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ARTICULO

COMBINATION OF THEORETICAL MODELS
FOR EXCHANGE RATE FORECASTING

Maria Paula Bonel

Bonel, M. P. (2024). Combination of theoretical models for exchange rate
forecasting. Cuadernos de Economia, 43(92), 437-467.

This paper states that there are exchange rate forecasting gains when combining
in-sample data from different models based on economic theory. Data combination
is performed using Bayesian model averaging (BMA). Using pooled data by group
of countries (developed and emerging economies) generates accuracy gains in an
important amount of cases, with respect to forecasts that use country information.
Gains are larger for currencies of developed economies, but accuracy decreases as
the forecast horizon is extended. BMA models for developed countries tend to be
more “sparse” than emerging countries models.

Keywords: Bayesian model averaging; exchange rate; forecasting; model
uncertainty.
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Bonel, M. P. (2024). Combinacién de modelos tedricos para el prondstico de
tipo de cambio. Cuadernos de Economia, 43(92), 437-437.

Este articulo propone la existencia ganancias en la prediccion de tipo de cam-
bio cuando se combinan datos in-sample de diferentes modelos basados en la teo-
ria econémica. La combinacion se realiza mediante Bayesian Model Averaging.
Entrenar el modelo con informacion de otras economias genera ganancias de pre-
cision en una cantidad importante de casos, respecto a pronosticos que utilizan
solo informacién del pais. Mayores ganancias de precision se encuentran para
divisas de economias desarrolladas. Los modelos entrenados para paises desarro-
llados tienden a ser mas “escasos” que los modelos de paises emergentes.

Palabras clave: promedio modelo bayesiano; tipo de cambio; pronosticos macro-
econdmicos; incertidumbre del modelo.
JEL: Cl11, C30, C53, F31.
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INTRODUCTION

The forecast of macroeconomic variables plays a central role both in academic
studies and in the analysis of monetary and financial policy. Li and Chen (2014)
emphasise that having accurate forecasts helps to better understand the dynam-
ics of the economy. Any economic decision, such as the management of portfo-
lios and hedging strategies or monetary policies, necessarily implies establishing
beliefs about the evolution of macroeconomic variables.

Exchange rate forecasting presents additional difficulties. It is characterised by pre-
senting a puzzle related to a disconnection from its fundamentals. Meese and Rogoff
(1983) found that the estimates from a random walk were more accurate than the
forecasts from other models based on different economic theories. This resulted in
different theoretical models developed to explain exchange rate changes over time
(Fisher, 1896; Cassel, 1918; Dornbusch, 1976). Naturally, this problem is not for-
eign to the different conditions of the economy under study. Those models are a
starting point for the choice of predictors when forecasting. Recent empirical work
on exchange rate forecasting has found evidence of models that obtain more accu-
rate forecasts than a random walk, although there is consensus that the predictive
performance is sensitive to the choice of predictor, forecast horizon, sample period,
model and also the chosen evaluation method (Rossi, 2013).

As an alternative for dealing with the lack of knowledge around the true model,
the researcher can consider possible gains resulting from forecast combinations.
Timmermann (2006) states that in several empirical studies, combinations of fore-
casts have been found to achieve more accurate results on average than other
methods based on the selection of the best individual model ex ante. This happens
even when working with simple combinations that ignore correlations between
forecast errors. One of the possible causes of the forecast combination gains iden-
tified by the paper is the portfolio diversification argument. Due to the difficul-
ties in detecting structural changes in real time, it is plausible that combinations
of forecasts based on models with different degrees of adaptability outperform
individual model forecasts. Finally, individual forecast models may be subject to
unknown specification bias, causing forecast combinations to obtain results that
are more robust to such misspecification.

When selecting and combining forecasts, the forecaster’s uncertainty about the
true model and the known instability of macroeconomic fundamentals, initially
documented by Meese and Rogoff (1983), are explicitly addressed. In this paper
we will seek to study the predictive ability of different models using the Bayesian
model averaging (BMA) methodology, a particular case within forecast combina-
tion literature. This methodology is flexible enough to address both the problems
of variable selection and the combination of variables.

The main objective of this paper is to study whether there are forecasting gains,
with respect to a benchmark model, when combining fitted data from different
empirical models based on economic theory. From this, another question arises:
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which Bayesian models perform better for this task? The main results obtained
are summarised below. BMA models provide more accurate forecasts than ran-
dom walk, the benchmark model in the literature. This difference is statistically
significant for an important number of country and horizon combinations (1, 2
and 4 quarters ahead). Training the model with information from other countries
using pooled data generates accuracy gains in about 60% of the cases, with respect
to forecasts generated using country information at the individual country level.
This percentage is maintained throughout the different forecast horizons. Gains
in accuracy decrease as the forecast horizon is extended. A regularity found for
both country groups is that the BMA1 model tends to perform better. This model
is the least restrictive in terms of both coefficient constraint and model size, indi-
cating that the in-sample forecasts we generate under different theoretical mod-
els have relevant information for exchange rate estimation. By country group,
the gain is larger for developed countries. The model trained for developed coun-
tries is “sparser” than for emerging ones. The trained model, in both country pan-
els, becomes denser as the forecast horizon is extended. The analysis of average a
posteriori inclusion probabilities helps us to understand which theoretical models
tends to be selected for forecasting with the BMA methodology. Here, important
differences emerge between country groups. In the developed countries model, the
price growth differential model containing information for the previous 4 quar-
ters stands out strongly, while for emerging countries the interest rate differen-
tial model is also incorporated with high probability in the different estimation
horizons. Forecasting exercises on the direction of change (presented in an online
annex) also seem to yield positive results in forecast performance.

