
 

  

 

 

 

Universidad Nacional de Colombia.  
Revista DYNA, 91(232), pp. 66-76, April - June, 2024, ISSN 0012-7353 

DOI:  https://doi.org/10.15446/dyna.v91n232.111320 

A reliability model for non-isothermal isotropic damages• 
 

Allan Jonathan da Silva & Felipe do Carmo Amorim 
 

Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ), Itaguaí, Rio de Janeiro, Brasil. allan.jonathan@cefet-rj.br, 
felipe.amorim@cefet-rj.br  

 
Received: September 27th, 2023. Received in revised form: April 2nd, 2024. Accepted: April 8th, 2024. 

 
Abstract 
This study introduces a novel lifetime distribution originating from the Neyman Type A distribution. We built a Neyman Type A counting 
process and developed a survival function. Some statistical properties of the new distribution were presented, such as the resulting humped 
hazard function and its convergence. An accelerated test model structure with Arrhenius law was specified, and the effects of different 
accelerating stresses were analyzed. The hazard function implied by the model is inversely proportional to the stress, which results in 
interesting features and provides an efficient approach to describe the lifespan phenomena of some engineering metals and bulbs under low 
temperatures. The estimation of parameters of the accelerated model by maximum likelihood, mean time to failure, and expected number 
of failures are discussed in the numerical experiments. 
 
Keywords: reliability; Neyman type A distribution; accelerated life tests. 

 
 

Un modelo de confiabilidad para daños isotrópicos no isotérmicos 
 

Resumen 
Este artículo presenta una nueva distribución de vida útil que se origina a partir de la distribución de Neyman Tipo A. Construimos el 
proceso de conteo de Neyman Tipo A y desarrollamos la función de supervivencia. Se presentan algunas propiedades estadísticas de la 
nueva distribución, como la función de riesgo resultante en forma de joroba y su convergencia. Se especifica una estructura de modelo de 
prueba acelerada con la ley de Arrhenius, y se analizan los efectos de diferentes tensiones acelerantes. La función de riesgo implicada por 
el modelo es inversamente proporcional al estrés, lo que resulta en características interesantes: el modelo proporciona un enfoque eficiente 
para describir los fenómenos de vida útil de algunos metales de ingeniería y bombillas a bajas temperaturas. Se discute la estimación de 
parámetros del modelo acelerado mediante máxima verosimilitud, el tiempo medio hasta la falla y el número esperado de fallas en 
experimentos numéricos. 
 
Palabras clave: confiabilidad; distribución de Neyman tipo A; pruebas de vida aceleradas. 

 
 
 

1 Introduction 
 
Understanding how components and systems age is of 

academic and industrial interest. The development of the 
lifetime distribution is the core of reliability engineering and 
related areas. From statistical distributions, many important 
concepts such as the hazard function, mean time to failure, 
probability of failure, and mean residual life can be obtained. 
There is a vast amount of modern literature supporting the 
component's lifetime. The reliability engineering basics can 
be found in [1,2]. The accelerated life test models can be 
found in [3]. Many recent books discuss warranty policies, 
such as [4-9] discussed maintenance policies, costs 
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associated with imperfect repairs, and maintenance 
optimization with variable recovery factors, respectively. 

Many models discuss the lifetime data distributions. 
Classical exponential, Weibull, and lognormal distributions 
have been extensively studied. These models can derive 
various hazard functions. [3] also found many life-stress 
relationships, such as Arrhenius and inverse power laws, to 
address the accelerated life test problem. In this context, 
physical laws are merged with statistical distributions to 
describe the failure behavior in distinct stress scenarios. In 
general, the higher the stress level, the lower the product 
performance and mean time to failure. Arrhenius's law, for 
example, inversely relates the lifespan to thermal stress. The 
inverse-power law is the same for non-thermal stresses, such 
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as voltage or vibration. The Eyring model is typically used 
for temperature- or humidity-accelerated stresses [3]. 

Nonetheless, some types of failure occur in lower-
temperature environments. Cold weather tends to wear 
fluorescent bulbs and shorten their lifespans. Steels suffer 
from low temperature brittle fatigue. Aircraft and chemical 
processing equipment are required to operate at low 
temperatures, and the behavior of metals needs to be 
considered. Jae Myung Lee, the Guest Editor of the Special 
Issue "Low-Temperature Behavior of Metals" of the Metals 
journal, stated in [10]: "Many engineering metals become 
brittle at low temperatures so that the structures fabricated 
using these materials may fracture or fail unexpectedly when 
subjected to stress levels at which the performance may be 
satisfactory under normal temperatures." 

In general, the increase in the tensile and yield strengths 
at low temperatures is characteristic of metals. Extremely low 
temperatures may reduce the toughness. The transition 
temperature at which brittle fracture occurs is lowered by a 
series of characteristics, such as a decrease in the carbon 
content or grain size and an increase in the nickel or 
manganese content [11]. 

Notably, the behavior of metals at low temperatures is not 
limited to traditional crystalline metals. Brittle metallic 
glasses, such as Mg-based bulk metallic glasses, can also 
exhibit brittle behavior at low temperatures. However, even 
in these brittle glasses, there are indications of a "ductile" 
fracture mechanism, as observed through the presence of a 
dimple structure at the fracture surface [11]. 

The development of special materials that are resistant to 
low temperatures to store and transport hydrogen, for 
example, is a matter of concern. Many studies have discussed 
low-temperature embrittlement and fracture of metals, such 
as [12-17] showed that the impact toughness of locomotive 
wheel steel at −60∘ test temperature has decreased three 
times in relation to temperatures from −20∘ to 20∘. In the 
investigation of a Pb-free circuit board applied for space 
exploration by [18], it was shown that the ball grid array 
solder joint changed from ductile to brittle over the range of 
−70∘ to −80∘. 

This study's novel application of a new probability 
distribution in reliability modeling is contextualized within 
the broader field of material failure analysis under extreme 
conditions such as low temperatures. Recent studies, such as 
[19], have explored superposition-based predictions of creep 
in polymer films at cryogenic temperatures, emphasizing the 
need for predictive models in environments where traditional 
testing is challenging. Similarly, [20] investigated the strain-
hardening behavior of AISI 304 stainless steel at varying 
temperatures, highlighting the influence of temperature on 
the mechanical properties and fracture morphology. [21] 
discussed the computational limitations of the five main 
creep failure models. Furthermore, research by [22-24] has 
delved into the complexities of material behaviors under 
stress and temperature variations, revealing intricate patterns 
of mechanical response and failure mechanisms that are 
crucial for advanced engineering applications. Our model 
extends these discussions by providing a robust statistical 
framework that captures the risk failure behaviors of metallic 
materials at low temperatures, offering significant insights 

compared to existing methods. By integrating the principles 
observed in these studies, our approach enhances the 
predictive accuracy of material failure models, facilitating a 
more reliable design and assessment of materials for low-
temperature applications. 

