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Partial projective representations and the
partial Schur multiplier: a survey

Representaciones parciales projectivas y el multiplicador parcial de
Schur

Hector Pinedo1,a

Abstract. We present a short survey on partial projective representations,
the partial Schur multiplier and related notions.
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Partial representations of groups were introduced in the theory of C∗-algebras
by R. Exel [15, 16], and independently by J. Quigg and I. Reaburn [27] as an
important ingredient of a new approach to C∗-algebras generated by partial
isometries on a Hilbert space (see the survey [5]).

This concept has a strong relation to partial actions, [16, 6, 18]. Kellendok
and Lawson in [22] pointed out several branches of mathematics where partial
actions are relevant, for instance R-trees [28, 20], model theory, the profinite
topology of groups and their relation [21, 3], graph immersions and inverse
semigroups [22], topology and group presentations [?, 1].

Amenability was one of the ingredients in [18], where a machinery was
developed, based on the interaction between partial actions and partial repre-
sentations, permitting to study representations of partial crossed products as
well as their ideals. This rich interaction was used in [17] to define and inves-
tigate the Cuntz-Krieger algebras with infinite number of states, and then in
[19] to study their KMS state structure.

We notice that the term partial action was used in the litterature in a
different sense. In our sense partial actions are defined as follows.
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Definition 0.1. Let G be a group with identity element 1 and X a set, a
partial action α of G on X is a family of bijections α = {αg : Xg−1 → Xg, },
where Xg ⊆ X , for all g ∈ G, and:

• X1 = X and α1 is the identity of X .

• αgh is an extension of αg ◦ αh, for all g, h ∈ G.

Another key tool that relates partial actions and partial representations are
inverse semigroups, the most important is the symmetric inverse semigroup
I(X ), which consists of partial bijections of X , that is bijections between sub-
sets of X , where the multiplication is given by composition. For a partial
bijection ψ we denote by dom(ψ) and ran(ψ) its domain and range, respec-
tively. Given ψ, φ ∈ I(X ), then ψφ is the composition of partial maps in the
largest domain where it makes sense, that is

dom(ψφ) = φ−1(ran(φ) ∩ dom(φ)) and ran(ψφ) = ψ(ran(φ) ∩ dom(φ)).

With respect to this operation I(X ) becomes an inverse monoid with zero, the
zero element being is the map map ∅ → ∅. Thus similar to classical actions
a partial action can be seen as a map α : G 3 g 7→ αg ∈ I(X ), and the next
holds.

Proposition 0.2. [16] A map α : G 3 g 7→ αg ∈ I(X ) induces a partial action
of G in X , if and only if:

• α(1), is the identity of X .

• α(g)α(h)α(h−1) = α(gh)α(h−1).

If the items above hold, then

• α(g−1)α(g)α(h) = α(g−1)α(gh),

for all g, h ∈ G.

Thus the following is natural.

Definition 0.3. Let G be a group and S a monoid or an algebra over a field
K. A partial representation of G is a map π : G→ S such that

• π(1) = 1S .

• π(g)π(h)π(h−1) = π(gh)π(h−1).

• π(g−1)π(g)π(h) = π(g−1)π(gh),

for all g, h ∈ G.
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Similarly to the case of usual representations, there is an algebra, called the
partial group algebra, and denoted KparG, which controls the partial repre-
sentations of a group G. The algebra KparG, is exactly the semigroup algebra
KS(G), where S(G) is the Birget-Rhodes expansion of G (see [22, 2]). Taking
the canonical partial representation

ι : G ∈ g → ({1, g}, g) ∈ KparG, (1)

We have the following properties of KparG.

Proposition 0.4. Let G be a group. Then

• [7] For any partial representation π of G on a K-algebra A, there is a
unique K-algebra homomorphism π̃ : KparG→ A such that π̃ι = π.

• [7, 8] If G is finite, denote by C a full set of representatives of the conju-
gacy classes of subgroups of G. Then the partial group algebra of G over
K is of the form:

KparG ∼=
⊕
H∈C

1≤m≤(G :H)

cm(H)Mm(KH), (2)

where cm(H) =

1
m (G : NG(H))

((G:H)−1
m−1

)
−

∑
H<B≤G
(B :H) |m

m/(B : H)cm/(B :H)(B)

(G : NG(B))


and cm(H)Mm(KH) means the direct sum of cm(H) copies of Mm(KH).

Algebraic results on partial representations appeared also in [16], [29], [30],
[22] and [6], whereas structural results on partial representations and the cor-
responding partial group algebras for finite groups, such as the isomorphism
problem for partial group algebras where obtained in [7], [8], [13] and most
recently in [12]. The case of arbitrary groups was considered in [14], where the
study of partial representations was reduced to some “purely partial” represen-
tations, called elementary.

Recall that a projective representation of a group G can be defined as a
homomorphism from G to the projective linear group PGLn(K). The concept
of a partial projective representation of a group G over a field K was introduced
and studied in [9], as a first step to develop a new cohomological theory based on
partial actions. More specifically, let PMn(K) be the monoid of the projective
n × n matrices over a field K, i.e., PMn(K) = Mn(K)/λ, where λ is the
congruence given by

AλB ⇐⇒ A = cB for some c ∈ K∗.