THEORETICAL MODEL SELECTION

This section reviews a selection of well-known theoretical models for exchange
rate forecasting. A brief literature review of each is given below. We also detail
the empirical specifications used to estimate each of the models under the ordi-
nary least squares (OLS) method recursively. This part of the work allows us to
obtain in-sample adjusted data for each of the theoretical models, which are then
combined using the for BMA methodology. Although these models are useful for
anticipating exchange rate movements in both large and small economies, it is also
true that the relevance of each of the models can vary with the specificity of each
economy. In this sense, the BMA methodology used later will allow us to adapt the
parameters of the model in order to obtain the best out-of-sample results.

Inflation differentials model

Relative purchasing power parity requires that the growth rates in the exchange
rate offset the differential between the growth rates of domestic and international
prices. Empirical evidence from out-of-sample estimation has mixed results.
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In their recent paper, Cheung et al. (2019) find that, when the forecast horizon
is one year or longer, there are some improvements in forecasting with price
fundamentals.

The specification of the model is determined as follows:

Sin 78 =, +ﬁ1t(ﬂ't,r—k_ﬂ:,r—k) + ﬂzt(s,—s[,,{) +ul+h,t (1)
where s ) is the logarithm of bilateral nominal exchange rate at time ¢, / is the
forecast horizon, h=1,2,4 quarters. We use four specifications for this model that
includexchange rate changes and inflation differentials. 7, —k and 7, * —k are the
domestic and foreign inflation rates in the last k quarters, respectively. In each
specification of the model, & takes the value 1, 2, 4 or 12 quarters. We will refer to
each of these models as PPP3, PPP6, PPP12 and PPP36, respectively.

Interest rate parity model

In 1896, Fisher conducted an analysis of how interest rates can be related to
expected changes in international currencies. This relationship is known as uncov-
ered interest rate parity (UIRP).

Cheung et al. (2005) and Alquist and Chinn (2008) argue that, although for some
countries rate parity obtains better predictions than the random walk model at long
horizons, its performance is never significantly better. Chinn and Meredith (2004)
and Molodtsova and Papell (2009) have reported slightly more positive results at
short horizons for a group of developed countries. Cheung et al. (2019) find that
interest rate parity rarely works well, but if it does, it does so over a longer hori-
zon, such as one to 5 years.

Following Molodtsova and Papell (2009), the interest rate differential model is
estimated using:

S,., =S, =a +ﬂt(, ) +u

L= 1+t (2)
where i and i, are the domestic and foreign nominal interest rates. Since we do not
constrain f# = I, or even its sign, this equation can be consistent with UIRP, where
a positive interest rate differential produces forecasts of exchange rate depreciation,
and the risk premium puzzle literature. Hereafter, we will refer to this model as UIP.

Monetary model

The monetary model, also called the asset model, holds that the exchange rate var-
ies in order to balance the international demand for assets stock rather than the
flow of demand for goods, as in more traditional views. According to the monetary
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model of exchange rate determination, bilateral exchange rate fluctuations should
reflect movements in relation to money, output, interest rates and prices between
the two countries. The monetary model was introduced during the 1970s in vari-
ous works such as Frenkel (1976), Dornbusch (1976), Frankel (1979) and, later,
Mussa (1982). It is based on a simple small open economy model where real out-
put is exogenous. The demand for real money is viewed as a function of income
and the interest rate. There are two approaches within this model depending on the
assumption made about price behaviour. We will focus on models that hold that
prices are sticky, at least in the short term.

Mark (1995) and Mark and Sul (2001) find strong and statistically significant
evidence in favour of the monetary model at long horizons (three to four years).
Some positive out-of-sample prediction results using monetary fundamentals were
found by Medel et al. (2015) for the UK and Euro area. Research has also found
that positive results depend on the sample period used (Rossi, 2013).

Below we describe the monetary model specification (SMON):

5, = 0+ B, = m* )+ By, v B~ %)+ B~ x )t 3

where m is the logarithm of money supply, y the real GDP, i and 7 represent the
interest and inflation rates respectively, and u is the error term. As in previous
cases, * indicates that the variable belongs to the foreign country. In this case, no
restriction is imposed on the coefficients since the theory does not provide clear
guidance as to the value of these coefficients. After incorporating the one-period
lags of fundamentals and differencing the equation above, we consider the follow-
ing forecasting equation:

sth—s =a+pAm —Am, )+ B,(Ay,— Ay )+ B, (Ai, — Ai, )+ @
B,Ar,— A )+ u+ht

where st + h — st is the forecast for the change in exchange rate in the next 2 =1,2,4
quarters and Ax, = x, —x,_ indicates the change in the previous quarter for a
variable x.

