−1(y) ∪ f−1(y0)). We consider two cases:

1. n = 2. Observe that {d} and f−1(y)∪E ∪ f−1(y0) are disjoint and

closed subsets of X. Thus, there are two open and disjoint sets U

and V of X such that d ∈ U and f−1(y) ∪ E ∪ f−1(y0) ⊂ V . We

show that C2(f)(〈U, V 〉2) is not open. Note that {d}∪E ∈ 〈U, V 〉2.
Therefore, C2(f)({d} ∪ E) = L ∈ C2(f)(〈U, V 〉2).
Let µ be a Whitney map in C(X) (see Theorem 2.6). Since {y} and

{y0} are subsets of L, there are two segments σ1, σ2 : [0, 1] → C(X),

with respect to µ, from {y} to L and from {y0} to L, respectively,

by Theorem 2.7. Since σ1(1) = σ2(1) = L, it is not difficult to

prove that there exists a point s ∈ [0, 1] such that σ1(s)∩σ2(s) 6= ∅
and σ1(t)∩ σ2(t) = ∅, for each t < s. Observe that σ1(0)∪ σ2(0) =

{y, y0}. Hence, s > 0. Since L is irreducible between y and y0,

and y, y0 ∈ σ1(s) ∪ σ2(s), we have that σ1(s) ∪ σ2(s) = L. Let

{tm}m∈N be an increasing sequence in [0, 1] such that limm→∞ tm =

s. Clearly, σ1(tm) ∪ σ2(tm) ∈ C2(Y ) \ C(Y ), for each m ∈ N. We

denote Lm = σ1(tm)∪σ2(tm). Since σ1 and σ2 are both continuous

function, and limm→∞ tm = s, we have that limm→∞ Lm = L.

We show that Lm /∈ C2(f)(〈U, V 〉2), for any m ∈ N. Suppose that

there exists D ∈ 〈U, V 〉2 such that C2(f)(D) = Lk, for some k ∈ N.
Since U ∩V = ∅, D∩U 6= ∅ and D∩V 6= ∅, D has two components.

Let E and F be the components of D such that E ⊂ U and F ⊂ V .

Note that y and y0 belong to Lk. Thus, D ∩ f−1(y) 6= ∅ and

D ∩ f−1(y0) 6= ∅. Since U ∩ (f−1(y) ∪ f−1(y0)) = ∅ and E ⊂ U ,

we have that F ∩ f−1(y) 6= ∅ and F ∩ f−1(y0) 6= ∅. Hence, f(F )

is connected such that y, y0 ∈ f(F ) ⊂ Lk, but this contradicts the

fact that y and y0 belong to different components of Lk. Thus,

Lm /∈ C2(f)(〈U, V 〉2), for any m ∈ N. Since limm→∞ Lm = L

and L ∈ C2(f)(〈U, V 〉2), we have that L is not an interior point of

C2(f)(〈U, V 〉2).

2. n > 2. Observe that L 6= Y by Theorem 3.1. Hence, X \ f−1(L) 6=
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∅. Let x1, x2, · · · , xn−3 and xn−2 be different points in X \ f−1(L).

Let U, V,W1, · · · ,Wn−3 and Wn−2 be open and disjoint subsets

of X such that d ∈ U, f−1(y) ∪ E ∪ f−1(y0) ⊂ V and xi ∈ Wi,

for each i ∈ {1, 2, · · · , n − 2}. Let us remind that each point in

〈U, V,W1, · · · ,Wn−2〉n has n components. Therefore, using an ar-

gument similar to that in the case n = 2 in 1, we may conclude

that Cn(f)(〈U, V,W1, · · · ,Wn−2〉n) is not an open set.

Thus Cn(f) is not open, for any n ≥ 2, by 1 and 2. Hence, |f−1(y)| =
1 for each y ∈ Y . Since f is defined between continua, f is closed.

Therefore, f is a homeomorphism.

Corollary 3.3. Let f : X → Y be a map between continua and let n ≥ 2.

The following conditions are equivalent:

1. Cn(f) is open;

2. f is a homeomorphism;

3. Cn(f) is a homeomorphism.

Proof. That 1 implies that 2 follows from Theorem 3.2. Using [4, The-

orem 46, p. 801], we have that 2 implies that 3. Finally, since every

homeomorphism is open, we have that 3 implies that 1.
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[8] S. Maćıas, Topics on Continua, Pure and Applied Mathematics

Series, Vol. 275 (Chapman & Hall/CRC, Taylor & Francis Group,

Boca Raton, London, New York, Singapore, 2005).
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