This study aims to introduce a novel approach in 
reliability engineering by adapting the Neyman Type A 
distribution to analyze material failures under low-
temperature conditions, a prevalent scenario in engineering 
applications. Unlike classical physico-statistical distributions 
such as Weibull and log-normal distributions, which 
primarily focus on high-stress behaviors, the Neyman Type 
A distribution provides a unique and robust tool for 
understanding and predicting failure behaviors in cold 
environments where materials, especially metals, exhibit 
brittle fractures and low-temperature fatigue. This work 
pioneered the use of the Neyman Type A distribution in 
reliability engineering, offering new insights into the failure 
behavior of metals in cold climates and establishing a new 
life-stress relationship. The chosen distribution not only 
captures the nuances of temperature-dependent failure rates 
but also features a distinctive hump-shaped hazard function 
that accurately defines the probability of early failures. 
Unlike other common distributions, it stabilizes at a non-zero 
constant failure rate, thus providing a strong justification for 
its specific application in studying metallic material failures. 

The remainder of this paper is organized as follows. 
Section 2 defines the discrete process and introduces the 
counting process derived from the Neyman type-A 
distribution. Section 3 considers the properties of the new 
lifetime distribution, such as the hazard function and its 
maximum-likelihood estimators. A life stress model is 
introduced in Section 4, the properties of the new distribution 
are discussed, and simulations are performed. Finally, 
Section 5 concludes the study and discusses future work. 

 
2 Neyman type A distribution 

 
Consider a Poisson distribution for which the Poisson 

parameter Θ=ϕθ, where ϕ is a constant, and θ has a Poisson 
distribution with parameter λ. The outcome distribution is 
known as Neyman type A probability distribution [25]. This 
probability distribution has found applications in a diverse 
range of areas, ranging from biological systems [26] to the 
modeling of natural disasters [27]. A detailed discussion of 
the mixture distributions can be found in [28]. 

The characteristic function of the Neyman type A (NTA) 
probability distribution is given by 

 

�̀�𝑓(𝑢𝑢; 𝜆𝜆,𝜙𝜙) = e�𝜆𝜆�e
𝜙𝜙�e𝑖𝑖𝑖𝑖−1�−1��. (1) 

The cumulant generating function of (1) is given by 

ℎ(𝑢𝑢) = �𝜆𝜆�e𝜙𝜙�e𝑖𝑖𝑖𝑖−1� − 1�� (2) 

and the cumulants 

𝑐𝑐1 = 𝜆𝜆𝜙𝜙,  𝑐𝑐2 = 𝜆𝜆𝜙𝜙(1 + 𝜙𝜙), 
 𝑐𝑐4 = 𝜆𝜆𝜙𝜙(1 + 7𝜙𝜙 + 6𝜙𝜙2 + 𝜙𝜙3), (3) 

 
calculated according to [29]. 



da Silva & Amorim / Revista DYNA, 91(232), pp. 66-76, April - June, 2024. 

68 

The approximation given by the COS method in [30] is 
particularly useful when the probability mass function is 
difficult to manipulate, its cumulative function has no 
analytical solution, and/or the function itself does not exist in 
an explicit form. In such cases, we may resort to the Fourier 
cosine series given that we know the corresponding 
characteristic function. 

Figs. 1 and 2 depict the approximation of the Neyman 
type-A probability function via the Fourier Series. The local 
peaks at 0,25,50,76,103,129,153 and 173 for the parameters 
𝜆𝜆 = 7 and 𝜙𝜙 = 25 which highlight the multimodality of the 
distribution, were discussed by [31]. 

An advantage of the solution via Fourier series is that the 
distribution is well approximated with a finite number of 
cosine terms, in contrast to Neyman's type-A analytical 
probability mass function given by 

 

ℙ{𝑋𝑋 = 𝑥𝑥} =
e−𝜆𝜆𝜙𝜙𝑥𝑥

𝑥𝑥! � 
∞

𝑗𝑗=0

�𝜆𝜆e−𝜙𝜙�𝑗𝑗𝑗𝑗𝑥𝑥

𝑗𝑗! ,  𝑥𝑥 = 0,1, …, (4) 

 
which has an infinite sum for each 𝑥𝑥 and a factorial 

function. The latter is a computational challenge for large 
values of 𝑥𝑥. For example, the reliability of redundant 
equipment, desired in terms of the probability of 𝑟𝑟 or fewer 
failures for a fixed period of time, is given by 

 

𝑅𝑅(𝑡𝑡) = � 
𝑟𝑟

𝑥𝑥=0

ℙ{𝑋𝑋 = 𝑥𝑥} = � 
𝑟𝑟

𝑥𝑥=0

�
e−𝜆𝜆𝜙𝜙𝑥𝑥

𝑥𝑥! � 
∞

𝑗𝑗=0

 
�𝜆𝜆e−𝜙𝜙�𝑗𝑗𝑗𝑗𝑥𝑥

𝑗𝑗! �, (5) 

 
which inherits the computational challenges of Eq. (4). 
Definition 1. The counting process N(t) derived from the 

NTA distribution has a probability distribution given by 
 

ℙ{𝑁𝑁(𝑡𝑡) = 𝑥𝑥} =
e−𝜆𝜆𝜆𝜆(𝜙𝜙𝑡𝑡)𝑥𝑥

𝑥𝑥! � 
∞

𝑗𝑗=0

�𝜆𝜆𝑡𝑡e−(𝜙𝜙𝜆𝜆)�
𝑗𝑗
𝑗𝑗𝑥𝑥

𝑗𝑗! ,  𝑥𝑥 = 0,1 … (6) 

 
 

 
Figure 1. Neyman type A probability mass function.  
Source: Authors. 

 
Figure 2. Neyman type A probability cumulative distribution.  
Source: Authors. 