1

Taylor rule model

Taylor (1993) formalises the idea that the monetary authority sets the real interest
rate according to how inflation differs from its target level (the higher the infla-
tion, the more contractionary the monetary policy will be) and also according to
the output gap. That is, if output is below the potential output, monetary policy
will be more expansionary.

Molodtsova and Papell (2009) adapt this concept by taking the decisions in two
countries into account in order to analyse their relationship with the exchange rate
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through the output gap and inflation differentials. Cheung et al. (2019) also uses a
simple specification of this model. Results in Molodtsova and Papell (2009) show
that the Taylor rule model predicts the out-of-sample exchange rate significantly bet-
ter than the random model for several countries, although performance depends on
the exact specification. Some of the specifications that performed better include het-
erogeneous coefficients across countries and interest rate smoothing. Cheung et al.
(2019) find positive but not significant results except for the period 1983q1 2014q4.

Cheung et al. (2019) use the following regression to estimate the exchange rate
following the Taylor rule (TR) model:

Seen 5 :ﬁ0+ﬁ1 (yr_j\;;)—i_ﬂz (ﬂt_ﬂ:)+uz+h,t ()

where y, is the output gap. This equation uses inflation differentials as we assume
that the international inflation rate works as a nominal anchor.

External imbalances measures

There are several papers that highlight the importance of external imbalances vis-
a-vis changes in the exchange rate. Gourinchas and Rey (2007) argue that not
only the current account but the whole dynamic process of net exports, foreign
asset holdings and net foreign asset portfolio returns are important predictors of
exchange rates. When a country experiences a current account imbalance, the tra-
ditional intertemporal approach to the current account suggests that the country
will need to run surpluses of funds to reduce this imbalance. Gourinchas and Rey
(2007) argue, instead, that part of the adjustment can be made through a transfer
of wealth between that country and the rest of the world which occurs through a
depreciation in the value of its currency. They find empirical evidence in favour of
external imbalance measures as predictors of exchange rate.

Della Corte et al. (2012) find that the net foreign asset model can predict signif-
icantly better out-of-sample (effective) exchange rates than the random walk at
both long and short horizons. Alquist and Chinn (2008) find that in some subsam-
ples the (bilateral) exchange rates predicted from the net foreign assets model are
better than the random walk at short horizons for some countries. However, results
are less favourable at longer horizons.

We decided to use the following specification, hereafter referred to as CA, as
a simple way to address the relationship between external imbalances and the
exchange rate:

stth — st = B0 + flcat + ut+h,t (6)

where ca, represents the current account as a percentage of gross domestic product.
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Dense forecasting methods

The section described above makes it possible to count on different exchange rate
forecasts supported by theoretical models. In several cases, accuracy gains were
found related to random walk results, but we can also state that no unique model
arises as the true one. There is empirical evidence that affirms that combinations of
forecasts produce better estimates on average than methods based on the best (ex
ante) forecast model at the individual level (Timmermann, 2006).

In the context of exchange rate prediction, several recent empirical studies claim
to have found a relationship between exchange rates and macroeconomic fun-
damentals, although these relationships are often unstable or short-lived (Rossi,
2013). The empirical literature has also shown that combinations of exchange rate
forecasts perform better than models based on individual fundamentals (see, for
example, Della Corte et al. (2009)). In this context, it may be desirable to work
with techniques that can deal with uncertainty on forecasting models and predic-
tors’ selection.

There are different methodologies that aim to deal with the researcher’s lack of
knowledge around the best predictors of the exchange rate. This paper will focus
on “dense” prediction techniques. As Giannone et al. (2017) describe, it is recog-
nised in these cases that all possible explanatory variables may be important for
the prediction, although the impact of some of them may be small. Factor models,
Bayesian averaging models or Ridge regressions are examples of dense models.

Bayesian model averaging methodology (BMA) proposes a methodological frame-
work for generating combinations of forecasts by taking advantage of the informa-
tion gains contained in the different variables and therefore dealing with uncertainty.
BMA is essentially an application of Bayesian inference to model selection prob-
lems. The methodological section describes its methodology in detail.

Wright (2008) has used this methodology to study a set of developed country cur-
rencies and finds that, for most currency-horizon pairs, BMA forecasts using a suf-
ficiently high degree of shrinkage obtain a slightly smaller out-of-sample mean
square prediction error than the random walk benchmark. This paper, identified
as the main reference for the exercise, differs from our current work in two major
ways. Firstly, Wright (2008) studies the combination of different predictors and n
ot in-sample forecasts obtained through empirical models. The second difference
is that it only works with currencies of developed countries.