Then a partial projective representation of G is a map G→Mn(K) such that
the map G → PMn(K) s a partial homomorphism, where G → PMn(K) is
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obtained as a composition of G → Mn(K) with the natural homomorphism
Mn(K)→ PMn(K).

Taking into consideration the semigroup S(G), we have the next:

Proposition 0.5. [9] A map Γ: G→Mn(K) is a partial projective represen-
tation exactly when Γ = Γ̃ι, for some projective representation Γ̃ : S(G) →
Mn(K), and ι is given by (1).

Partially defined factor sets appeared naturally as one may notice in the
next.

Proposition 0.6. [9] Given a partial projective representation Γ: G→Mn(K),
there is a unique partially defined function σ : G×G→ K∗, such that

domσ = {(x, y) | Γ(x)Γ(y) 6= 0}, (3)

and
Γ(x−1)Γ(x)Γ(y) = Γ(x−1)Γ(xy)σ(x, y)

and
Γ(x)Γ(y)Γ(y−1) = Γ(xy)Γ(y−1)σ(x, y),

for every (x, y) ∈ domσ.

Definition 0.7. The function σ associated with a partial projective represen-
tation Γ as above is called a factor set of Γ or a partial factor set of G.

For convenience, we set σ(x, y) = 0 when (x, y) 6∈ domσ (making σ totally
defined), and keep the notation domσ for (3).

One may expect that partial factor sets satisfy the “cohomological equality”.
But this is true only in a restricted form.

Proposition 0.8. [9] Let Γ: G → Mn(K), be a partial projective representa-
tion with a partial factor set σ. Then For x, y, z ∈ G such that Γ(x)Γ(y)Γ(z) 6=
0 we have σ(x, y)σ(xy, z) = σ(x, yz)σ(y, z).

However, partial factor sets of G form a commutative inverse semigroup
with respect to the pointwise multiplication

στ(x, y) = σ(x, y)τ(x, y), for all x, y ∈ G,

and this semigroup is denoted by pm(G). Equivalence between partial factor
sets is defined as in the classical case, that is, σ, τ ∈ pm(G) are cohomologous
or equivalent, if and only if, there exists ρ : G→ K∗, such that

σ(x, y) = τ(x, y)ρ(x)ρ(y)ρ(xy)−1,

for all x, y ∈ G. This leaded to the definition of the corresponding partial
Schur multiplier pM(G). It is a generalization of the classical Schur multiplier
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M(G) = H2(G, C∗), and as in the classical case, a key problem in the theory of
partial projective representations of G is the study of the structure of pM(G).

Unlike the usual Schur multiplier M(G), the partial Schur multiplier pM(G)
is not a group, but it is a semilattice of abelian groups called components. To
describe this components one needs the abstract semigroup T generated by the
symbols g, h, t with relations

g2 = h2 = 1, (gh)3 = 1, t2 = t, gt = t, tght = thgh, tht = 0.

Then there is an action of T on G×G given by the transformations

g : (x, y) 7→ (xy, y−1). (4)

h : (x, y) 7→ (y−1, x−1). (5)

t : (x, y) 7→ (x, 1). (6)

Using this transformations one gets the following:

Theorem 0.9. [9] The semigroups pm(G) and pM(G) are semilattices of
(abelian) groups

pm(G) =
⋃

X∈C(G)

pmX(G), pM(G) =
⋃

X∈C(G)

pMX(G),

where C(G) is the semilattice of the T -subsets from G × G with respect to
set-theoretic intersection, pmX(G) is the group of partial factor sets of G with
domain X and pMX(G) consists of cohomology classes in pmX(G).

Working over algebraically closed fields, the classification of the components
was started in [10, 11]. Indeed, as a first step we have an explicit description
of partial factor sets.

Theorem 0.10. [11] Let K be an algebraically closed field and τ be a partial
factor set of G with domain X. Then there is a partial factor set σ, cohomol-
ogous to τ , such that for all (a, b) ∈ X

σ(a, b)σ(b−1, a−1) = 1K , (7)

σ(a, b) = σ(b−1a−1, a) = σ(b, b−1a−1), (8)

σ(a, 1) = 1K . (9)

Conversely, if σ : G × G → K is a partially defined map with domσ ∈ C(G)
such that (7), (8) and (9) are satisfied for any (a, b) ∈ domσ, then σ is a
partial factor set of G.

For every X ∈ C(G), the subgroup of pm̃X(G) formed by all the maps
σ : G × G → K satisfying (7) - (9) is denoted by pm̃X(G), then any element
in pm̃X(G) is determined by its values in the set X̃ = X ∩ {(x, y) ∈ G × G |
x, y, xy 6= 1}. Hence equations (4) - (5) induce an action of the symmetric
group S3 on X̃, the orbits of this action are called effective orbits of X. Thus
one comes to:
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Corollary 0.11. [11] Let X ∈ C(G). Then:

• Every partial factor set of pmX(G) is equivalent to some element of
pm̃X(G).