 
 
In other words, for fixed parameters λ and ϕ, the 

probability of random variable N(t) being equal to x at time t 
is given by (6). Note that, as shown in [25], for the discrete 
random variable, ℙ{𝑁𝑁(0) = 0} = 1. 

 
3 Neyman type A Reliability function 

 
This section proposes closed-form expressions of the 

reliability model derived from the Neyman type A counting 
process, their derived functions and associated properties, 
and the maximum likelihood estimators. 

Theorem 1. The reliability (survival probability) function 
derived from the NTA counting process (6) is governed by: 

 
𝑅𝑅(𝑡𝑡) = e−𝜆𝜆𝜆𝜆+𝜆𝜆𝜆𝜆e−𝜙𝜙𝜙𝜙 . (7) 

 
Proof. The probability of no arrival until time 𝑡𝑡 is 
 

ℙ{𝑁𝑁(𝑡𝑡) = 0} =
e−𝜆𝜆𝜆𝜆(𝜙𝜙𝑡𝑡)0

0! � 
∞

𝑗𝑗=0

 
�𝜆𝜆𝑡𝑡e−(𝜙𝜙𝜆𝜆)�𝑗𝑗𝑗𝑗0

𝑗𝑗!

 = e−𝜆𝜆𝜆𝜆+𝜆𝜆𝜆𝜆e−𝜙𝜙𝜙𝜙 = 𝑅𝑅(𝑡𝑡).

    (8) 

 
Eq. (8) provides the reliability function obtained from the 

NTA counting process. Note that 𝑅𝑅(0) = 1 and 
 

 lim
𝜆𝜆→∞

 e−𝜆𝜆𝜆𝜆+𝜆𝜆𝜆𝜆e−𝜙𝜙𝜙𝜙

 = lim
𝜆𝜆→∞

 e−𝜆𝜆𝜆𝜆e𝜆𝜆𝜆𝜆e−𝜙𝜙𝜙𝜙

 = lim
𝜆𝜆→∞

 
e𝜆𝜆𝜆𝜆e−𝜙𝜙𝜙𝜙

e𝜆𝜆𝜆𝜆

 = lim
𝜆𝜆→∞

 
e
𝜆𝜆𝜆𝜆
e𝜙𝜙𝜙𝜙

e𝜆𝜆𝜆𝜆

 =
lim
𝜆𝜆→∞

 e
𝜆𝜆𝜆𝜆
e𝜙𝜙𝜙𝜙

lim
𝜆𝜆→∞

 e𝜆𝜆𝜆𝜆
=

e0

∞ =
1
0 = 0,

 (9) 
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which agrees with the reliability axioms. 
Corollary 1. If the reliability function is given by 
 

𝑅𝑅(𝑡𝑡) = e−𝜆𝜆𝜆𝜆+𝜆𝜆𝜆𝜆e−𝜙𝜙𝜙𝜙 , (10) 
 
then, its associated probability density function is given 

by 
 

𝑓𝑓(𝑡𝑡) = 𝜆𝜆�e𝜙𝜙𝜆𝜆 + 𝜙𝜙𝑡𝑡 − 1�e−𝜆𝜆𝜆𝜆−𝜙𝜙𝜆𝜆+𝜆𝜆𝜆𝜆e−𝜙𝜙𝜙𝜙 . (11) 
 
Consequently, the hazard rate is given by 
 

ℎ(𝑡𝑡) = 𝜆𝜆�e𝜙𝜙𝜆𝜆 + 𝜙𝜙𝑡𝑡 − 1�e−𝜙𝜙𝜆𝜆 (12) 
 
Proof. Let 
 

𝑅𝑅(𝑡𝑡) = e−𝜆𝜆𝜆𝜆+𝜆𝜆𝜆𝜆e−𝜙𝜙𝜙𝜙 . (13) 
 
The cumulative distribution function is given by 𝐹𝐹(𝑡𝑡) =

1 − 𝑅𝑅(𝑡𝑡). Therefore, the probability density function is given 
by  

 
𝑑𝑑𝐹𝐹(𝑡𝑡)
𝑑𝑑𝑡𝑡  =

𝑑𝑑(1 − 𝑅𝑅(𝑡𝑡))
𝑑𝑑𝑡𝑡

 =
𝑑𝑑�1 − e−𝜆𝜆𝜆𝜆+𝜆𝜆𝜆𝜆e−𝜙𝜙𝜙𝜙�

𝑑𝑑𝑡𝑡
 = 𝜆𝜆�e𝜙𝜙𝜆𝜆 + 𝜙𝜙𝑡𝑡 − 1�e−𝜆𝜆𝜆𝜆−𝜙𝜙𝜆𝜆+𝜆𝜆𝜆𝜆e−𝜙𝜙𝜙𝜙 = 𝑓𝑓(𝑡𝑡).

 (14) 

 
The hazard rate is simply given by 
 

ℎ(𝑡𝑡) =
𝑓𝑓(𝑡𝑡)
𝑅𝑅(𝑡𝑡)

 =
𝜆𝜆�e𝜙𝜙𝜆𝜆 + 𝜙𝜙𝑡𝑡 − 1�e−𝜆𝜆𝜆𝜆−𝜙𝜙𝜆𝜆+𝜆𝜆𝜆𝜆e−𝜙𝜙𝜙𝜙

e−𝜆𝜆𝜆𝜆+𝜆𝜆𝜆𝜆e−𝜙𝜙𝜙𝜙

 = 𝜆𝜆�e𝜙𝜙𝜆𝜆 + 𝜙𝜙𝑡𝑡 − 1�e−𝜙𝜙𝜆𝜆

 (15) 

 
The hump-shaped behavior of the hazard function is 

similar to that implied by the lognormal distribution. It 
initially increases, reaches a maximum, and then decreases 
toward a constant value. The following two corollaries clarify 
this issue. 

Corollary 2. The NTA hazard function (12) is a humped 
model. 