Bayesian model averaging

The lack of knowledge about the best model, coupled with parameter uncertainty,
is an important problem in econometrics. The Bayesian model averaging tech-
nique emerges as an alternative for dealing with this type of uncertainty. The meth-
odology we use is adapted from Wright (2008). In this paper, we evaluate the
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combination of eight predictors that are the in-sample forecasts based on theoreti-
cal models: PPP3, PP6, PPP12, PPP36, UIP, SMON, TR, and CA.

A set of n models is considered, M, ... M . The i-th model is indexed by a vector of
parameters 6. The researcher knows that one of these models is true, but she does
not know which one. Also, the researcher has prior beliefs about the probability
that the i-th model is correct. That probability is written as P(M). Subsequently,
the researcher observes the data, D, and updates her beliefs to compute the a pos-
teriori probability that the i-th model is correct:

___P(DIM,)P(M,)
P(Mi‘D)_Zj:lP(D‘M/)P(M,-) (7
where
P(D| Mi)=] P(D|0i, Mi)P(0i | Mi)d6i (8)

is the marginal likelihood of the i-th model. P(0|M) is the a priori density of the
parameter vector in this model and P(D|6,M) is the likelihood. Each model results
in a forecast. In the presence of uncertainty, the final forecast weighs each of those
forecasts by the posterior for that model. This gives the minimum mean square
forecast error. The researcher only needs to establish the set of models, the model
priors P(M)) and the parameter priors P(6|M).

The i-th model is specified as:

y=pX+e )

where y is a vector of observations T x 1 on the variable we wish to predict and
X is a matrix of predictors T'x p,, f is a vector of parameters p, x 1. € is the vector
of disturbances. The disturbances are i.i.d, meaning that they have zero mean and
variance equal to 6%, and 6, = (8°,, 0°).

In this case, regressors are assumed to be strictly exogenous to obtain the closed
form of the model. We know that this assumption is false for the problem we are
dealing with. However, this assumption does not prevent these methods from per-
forming well when forecasting (Wright, 2008; Stock & Watson, 2005).

The need to obtain a posteriori distributions requires that prior beliefs about the
model parameters are specified. For the parameter priors we take the specification
of the natural conjugate g-prior for £, such that the prior for f is conditional on ¢”is
N(X’, X" 'Y For o> we assume the “improper” prior which is proportional to 1/c.

According to Zellner (1971), one can calculate the likelihood of the model as:
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w2

T

(1+4)2 57 (10)

™ |
w1~

Where SI-Z =YY-Y'X, (X,- 'X, )71 X,-Y% . Note that I is the gamma function

and = is the number pi. ¢

The a posteriori mean of f.is:

B,=E(B, |D,M,) = ¢¢(X X)) X,'Y (11)

The prior of f is centred around zero leading each model to the assumption of no
predictive ability. The level of shrinkage is bound by ¢. The hyperparameter ¢ rep-
resents the certainty that the coefficients are zero. A small ¢ implies smaller pri-
ors on the coefficient’s variance and, therefore, implies that the researcher is fairly
certain that the coefficients are actually zero. In contrast, a larger size means that
the researcher is not sure that the coefficients are zero. That is, we are more willing
to move from our prior beliefs in response to what we observe in the data. A pop-
ular default approach is to determine this parameter according to the unit informa-
tion prior (UIPr) criterion, which states ¢ = n. This can be considered as an a priori
distribution containing the same amount of information as a single observation.

Fernandez et al. (2001) argue that a comparatively large likelihood minimises the
impact of prior beliefs on the results, keeps the results close to the OLS coeffi-
cients, and represents the absolute lack of prior knowledge. On the other hand,
Ciccone and Jarocinski (2010) show that a large ¢ may not be robust against noise
and generates risk of overfitting, particularly if the noise component plays an
important role in the data. Wright (2008) indicates that better results are usually
obtained in exchange rate prediction exercises when the priors are informative. In
order to take different prior beliefs into account in the model construction, esti-
mations will be carried out under two different parameter cases. The BMA1 and
BMA?2 models use the default approach UIPr in which the same information is
attributed to the priors as is contained in an observation. The BMA3 and BMA4
cases use a hyperparameter ¢ = (.5 which favours prior beliefs that the coeffi-
cients are zero. The timely choice of that parameter value is based on how well it
performed in Wright’s (2008) work.