• The kernel NX = {σ ∈ pm̃X(G) | σ ∼ 1} of the natural epimorphism
pm̃X(G)→ pMX(G) consists of those σ : G×G→ K for which there is
ρ : G×G→ K∗ satisfying the following conditions:

ρ(1) = 1K , ρ(a)ρ(a−1) = 1, for every a ∈ G with (a, 1) ∈ X and

σ(a, b) =

{
ρ(a)ρ(b)ρ(ab)−1, if (a, b) ∈ X,
0, if (a, b) 6∈ X.

• Let s = s(G,X) be the cardinality of the set of effective S3-orbits of X
and {(ai, bi)}1≤i≤s a full set of representatives of these orbits. Then the
map

φ : (K∗)s 3 x 7→ σx ∈ pm̃X(G),

in which x = (xi)1≤i≤s and σx(ai, bi) = xi, is an isomorphism of multi-
plicative groups.

• For every domain Y ∈ C(G) such that Y ⊇ X, there is a group epimor-
phism ψY

X : pMY (G) → pMX(G). In particular, pMX(G) is an epimor-
phic image of the total component pMG×G(G).

In view of last item above, particular attention was payed to pMG×G(G).
This component contains M(G), but in general does not coincide with it, in
particular, it is known that M(G) is always a finite group, (see [?]) whereas
pMG×G(G) can be infinite, even for groups of small order. For instance we
have.

Proposition 0.12. Let K be the base field of partial projective representations
of G, if K is algebraically closed, we have:

(i) [11, ?] If G = Cn is the cyclic group of order n, then

• For 1 ≤ n ≤ 3, we have pMCn×Cn
(Cn) ∼= C1.

• If n ≥ 4, then pMCn×Cn
(Cn) ∼= (K∗)Tn , where

Tn =

{
(n−1)(n−2)

6 , if 3 - n,
(n−1)(n−2)+4

6 , if 3 | n.

(ii) [23] If G is the elementary abelian 2-group of order 2n, then: pMX(G) ∼=
(K∗)s, where s is the number of effective orbits in X.

(iii) [4] When G is the dihedral group D2m = 〈a, b | am = b2 = (ab)2 = 1〉,m ∈
N, then

pMD2m×D2m
(D2m) ' (K∗)dm−bm−1

2 c,

for some dm ∈ N.
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(iv) [26] When G = S3 we have

pMS3×S3(S3) ' (K∗)3.

(v) [4] In the case of the infinite dihedral group D∞ = 〈a, b | b2 = (ab)2 = 1〉
we have

pMD∞×D∞(D∞) ' (K∗)(N×N)×(N×Z).

(vi) [4] For Dicyclic groups G = Dicm = 〈a, b | a2m = 1, b2 = am, b−1ab =
a−1〉, one gets

pMG×G(G) ' (K∗)dcm−2m+1,

where dcm =

{
(4m−1)(4m−2)+4

6 , if m ≡ 0 (mod 3),
(4m−1)(4m−2)

6 , if m 6≡ 0 (mod 3).

(vii) [4] Finally, for the integers, we get pMZ×Z(Z) ' (K∗)N.

Notice that if G is a finite cyclic group of order ≤ 5, then all the components
of pM(G) are trivial, and in this case we say that pM(G) is trivial or that G
has trivial Schur multiplier. We have the following.

Theorem 0.13. [24] Let G be a finite group. Then

• The partial Schur multiplier of G is trivial if and only if G is a cyclic
group of order ≤ 5.

• There is an isomorphism pMG×G(G) ∼= K∗ if and only if G ∼= C2 × C2.

In order to know in which way M(G) is contained in pMG×G(G), it is helpful
to state some conditions for a σ ∈ pm̃G×G(G) being a classical factor set. For
this we have.

Proposition 0.14. [24] A partial factor set σ, satisfies σ ∈ pm̃G×G(G) ∩
Z2(G,K∗), if and only if, σ verifies the 2-cocycle identity and σ(x, x−1) = 1,
for all x ∈ G.

It is also important to remark that domains of partial factor sets can
be formed by taking unions of domains of partial factor sets corresponding
to elementary partial representations [10]. To state this concept we recall
that for a finite group G one has a K-algebra homomorphism (see Propo-
sition 0.4 above) ψ : KparG → ⊕Ml(KH). Let Pr = Prl be the projec-
tion of ⊕Ml(KH) onto the matrix algebra Ml(KH). Consider also the map
ι : G 3 g 7→ ({1, g}, g) ∈ KparG. A function of the form

Γ = Pr ◦ ψ ◦ ι : G→Ml(KH)

is called an elementary partial representation of G and we shall say that the
set D = {(x, y) ∈ G × G |Γ(x) Γ(y) 6= 0} is an elementary domain. A natural
question is to wonder which finite groups contain only elementary domains.
For this we have the following:
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Proposition 0.15. [25] The finite groups containing only elementary domains
are C1, C2 and C3.
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