Proof. Note that the derivative of the hazard function 
given by 

 
∂ℎ(𝑡𝑡)
∂𝑡𝑡 = 𝜆𝜆e−𝜙𝜙𝜆𝜆�𝑓𝑓e𝜙𝜙𝜆𝜆 + 𝜙𝜙� − 𝜙𝜙𝜆𝜆e−𝜙𝜙𝜆𝜆 ⋅ �e𝜙𝜙𝜆𝜆 + 𝜙𝜙𝑡𝑡 − 1� (16) 

 
8 da Silva and Amorim 
finds root at 𝑡𝑡∗ = 2

𝜙𝜙
. Since that 𝜆𝜆 > 0, and 

 
∂2ℎ(𝑡𝑡)
∂𝑡𝑡2 = 𝜙𝜙2𝜆𝜆(𝜙𝜙𝑡𝑡 − 3)�e−𝜙𝜙𝜆𝜆� (17) 

 
we have that 
 

∂2ℎ(𝑡𝑡∗)
∂𝑡𝑡2 = −𝜙𝜙2𝜆𝜆e−2. (18) 

 
So, the NTA hazard function finds its maximum at 𝑡𝑡∗. 
Corollary 3. The NTA hazard function converges to 𝜆𝜆 in 

the long run. 
Proof. If the hazard function is given by 
 

ℎ(𝑡𝑡) = 𝜆𝜆�e𝜙𝜙𝜆𝜆 + 𝜙𝜙𝑡𝑡 − 1�e−𝜙𝜙𝜆𝜆, (19) 
 
then  
 

 lim
𝜆𝜆→∞

 𝜆𝜆�e𝜙𝜙𝜆𝜆 + 𝜙𝜙𝑡𝑡 − 1�e−𝜙𝜙𝜆𝜆

𝜆𝜆 lim
𝜆𝜆→∞

 �e𝜙𝜙𝜆𝜆 + 𝜙𝜙𝑡𝑡 − 1�e−𝜙𝜙𝜆𝜆

𝜆𝜆 lim
𝜆𝜆→∞

 �1 + 𝜙𝜙𝑡𝑡e−𝜙𝜙𝜆𝜆 − e−𝜙𝜙𝜆𝜆�

𝜆𝜆 � lim
𝜆𝜆→∞

 1 + lim
𝜆𝜆→∞

 𝜙𝜙𝑡𝑡e−𝜙𝜙𝜆𝜆 − lim
𝜆𝜆→∞

 e−𝜙𝜙𝜆𝜆�

𝜆𝜆 �1 lim
𝜆𝜆→∞

 1 + 0 lim
𝜆𝜆→∞

 𝜙𝜙𝑡𝑡e−𝜙𝜙𝜆𝜆 − 0 lim
𝜆𝜆→∞

 e−𝜙𝜙𝜆𝜆� = 𝜆𝜆

 (20) 

 
Fig. 3 depicts the probability density, Fig. 4 shows the 

reliability, and Fig. 5 shows the hazard rate functions. We 
may note an increasing hazard rate up to a certain point in 
time, namely 2

𝜙𝜙
, where the function starts to decrease and 

stabilizes at a constant rate. In the short term, the model may 
characterize early failures and burn-in testing times. In the 
long run, the hazard function behaves similar to the hazard 
function of the exponential distribution. 

Corollary 4. The mean time to failure (MTTF) given by 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹 = ∫  ∞
0 𝑠𝑠𝑓𝑓(𝑠𝑠)𝑑𝑑𝑠𝑠 = ∫  ∞

0 𝑅𝑅(𝑠𝑠)𝑑𝑑𝑠𝑠          (21) 
 
is not analytically available. 
Proof. Note that 
 

 MTTF  = �  
∞

0
 𝑠𝑠𝑓𝑓(𝑠𝑠)𝑑𝑑𝑠𝑠

 = �  
∞

0
 𝑠𝑠𝜆𝜆�e𝜙𝜙𝜆𝜆 + 𝜙𝜙𝑡𝑡 − 1�e−𝜆𝜆𝜆𝜆−𝜙𝜙𝜆𝜆+𝜆𝜆𝜆𝜆e−𝜙𝜙𝜙𝜙𝑑𝑑𝑠𝑠

 (22) 

 
And 
 

 MTTF  = �  
∞

0
 𝑅𝑅(𝑠𝑠)𝑑𝑑𝑠𝑠

 = �  
∞

0
 e−𝜆𝜆𝜆𝜆+𝜆𝜆𝜆𝜆e−𝜙𝜙𝜙𝜙𝑑𝑑𝑠𝑠

 (23) 

 
Have no antiderivative. Another consequence of 

Corollary 4 is that the moment-generating function is not 
available analytically. 

Corollary 5. The maximum likelihood estimators of the 
NTA reliability parameters are given by 
 

𝜆𝜆 = −
𝑛𝑛

∑  𝑛𝑛
𝑖𝑖=1  𝑡𝑡𝑖𝑖e−𝜙𝜙𝜆𝜆𝑖𝑖 − 𝑡𝑡𝑖𝑖

. (24) 
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Figure 3: Neyman type A probability density functions.  
Source: Authors. 

 
 

 
Figure 4 Neyman type A reliability functions.  
Source: Authors. 

 

 
Figure 5: Neyman type A hazard rate functions.  
Source: Authors. 

 
 

And 

� 
𝑛𝑛

𝑖𝑖=1

𝑡𝑡𝑖𝑖e𝜙𝜙𝜆𝜆𝑖𝑖 + 𝑡𝑡𝑖𝑖
e𝜙𝜙𝜆𝜆𝑖𝑖 + 𝜙𝜙𝑡𝑡𝑖𝑖 − 1

−�  
𝑛𝑛

𝑖𝑖=1

𝜆𝜆𝑡𝑡𝑖𝑖2 + e−𝜙𝜙𝜆𝜆𝑖𝑖 + 𝑡𝑡𝑖𝑖 = 0. (25) 

 
An estimator for 𝜙𝜙 is not analytically available. Its 

approximation is given by the numerical solution of 
nonlinear equation (25). 