The i-th model that forecasts the exchange rate has the following form:
St+h—St=pgXit+e, (12)

where X is the vector of regressors in perlod t for model i and ¢, is the error term.
Each model obtains a forecast ﬂ 'X , where ﬁ indicates the a posterlorl mean of



Combination of theoretical models for exchange rate forecasting Maria Paula Bonel 447

p". Then, the forecast weights each of these models by their a posteriori probabili-
ties, obtaining a forecast that is equal to:

ZP(M,- ID)B,'X,, (13)
i=j

BMA models consist of all possible permutations of 1 potential predictors (in our
case, in-sample forecasts), from the model that includes all predictors and none of
them, thus obtaining 2* candidate models. Each of these models includes a con-
stant, except for the model that has no regressors, implying that this model is the
random walk. Following Wright (2008), the a priori probability of each model
with k predictors (excluding the intercept) is determined as:

P(M) = p"(1 = p)* (14)

If p = 0.5 then all models have the same weight. Assigning equal a priori probabil-
ity to all models means that models with fewer predictors may receive little a pri-
ori weighting. A smaller value of p favours models that are sparser or have fewer
predictors. The probability that the correct model is the one that does not include
any predictors is equal to (1 — p)*.

Forecasts will be estimated under two particular cases of the parameter p in order
to address the lack of knowledge about the size of the model. It follows that a first
approach to the problem would be to establish beliefs about the model size that
are uniform across all possible models, i.e., p = 0.5. This will be reflected in the
BMA1 and BMA3 specifications. Thus, since there are eight predictors (or in-sam-
ple forecasts) with a probability of inclusion of 0.5 each, the expected size of the a
priori model is determined to be 4 (M prior). This implies that, given that there are
more possible models of size 3 than, for example, of size 1 or §, uniform beliefs
attribute higher probability to models of intermediate size. This is not necessarily
an assumption that applies a priori to the problem under study. We therefore deter-
mine an alternative specification used in BMA2 and BMA4 where p = 0.5 for mod-
els with 0 and 1 variables, while for the rest of the models with more variables the
probability is close to zero. This results in the expected size of the a priori model
(M prior) being around 0.9, favouring sparser models and variable and selection.

The methodology described above results in four BMA model specifications under
different combinations of parameters ¢ and p. The choice of these four specifica-
tions is aimed at considering different assumptions that a researcher may have.

Results evaluation

The performance of the different models will be evaluated relative to a bench-
mark model. From the literature listed above, it arises that the best predictor of the
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exchange rate is the random walk model without constant term or intercept (Meese
& Rogoff, 1983):

Et(st+h o St) = 0 (1 5)

In other words, the benchmark model implies that the best forecast of tomorrow’s
exchange rate is today’s exchange rate.

Subsequently, to evaluate the performance of the out-of-sample models, the total
sample is divided into two parts: the in-sample part, which consists of the window
of observations used to train the model, and the out-of-sample part on which the
performance of the models is actually tested. In this case, a recursive forecasting
scheme is used, where the model parameters are initially estimated with a window
of 60 observations and, subsequently, the model parameters are re-estimated using
all the previous observations, adding the observation of the new period. This is a
standard way of simulating the available data at the moment of making a forecast.
At this stage, we generate the in-sample adjusted data from all the theoretical mod-
els. We then combine that information using Bayesian model averaging. Estimates
are made where h corresponds to one, two or four steps forward, corresponding to
estimation horizons of 1, 2 and 4 quarters in advance.

The forecast evaluation process requires two main decisions: the choice of loss func-
tion to evaluate the forecast and the choice of statistical test to evaluate the signifi-
cance of performance differences. The root mean square prediction error (RMSPE)
was chosen as the loss function, as in Meese and Rogoff (1983). This indicator gives
equal weight to forecasts that underestimate or overestimate the exchange rate. To
simplify the visualisation of the data, the ratio between the RMSPE of the model
to be tested and the RMSPE of the random walk model will be shown in the results
section. A number less than unity indicates that the chosen BMA model obtains bet-
ter results than the random walk.

To test the significance of the differences on the errors in the models estimated
under time series, we used the Diebold and Mariano (1995) test designed spe-
cifically for forecast comparison, taking the forecast horizon to be analysed into
account in all cases ,and correcting for error correlation. For the analysis of panel
data, we used Pesaran et al.’s (2009) extension of this test. This allowed us to
statistically test the differences between forecasts while considering the panel
structure of the data. One problem that arises is that the forecasts overlap with
h-staggered forecasts (in the 2- and 4-quarter forecast horizon cases). Therefore,
it is possible that forecast errors separated by less than h periods are correlated.
This problem is avoided by using only each h-th observation to compute statisti-
cal inference. A positive sign of the t-statistic indicates that the Bayesian forecasts
perform better (in a differential sense of squared error loss) than the forecasts cor-
responding to the reference model.
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DATA

We work with quarterly data from Q11986-Q42018, with some differences in
the sample extension depending on data availability. Panel A of developed coun-
tries, includes Australia(AUD), Canada(CAD), Japan(JPY), South Korea(KRW),
New Zealand(NZD), Singapore (SGD), Sweden (SEK), Switzerland (CHF), and
Great Britain (GBP). In the group of emerging countries (panel B) we worked with
Argentina (ARG), Brazil (BRA), Colombia (COP), Philippines (PHP), Indonesia
(IDR), Malaysia (MYR), and Mexico (MXN).

The main source of data used to construct the macroeconomic fundamentals is
the IMF’s international financial statistics database (IFS). In cases where the nec-
essary information was not available, we used information provided by central
banks and official institutions. The information on exchange rates is obtained from
IFS and corresponds to bilateral exchange rate data with the US dollar at the end
of the period.

The short-term interest rate corresponds to 3-month “money market” interest rates.
M1 is used to measure the money supply. The price level in the economy is meas-
ured by the consumer price index and used to calculate inflation rates. Current
account balance as a percentage of GDP was obtained from the databases provided
by the OECD and the IMF.

Output indices are used as a proxy for the level of activity due to their availabil-
ity at the quarterly level in all cases. The output gap depends on the measure of
potential output. Since there is no assumption about the definition of potential
output used by central banks in their interest rate reaction functions, we consider
the percentage deviations of output from a trend defined by Hodrick and Prescott
(1997). To mimic the information available to central banks at time t, when deci-
sions were made, as closely as possible, only data up to time t-1 are used to con-
struct the trend. Therefore, in each period the regression is re-estimated by adding
an additional observation to the sample.

RESULTS

At the beginning of this section, we present the results of the RMSPE ratio when
the models are estimated using pooled data for all countries within panel A (devel-
oped countries) or panel B (emerging countries), respectively. In all cases esti-
mates are made for 1, 2 and 4 quarters ahead. Estimates are direct (non-iterated)
forecasts for all horizons. In addition, the statistic and p-value corresponding to
the significance test of the differences are detailed. In this case, observations cor-
responding to times when these countries were under a fixed exchange rate regime
are not considered during the estimation (see table 8 in Annex). The objective of
training the models using information from the whole group of developed coun-
tries in one case, and the whole group of emerging countries in the other, is to test
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whether incorporating information related to other countries improves the out-of-
sample forecast results in each of the panels.

Table 1 includes the average performance of the models across all countries
included within each panel. This is expressed through the simple average of the
RMSPE ratios. In addition to this, the results of the significance tests of differ-
ences at the global level within each panel are described using Pesaran et al.’s
(2009) t-statistic to take the panel structure of the data into account. The results
look strongly significant for the 1 and 2 quarter horizons in both cases, while at
4 quarters ahead the forecast gains are not significant. In line with works like
Wright (2008), we find that the results at the forecast accuracy level deteriorate
with longer estimation horizons. The positive results for the group of developed
countries are stable across the different Bayesian model specifications, while in
the case of emerging countries we clearly identify a deterioration in BMA3 and
BMAA4 cases.

Tables 2 and 3 present these same results but disaggregated for each of the coun-
tries in each panel. Regarding the RMSPE ratios, we find that for developed coun-
tries the BMA models obtain lower RMSPEs than the benchmark model. Although
the differences are of small magnitude, the results are found to be stable across
countries, model specifications and estimation horizons. This is summarised in the
simple average results, which are less than 1 in all panel A cases. In general terms,
the BMA1 model seems to obtain the most accurate results. This model is the least
restrictive in terms of both coefficient constraint and model size, indicating that
the in-sample forecasts we generate under different theoretical models have rele-
vant information for exchange rate estimation. The improvements in forecasting
turn out to be significant for several cases under the BMA1 and BMA?2 specifi-
cations. Within Table 3 for panel B (emerging countries), results are less stable
across the different BMA model specifications. However, the magnitudes of dif-
ferences in the ratio of the Bayesian model to the random model are larger. Again,
the results seem to indicate that on average the BMAI specification obtains the
most accurate results. On the contrary, the BMA4 specification that includes more
restrictive priors is the one that obtains the worst forecasting results. In this case,
the results are only significant in some countries.

Itis relevant to note that we see an improvement in both country panels when results
are estimated at the pool level with respect to individual level data (described in
tables 4 and 5). This indicates that the information in the exchange rate evolution
of other countries contains relevant information for the estimation of the exchange
rates under study. This is true for about 60% of the cases, something that is stable
over the different horizons but more important for developed countries.
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Table 1.

RMSPE ratio and significance test—Pooled data results (avg.)

Maria Paula Bonel 451

Panel A: | Developed countries (Period: 1986-2018)
Horizon BMA-1 BMA-2 BMA-3 BMA-4
Ratio RMSPE (avg.) 0.97 0.973 0.988 0.993
1q t-stat -7.81 -8.09 -4.78 -3.46
p-value 0.00 0.00 0.00 0.00
Ratio RMSPE (avg.) 0.979 0.975 0.988 0.989
2q t-stat -2.82 -4.42 -2.11 -2.24
p-value 0.00 0.00 0.02 0.01
Ratio RMSPE (avg.) 0.99 0.987 0.98 0.985
4q t-stat -1.22 -1.00 -1.79 -1.06
p-value 0.11 0.16 0.04 0.14
Panel B: Emerging countries (Period: 1990-2018)
Horizon BMA-1 BMA-2 BMA-3 BMA-4
Ratio RMSPE (avg.) 0.756 0.756 0.996 1.033
1q t-stat -4.92 -4.92 -1.37 0.14
p-value 0.00 0.00 0.09 0.55
Ratio RMSPE (avg.) 0.882 0.882 1.132 1.123
2q t-stat -1.83 -1.84 0.93 1.10
p-value 0.03 0.03 0.82 0.86
Ratio RMSPE (avg.) 0.957 0.957 1.199 1.216
4q t-stat 0.79 0.79 1.15 1.35
p-value 0.79 0.78 0.87 0.91