Proof. Given a random sample 𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛, the maximum 
likelihood estimators of the NTA lifetime density function 
with parameters (𝜆𝜆,𝜙𝜙) are obtained by finding ∂ℒ

∂𝜆𝜆
= 0 and 

∂ℒ
∂𝜙𝜙

= 0 [32]. Then, the likelihood function for 𝑛𝑛 non-censored 
data points is given by 

 

𝐿𝐿 = � 
𝑛𝑛

𝑖𝑖=1

𝜆𝜆�e𝜙𝜙𝜆𝜆𝑖𝑖 + 𝜙𝜙𝑡𝑡𝑖𝑖 − 1�e−𝜆𝜆𝜆𝜆𝑖𝑖−𝜙𝜙𝜆𝜆𝑖𝑖+𝜆𝜆𝜆𝜆𝑖𝑖e−𝜙𝜙𝜙𝜙𝑖𝑖 . (26) 

We have that 

𝐿𝐿 = 𝜆𝜆𝑛𝑛� 
𝑛𝑛

𝑖𝑖=1

�e𝜙𝜙𝜆𝜆𝑖𝑖 + 𝜙𝜙𝑡𝑡𝑖𝑖 − 1�e−𝜆𝜆𝜆𝜆𝑖𝑖−𝜙𝜙𝜆𝜆𝑖𝑖+𝜆𝜆𝜆𝜆𝑖𝑖e−𝜙𝜙𝜙𝜙𝑖𝑖 (27) 

Putting ℒ = ln (𝐿𝐿), then, 

ℒ = nln 𝜆𝜆 + � 
𝑛𝑛

𝑖𝑖=1

ln�e𝜙𝜙𝜆𝜆𝑖𝑖 + 𝜙𝜙𝑡𝑡𝑖𝑖 − 1� 

(28) 

+� 
𝑛𝑛

𝑖𝑖=1

𝜆𝜆𝑡𝑡𝑖𝑖e−𝜙𝜙𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑡𝑡𝑖𝑖 − 𝜙𝜙𝑡𝑡𝑖𝑖 

 
Finding the extreme points of 27] we have 
 

∂ℒ
∂𝜆𝜆 =

𝑛𝑛
𝜆𝜆 −�  

𝑛𝑛

𝑖𝑖=1

𝑡𝑡𝑖𝑖e−𝜙𝜙𝜆𝜆𝑖𝑖 − 𝑡𝑡𝑖𝑖 = 0. (29) 

 
So, the maximum likelihood estimator for the parameter 

𝜆𝜆 is given by 
 

𝜆𝜆 = −
𝑛𝑛

∑  𝑛𝑛
𝑖𝑖=1  𝑡𝑡𝑖𝑖e−𝜙𝜙𝜆𝜆𝑖𝑖 − 𝑡𝑡𝑖𝑖

. (30) 

 
Following from (27) we have 
 
∂ℒ
∂𝜙𝜙 = � 

𝑛𝑛

𝑖𝑖=1

𝑡𝑡𝑖𝑖e𝜙𝜙𝜆𝜆𝑖𝑖 + 𝑡𝑡𝑖𝑖
e𝜙𝜙𝜆𝜆𝑖𝑖 + 𝜙𝜙𝑡𝑡𝑖𝑖 − 1

−�  
𝑛𝑛

𝑖𝑖=1

𝜆𝜆𝑡𝑡𝑖𝑖2 + e−𝜙𝜙𝜆𝜆𝑖𝑖 + 𝑡𝑡𝑖𝑖 = 0. (31) 

 
Note that estimator (31) for 𝜙𝜙 is not available 

analytically. By substituting (30) into (31), the approximation 
for 𝜙𝜙 is given by the numerical solution of the following 
nonlinear equation: 

 

� 
𝑛𝑛

𝑖𝑖=1

𝑡𝑡𝑖𝑖e𝜙𝜙𝜆𝜆𝑖𝑖 + 𝑡𝑡𝑖𝑖
e𝜙𝜙𝜆𝜆𝑖𝑖 + 𝜙𝜙𝑡𝑡𝑖𝑖 − 1

+ 

(32) 

� 
𝑛𝑛

𝑖𝑖=1

�
𝑛𝑛

∑  𝑛𝑛
𝑖𝑖=1  𝑡𝑡𝑖𝑖e−𝜙𝜙𝜆𝜆𝑖𝑖 − 𝑡𝑡𝑖𝑖

� 𝑡𝑡𝑖𝑖2 − e−𝜙𝜙𝜆𝜆𝑖𝑖 − 𝑡𝑡𝑖𝑖 = 0. 
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Suppose the failure times of a product follow the NTA 
distribution with parameters 𝜙𝜙 = 0.015. In addition, we 
consider that the manufacturer’s cost 𝑐𝑐0 for the given product 
equals unity. The warranty cost for renewing the free 
replacement warranty for a period of 𝑊𝑊 is given by 

 

𝔼𝔼[𝐶𝐶(𝑊𝑊)] =
𝑐𝑐0𝐹𝐹(𝑊𝑊)

1 − 𝐹𝐹(𝑊𝑊) =
𝑐𝑐0�1 − e−𝜆𝜆𝜆𝜆+𝜆𝜆𝜆𝜆e−𝜙𝜙𝜙𝜙�

e−𝜆𝜆𝜆𝜆+𝜆𝜆𝜆𝜆e−𝜙𝜙𝜙𝜙 . (33) 

 
Fig. 6 depicts the warranty cost for a renewing free 

replacement warranty [4] for various warranty periods by 
varying parameter 𝜆𝜆. As predicted, the value of 𝜆𝜆 that 
produces the lowest reliability or largest hazard function, as 
illustrated in Fig.6, produces the highest warranty costs. 

 
4 Arrhenius-NTA model for accelerated tests 

 
Let a quantifiable life measure 𝐺𝐺 implied by the 

Arrhenius law be given by 
 

𝐺𝐺(𝑉𝑉) = 𝐶𝐶e
𝐵𝐵
𝑉𝑉 . (34) 

 
The Arrhenius relationship is a physics-based model 

derived for the temperature life dependence, 𝑉𝑉, in Kelvin. It 
is a widely used model to relate the product life and 
temperature [3]. In Equation (34), 𝐶𝐶 is a nonthermal constant 
that depends on geometry, size, fabrication, and other factors. 
It is determined experimentally, and deals with the frequency 
of molecules that collide in the correct orientation to initiate 
a chemical reaction. Parameter 𝐵𝐵 is the relationship between 
the activation energy and Boltzmann Constant. The 
activation energy deals with the magnitude of the effect of 
the stress on the component. The details can be found in [3] 
and [1].   

Let the probability density function of life data be given 
by (11). Let the inverse scale parameter 𝜆𝜆 be equal to the 
quantifiable life measure of Arrhenius law. Setting 𝐺𝐺(𝑉𝑉) =
𝜆𝜆 we have the Arrhenius-NTA probability density function: 

 

 
Figure 6. Hazard function.  
Source: Authors. 