RMSPE ratio is calculated as the simple average across all countries in each panel, res-
pectively. We are considering forecasts from models trained using pool data by group of
countries. The t-statistic and p-value data were computed using the Pesaran et al. (2009)
test that extends the Diebold Mariano test for forecasting panels. More details are descri-
bed in section Results evaluation. ModelBMAI: ¢: UIPr, p = 0.5 uniform at all model sizes.
BMA2: ¢: UIPr, p = 0.5 for model sizes 0 and 1. BMA3: ¢: 0.5, p = 0.5 uniform to all model

sizes. BMA4: ¢: 0.5, p = 0.5 for model sizes 0 and 1.
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The results of the estimations at the individual level seem to indicate that the
choice of parameters for obtaining the lowest error ratio depends on the country
and forecast horizon. As for inference tests, the results obtained are modest, find-
ing some cases where the difference in favour of the Bayesian model is significant,
particularly in Canada, New Zealand, Singapore and Sweden when the forecast
horizon is 1 quarter. Some positive results in the panel of emerging countries are
also found in Argentina, Brazil and Malaysia.'

As arobustness test, we conducted a direction of change test presented in an online
annex. In most cases the BMA model anticipates the correct sign of the change by
more than 50%, which is a positive indicator of our results.

Trained models

In this section, we analyse the trained BMA models that generated the out-of-sample
forecasts described above. Based on their good relative performance, we will work
with models trained using pooled data (not at the individual level). Table 6 reports
the prior beliefs of the different models’ specifications with respect to the expected
model size (M prior), depending on the different specifications of the model. As
mentioned above, models 1 and 3 assume a prior on the model size of 4 variables
while the other two cases assume smaller models of a size less than 1. Mpost is the
average a posteriori model size over the whole testing period. We notice that a pos-
teriori beliefs vary remarkably, and one of the points we will focus on next is the
differences between developed and emerging countries. For emerging countries it
stands out that, regardless of the horizon and specification, there is a high proba-
bility of a posteriori inclusion for more inputs. This could indicate that the lack of
knowledge about the model is greater in these cases or that information gains are
more evenly distributed across the different theoretical models.

Focusing on how the a posteriori model size varies over time, we look into the
BMAL specification results. We chose this specification since it is the one that
obtains the best results for both developed and emerging countries. In table 2 we
note that the BMA?2 specification also obtains good forecasting results in the case
of emerging countries. The results with respect to model size are similar to the
BMAL specification. We chose to focus on this specification only to facilitate
clarity when presenting results. Figure 1 refers to the size of the model trained a
posteriori at each point in time. The graphs located in the first line correspond to
developed countries and the remaining ones to emerging countries. The trained
models are systematically denser in developed countries for all horizons and at all
time points in the sample.

! To test result robustness, complementary tests were performed where the adjusted data obtained at
the individual level were generated using the vector error correction methodology (VEC) instead
of OLS. Similarly, forecast results obtained were less accurate than the results using pooled data.
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Figure 1.
Heat map of inclusion probabilities for the BMA1 specification
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Table 6.
Model size: Priors vs. posteriors
Horizon BMA-1 BMA-2 BMA-3 BMA-4

Horizon BMA-1 BMA-2 BMA-3 BMA-4

M prior all 4 0.9 4 0.9
M post

1q 1.8 0.8 4.7 0.9
Developed 2q 32 0.9 52 1.0

4q 39 1.1 5.4 1.0

1q 5.3 5.3 5.8 1.1
Emerging 2q 5.8 5.8 5.7 1.0

4q 6.6 6.6 5.9 1.0

M prior reports the prior beliefs implied by p. BMA-1 and BMA-3 assign equal probabi-
lity to all model sizes leading to and expected modelsizeof4. BMA-2 and BMA4 penalise
bigger models leading to an expected model size of 0.99. Models were trained using
pool data by country group. Mpost is the average a posteriori model size over the whole
testing period. BMA1: ¢: UIPr, p = 0.5 uniform to all model sizes. BMA2: ¢: UIPr, p=0.5
for model sizes 0 and 1. BMA3: ¢: 0.5, p = 0.5 uniform to all model sizes. BMA4: ¢: 0.5,
p = 0.5 for model sizes 0 and 1.

Another dimension of analysis focuses on which in-sample forecasts generated
under theoretical models the BMA model incorporates. For this purpose, table 4
presents the average a posteriori inclusion probabilities for all cases. In the devel-
oped countries model, the price growth differential model containing informa-
tion for the last 4 quarters stands out strongly, while for emerging countries the
interest rate differential model is incorporated with high probability in the differ-
ent estimation horizons. An interesting case to highlight is the model that includes
information on the evolution of the current account. In this case, its probability of
inclusion increases significantly at longer horizons.