𝑓𝑓(𝑡𝑡,𝑉𝑉) = 𝐶𝐶e
𝐵𝐵
𝑉𝑉�e𝜙𝜙𝜆𝜆 + 𝜙𝜙𝑡𝑡 − 1�e−𝐶𝐶e

𝐵𝐵
𝑉𝑉𝜆𝜆−𝜙𝜙𝜆𝜆+𝐶𝐶e𝐵𝐵𝑡𝑡e−𝜙𝜙𝜆𝜆 . (35) 

 
The probability density function (35) has the following 

important characteristics: It is shown that the model is 
qualitatively suitable for investigating the fluorescent bulb 
lifespan in cold weather, the toughness of steels, and the 
Ductile to Brittle Transition Temperature.  We have that 

 
𝑅𝑅(𝑡𝑡,𝑉𝑉) = e−𝐶𝐶e

𝐵𝐵
𝑉𝑉𝜆𝜆+𝐶𝐶e

𝐵𝐵
𝑉𝑉𝜆𝜆e−𝜙𝜙𝜙𝜙 , (36) 

 
and 
 

ℎ(𝑡𝑡,𝑉𝑉) = 𝐶𝐶(e𝜑𝜑𝜆𝜆 + 𝜑𝜑𝑡𝑡 − 1)e
𝐵𝐵
𝑉𝑉−𝜑𝜑𝜆𝜆. (37) 

 
The probability density functions 35, 46, and 37 are 

depicted in Figs. 7, 8 and 9 for the parameters 𝐶𝐶 =
0.0002,𝐵𝐵 = 1000 and 𝜙𝜙 = 0.0025. Note that in the brittle 
fatigue of metals for a fixed mechanical load, the lower the 
temperature, the higher is the chance of failure. The resulting 
positive slope of the short end of the hazard function 
describes the gradual decrease in load resistance well. 

 

 
Figure 7. Probability density function.  
Source: Authors. 

 
 

 
Figure 8. Reliability function.  
Source: Authors. 



da Silva & Amorim / Revista DYNA, 91(232), pp. 66-76, April - June, 2024. 

72 

 
Figure 9. Hazard function.  
Source: Authors. 

 
 
The hazard function inherits the NTA model hump-

shaped properties. 
Corollary 6. The Arrhenius-NTA hazard function (37) is 

a humped model. 
Proof. Note that the derivative of the hazard function 

given by: 
 

∂ℎ(𝑡𝑡,𝑉𝑉)
∂𝑡𝑡 = −𝐶𝐶𝜙𝜙(𝜙𝜙𝑡𝑡 − 2)e

𝐵𝐵
𝑉𝑉−𝜙𝜙𝜆𝜆 (38) 

 
finds root at 𝑡𝑡∗ = 2

𝜙𝜙
. Since that 𝜆𝜆 > 0, and 

 
∂2ℎ(𝑡𝑡,𝑉𝑉)
∂𝑡𝑡2 = 𝐶𝐶𝜙𝜙2(𝜙𝜙𝑡𝑡 − 3)e

𝐵𝐵
𝑉𝑉−𝜙𝜙𝜆𝜆 , (39) 

 
we have that 
 

∂2ℎ(𝜆𝜆∗,𝑉𝑉)
∂𝜆𝜆2

= −𝐶𝐶𝜙𝜙2𝜆𝜆e
𝐵𝐵
𝑉𝑉
−2.                            (40) 

 
So, the Arrhenius-NTA hazard function finds its 

maximum at 𝑡𝑡∗. 
Corollary 7. The Arrhenius-NTA hazard function (37) 

increases as the stress 𝑉𝑉 decreases. 
Proof. If the hazard function is given by 
 

ℎ(𝑡𝑡,𝑉𝑉) = 𝐶𝐶(e𝜑𝜑𝜆𝜆 + 𝜑𝜑𝑡𝑡 − 1)e
𝐵𝐵
𝑉𝑉−𝜑𝜑𝜆𝜆, (41) 

 
then 
 

 lim
𝑉𝑉→0

 𝐶𝐶(e𝜑𝜑𝜆𝜆 + 𝜑𝜑𝑡𝑡 − 1)e
𝐵𝐵
𝑉𝑉e−𝜑𝜑𝜆𝜆

𝐶𝐶(e𝜑𝜑𝜆𝜆 + 𝜑𝜑𝑡𝑡 − 1)e−𝜑𝜑𝜆𝜆 lim
𝑉𝑉→0

 e
𝐵𝐵
𝑉𝑉

𝐶𝐶(e𝜑𝜑𝜆𝜆 + 𝜑𝜑𝑡𝑡 − 1)e−𝜑𝜑𝜆𝜆 lim
𝑉𝑉→0

 e
𝐵𝐵
𝑉𝑉 = ∞

 (42) 

 
Corollary 7 shows that the hazard function of the 

Arrhenius-NTA model is inversely proportional to stress. 

This is precisely the behavior of metallic materials. In 
general, the increase in the tensile and yield strengths at low 
temperatures is characteristic of metals. However, it is 
important to note that it is not claimed here that every 
metallic material can be fitted better by the Arrhenius-NTA 
reliability distribution. The modeling gain must be tested in 
each case. 

Corollary 8. The Arrhenius-NTA hazard function 
converges to 𝐶𝐶e

𝐵𝐵
𝑉𝑉 in the long run. Proof. If the hazard function 

is given by: 
 

ℎ(𝑡𝑡,𝑉𝑉) = 𝐶𝐶(e𝜑𝜑𝜆𝜆 + 𝜑𝜑𝑡𝑡 − 1)e
𝐵𝐵
𝑉𝑉−𝜑𝜑𝜆𝜆, (43) 

 
then 
 

 lim
𝜆𝜆→∞

 𝐶𝐶e
𝐵𝐵
𝑉𝑉(e𝜑𝜑𝜆𝜆 + 𝜑𝜑𝑡𝑡 − 1)e−𝜑𝜑𝜆𝜆

𝐶𝐶e
𝐵𝐵
𝑉𝑉 lim
𝜆𝜆→∞

 (e𝜑𝜑𝜆𝜆 + 𝜑𝜑𝑡𝑡 − 1)e−𝜑𝜑𝜆𝜆

𝐶𝐶e
𝐵𝐵
𝑉𝑉 lim
𝜆𝜆→∞

 �1 + 𝜙𝜙𝑡𝑡e−𝜙𝜙𝜆𝜆 − e−𝜙𝜙𝜆𝜆�

𝐶𝐶e
𝐵𝐵
𝑉𝑉 � lim

𝜆𝜆→∞
 1 + lim

𝜆𝜆→∞
 𝜙𝜙𝑡𝑡e−𝜙𝜙𝜆𝜆 − lim

𝜆𝜆→∞
 e−𝜙𝜙𝜆𝜆�

𝐶𝐶e
𝐵𝐵
𝑉𝑉 �1 lim

𝜆𝜆→∞
 1 + 0 lim

𝜆𝜆→∞
 𝜙𝜙𝑡𝑡e−𝜙𝜙𝜆𝜆 − 0 lim

𝜆𝜆→∞
 e−𝜙𝜙𝜆𝜆� = 𝐶𝐶e

𝐵𝐵
𝑉𝑉

 (44) 

 
As in Corollary 4, the MTTF of the Arrhenius-NTA is not 

analytically available. Figs. 10 and 11 show the numerically 
solved mean time to failure (MTTF) of the Arrhnenius-NTA 
model.  

The solution can be obtained by 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹 = �  
∞

0
𝑠𝑠𝐶𝐶e

𝐵𝐵
𝑉𝑉�e𝜙𝜙𝜙𝜙 + 𝜙𝜙𝑠𝑠

− 1�e−𝐶𝐶e
𝐵𝐵
𝑉𝑉𝜙𝜙−𝜙𝜙𝜙𝜙+𝐶𝐶e

𝐵𝐵
𝑉𝑉𝜙𝜙e−𝜙𝜙𝜙𝜙𝑑𝑑𝑠𝑠 

(45) 

 
Or 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹 = �  
∞

0
e−𝐶𝐶e

𝐵𝐵
𝑉𝑉𝜙𝜙+𝐶𝐶e

𝐵𝐵
𝑉𝑉𝜙𝜙e−𝜙𝜙𝜙𝜙𝑑𝑑𝑠𝑠, (46) 

 
which is the expected value of the random variable 𝑡𝑡 or 

integration through the entire domain of the survival function. 
The MTTF can also be achieved through simulation, as 
introduced in the next section. It was shown that lower 
temperatures and higher activation energies decreased the MTTF 
of the component under test. A large activation energy indicates 
that stress has a substantial effect on MTTF. 

Lower values of 𝐶𝐶 and 𝜙𝜙 had a greater influence on the 
effect of temperature on the life of the component. When 
fixed, the parameters were 𝐶𝐶 = 0.002 and 𝜙𝜙 = 0.0025. 

Corollary 9. The maximum likelihood estimators of the 
Arrhenius-NTA reliability parameters are given by: 

 

𝐶𝐶 = −
∑  𝑛𝑛
𝑖𝑖=1  e𝜙𝜙𝜆𝜆𝑖𝑖

∑  𝑛𝑛
𝑖𝑖=1  𝑡𝑡e

𝜙𝜙𝜆𝜆𝑖𝑖+
𝐵𝐵
𝑉𝑉 − e

𝐵𝐵
𝑉𝑉𝑡𝑡𝑖𝑖

, (47) 

∂ℒ
∂𝐵𝐵 = � 

𝑛𝑛

𝑖𝑖=1

𝐶𝐶𝑡𝑡𝑖𝑖e
𝐵𝐵
𝑉𝑉−𝜙𝜙𝜆𝜆𝑖𝑖

𝑉𝑉 −
𝐶𝐶𝑡𝑡𝑖𝑖e

𝐵𝐵
𝑉𝑉

𝑉𝑉 +
𝑛𝑛
𝑉𝑉 (48) 
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Figure 10. Mean time to failure varying parameter C.  
Source: Authors. 

 
 

 
Figure 11. Mean time to failure varying parameter ϕ.  
Source: Authors. 

 
 
and 
 
∂ℒ
∂𝜙𝜙 = � 

𝑛𝑛

𝑖𝑖=1

− 𝐶𝐶𝑡𝑡𝑖𝑖2e
𝐵𝐵
𝑉𝑉−𝜆𝜆𝑖𝑖𝜑𝜑 +

𝑡𝑡𝑖𝑖e𝜆𝜆𝑖𝑖𝜑𝜑 + 𝑡𝑡𝑖𝑖
e𝜆𝜆𝑖𝑖𝜑𝜑 + 𝑡𝑡𝑖𝑖𝜑𝜑 − 1 − 𝑡𝑡𝑖𝑖 = 0. (49) 

 
Estimators for B and 𝜙𝜙 are not analytically available. 

Their approximations are given by the numerical solution of 
the nonlinear Equations 48) and (49), respectively. 

Proof. Given a random sample 𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛, the maximum 
likelihood estimators of the Arrhenius-NTA lifetime density 
function with parameters (𝐶𝐶,𝐵𝐵,𝜙𝜙) are obtained by finding 
∂ℒ
∂𝐶𝐶

= 0, ∂ℒ
∂𝐵𝐵

= 0 and ∂ℒ
∂𝜙𝜙

= 0  [32]. Then, the likelihood 
function for 𝑛𝑛 non-censored data points is given by 

 

𝐿𝐿 = � 
𝑛𝑛

𝑖𝑖=1

𝐶𝐶e
𝐵𝐵
𝑉𝑉�e𝜙𝜙𝜆𝜆𝑖𝑖 + 𝜙𝜙𝑡𝑡𝑖𝑖 − 1�e−𝐶𝐶e

𝐵𝐵
𝑉𝑉𝜆𝜆𝑖𝑖−𝜙𝜙𝜆𝜆𝑖𝑖+𝐶𝐶e

𝐵𝐵
𝑉𝑉𝜆𝜆𝑖𝑖e−𝜙𝜙𝜙𝜙𝑖𝑖 . (50) 

 

We have that 

𝐿𝐿 =�𝐶𝐶e
𝐵𝐵
𝑉𝑉�

𝑛𝑛
� 
𝑛𝑛

𝑖𝑖=1

 (e𝜙𝜙𝜆𝜆𝑖𝑖 + 𝜙𝜙𝑡𝑡𝑖𝑖 − 1)e−𝐶𝐶e
𝐵𝐵
𝑉𝑉𝜆𝜆𝑖𝑖−𝜙𝜙𝜆𝜆𝑖𝑖+𝐶𝐶e

𝐵𝐵
𝑉𝑉𝜆𝜆𝑖𝑖e−𝜙𝜙𝜙𝜙𝑖𝑖

ℒ = ln (𝐿𝐿) =𝑛𝑛ln �𝐶𝐶e
𝐵𝐵
𝑉𝑉�+ � 

𝑛𝑛

𝑖𝑖=1

 ln (e𝜙𝜙𝜆𝜆𝑖𝑖 + 𝜙𝜙𝑡𝑡𝑖𝑖 − 1)