Again, to describe the changes in the trained model over the period we focus on
the BMA 1specification. Figure 2 presents the heat maps of a posteriori inclusion
probabilities for the inputs of each theoretical model for each of the horizon com-
binations. Light colours refer to lower a posteriori inclusion probabilities. The
higher presence of light colours in the first line of graphs refers to the more dis-
persed pattern of the trained model in developed countries. The opposite is seen in
the second line of graphs for emerging countries. Although outside the main objec-
tive of this paper, one line of research that emerges from these results is to delve
deeper into how changes in monetary policy, for example, relates to changes in a
posteriori inclusion probabilities.
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Figure 2.
Heat map of inclusion probabilities for the BMA1 specification

1 quarter 2 quarters 4 quarters

Panel A: Developed countries

1 quarter 2 quarters 4 quarters

Panel B: Emerging countries

Table 7.
A posteriori inclusion probabilities in BMA1 model (average)

PPP3 | PPP6 | PPP12 | PPP36 | UIP |[SMON| TR CA

1 quarter | 0.05 | 0.14 | 0.80 | 0.10 | 020 | 021 | 0.05 | 0.22
ianel 2 quarters | 026 | 025 | 0.75 | 041 | 029 | 046 | 0.15 | 0.66
4 quarters | 0.10 | 0.31 | 0.54 | 089 | 0.13 | 0.66 | 031 | 0.94
1 quarter | 1.00 | 0.68 | 0.08 | 1.00 | 1.00 | 0.09 | 1.00 | 0.41
ganel 2 quarters | 0.97 | 0.89 | 0.08 | 1.00 | 1.00 | 0.07 | 1.00 | 0.79
4 quarters | 0.89 | 0.85 | 0.73 | 1.00 | 1.00 | 0.12 | 1.00 | 0.99

The table shows the a posteriori inclusion probabilities for each of the inputs belonging to
the theoretical models entering the BMA1 model with pooled data by panel. The inclusion
probabilities are averaged over the entire testing sample period. The maximum value inclu-
des values approximately equal to unity.
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CONCLUSIONS

The objective of this paper was to evaluate the performance of exchange rate fore-
casting using the Bayesian model averaging methodology. A contribution of the
exercise arises from the use of adjusted data obtained from different economic
models supported by the theory as inputs of the BMA model. In this way, it is
possible to study the forecasting gains generated by combining information from
different theoretical models. Significant forecast improvements are found with
respect to the random walk. These improvements particularly tend to stand out for
developed countries and shorter horizons. Comparing the results at both the indi-
vidual level and group pool level indicates that training models using data from
other countries helps to improve the performance of BMA models. A regularity
found for both country groups is that the BMA1 model tends to perform better.
This model is the least restrictive in terms of both coefficient constraint and model
size, indicating that the in-sample forecasts we generate under different theoreti-
cal models have relevant information for exchange rate estimation. This also indi-
cates that forecast combination is a useful strategy for exchange rate estimation.

Finally, looking at the characteristics of BMA models indicates that the probability
of inclusion of different in-sample forecasts in developed countries is more con-
centrated while, on average, BMA models from emerging countries tend to have
a larger ex-post size. This may be a sign of the difficulty of learning models in
highly volatile contexts, where the connection between exchange rates and its fun-
damentals may be less informative.

This work could be extended in many directions. As a methodological extension,
it would be interesting to include nonlinear models and other technical improve-
ments when we obtain fitted data from theoretical models. The use of nonlinear-
ities could also be considered when combining information. Finally, it would be
useful to deepen the relationship between the theoretical models’ performance and
the underlying behaviour of different economies over time. For example, to study
the relationship in which different monetary policies result in better or worse fore-
casting results for each of the theoretical models. This would subsequently imply
different inclusion probabilities throughout the sample period.
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ANNEX

Table 8.

Details of dropped observations for each country

Country Dropped obs. N of obs

AUD 132
CAD 132
JPY 132
KRW 132
NZD 132
SGD 132
SEK Q1 1986—Q4 1992 104
CHF Q12013-Q4 2014 124
GBP 132
ARS Q1 1991- Q4 2001 72
BRL 116
COP 116
PHP 116
IDR Q1 1990-Q4 1997 84
MYR Q1 1998-Q3 2005 85
MXN Q1 1990-Q3 1994 97

Note: The sample covers the periods of Q1 1986-Q4 2018 and Q1 1990-Q4 2018 for develo-
ped and emerging countries, respectively. Observations related to periods of fixed exchange
rate regimes were not included in the sample. Identification of those exchange rate regimes
was based on the IMF Annual Report.

Since Q4 2011, Argentina has strict exchange controls. Results presented here
include this period. However, robustness exercises were carried out eliminating
these observations and we found that results are not altered.
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