 +� 
𝑛𝑛

𝑖𝑖=1

 �𝐶𝐶e
𝐵𝐵
𝑉𝑉� 𝑡𝑡𝑖𝑖e−𝜙𝜙𝜆𝜆𝑖𝑖 − �𝐶𝐶e

𝐵𝐵
𝑉𝑉� 𝑡𝑡𝑖𝑖 − 𝜙𝜙𝑡𝑡𝑖𝑖  

 (51) 

 
Finding the extreme points of (51) in terms of 𝐶𝐶 we have 
 

∂ℒ
∂𝐶𝐶

=
𝑛𝑛
𝐶𝐶 + � 

𝑛𝑛

𝑖𝑖=1

𝑡𝑡𝑖𝑖e
𝐵𝐵
𝑉𝑉−𝜙𝜙𝜆𝜆 − e

𝐵𝐵
𝑉𝑉𝑡𝑡𝑖𝑖 = 0. (52) 

 
So, the maximum likelihood estimator for the parameter 

𝐶𝐶 is given by 
 

𝐶𝐶 = −
𝑛𝑛

∑  𝑛𝑛
𝑖𝑖=1  𝑡𝑡𝑖𝑖e

𝐵𝐵
𝑉𝑉−𝜙𝜙𝜆𝜆𝑖𝑖 − e

𝐵𝐵
𝑉𝑉𝑡𝑡𝑖𝑖

. (53) 

 
Finding the extreme points of (51) in terms of 𝐵𝐵 we have 
 

∂ℒ
∂𝐵𝐵 =

𝑛𝑛
𝑉𝑉 + � 

𝑛𝑛

𝑖𝑖=1

𝐶𝐶𝑡𝑡𝑖𝑖e
𝐵𝐵
𝑉𝑉−𝜙𝜙𝜆𝜆𝑖𝑖

𝑉𝑉 −
𝐶𝐶𝑡𝑡𝑖𝑖e

𝐵𝐵
𝑉𝑉

𝑉𝑉 = 0. (54) 

 
Finding the extreme points of (51) in terms of 𝜙𝜙 we have 
 
∂ℒ
∂𝜙𝜙 = � 

𝑛𝑛

𝑖𝑖=1

− 𝐶𝐶𝑡𝑡𝑖𝑖2e
𝐵𝐵
𝑉𝑉−𝜆𝜆𝑖𝑖𝜑𝜑 +

𝑡𝑡𝑖𝑖e𝜆𝜆𝑖𝑖𝜑𝜑 + 𝑡𝑡𝑖𝑖
e𝜆𝜆𝑖𝑖𝜑𝜑 + 𝑡𝑡𝑖𝑖𝜑𝜑 − 1 − 𝑡𝑡𝑖𝑖 = 0. (55) 

 
 
Note that estimators (54) for 𝐵𝐵 and (55) for 𝜙𝜙 are not 

analytically available. 
 

4.1 Simulation 
 
In the following tables, we present the estimated 

parameters and value of the log-likelihood function. Notably, 
the relative error decreased as the sample size increased. The 
true parameters are by V=300, C=0.0002, B=1000 and 𝜙𝜙 =
0.0025.  The expected number of failures in an interval of 
time is calculated using the renewal process, which is 
associated with the distribution function 𝐹𝐹(𝑡𝑡) = 1 −
𝑅𝑅(𝑡𝑡).𝑀𝑀(𝑡𝑡) given by 

 

𝑀𝑀(𝑡𝑡) = 𝐹𝐹(𝑡𝑡) + �  
𝜆𝜆

0
��  
∞

𝑟𝑟=1

 𝐹𝐹𝑟𝑟(𝑡𝑡 − 𝑥𝑥)� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥, (56) 

 
is called the renewal function, and was discussed by [1]. 

The function 𝑀𝑀(𝑡𝑡) is difficult to obtain in analytical form, 
but an efficient numerical approximation can be found in 
[33]. 

 
 
 



da Silva & Amorim / Revista DYNA, 91(232), pp. 66-76, April - June, 2024. 

74 

Table 1. 
MLE estimators for 𝑛𝑛 = 30.  

Parameter Estimation Relative Error 

𝐶𝐶 0.000028665638 0.856 

𝐵𝐵 1437 0.437 

𝜙𝜙 0.006615886708 1.646 

ℒ 200.57 0.0046 

Source: Authors. 
 
 

Table 2. 
MLE estimators for n=300 

Parameter Estimated Relative Error 

𝐶𝐶 0.000250776105 0.253 

𝐵𝐵 1335 0.335 

𝜙𝜙 0.000420982926 0.831 

ℒ 1939 0.0032 

Source: Authors. 
 
 

Table 3. 
MLE estimators for 𝑛𝑛 = 900.  

Parameter Estimated Relative Error 

𝐶𝐶 0.000204747157 0.023 

𝐵𝐵 1163 0.163 

𝜙𝜙 0.001189293500 0.524 

ℒ 5792 0.0015 

Source: Authors. 
 
 
As shown in Tables 4 and 5, the expected number of 

failures in 𝑡𝑡 ∈ (0,1000) for a set of selected temperatures and 
parameter 𝐵𝐵 of the Arrhenius-NTA model (35). The base 
parameters are 𝑉𝑉 = 300,𝐵𝐵 = 1000 and 𝜙𝜙 = 0.0025. It is 
clear that, confirming the above results, the expected number 
of failures increased as 𝑉𝑉 decreased. The opposite was true 
for parameter 𝐵𝐵.  

The approximation of the renewal function is particularly 
useful for calculating the warranty costs and maintenance 
policies. 

 
Table 4. 
Expected number of failures for 𝑡𝑡 = 1000.  

Temperature (𝐊𝐊) 𝑴𝑴(𝒕𝒕) 

250 4.73 

300 3.07 

350 2.19 

400 1.67 

Source: Authors. 
 

4.2 Application procedure 
 
This procedure outlines the application of the Neyman 

Type A reliability model to analyze the failure of metallic 
materials under low-temperature conditions. The model is 
particularly useful for understanding and predicting the 
failure behavior of metals subjected to extreme thermal 
stresses.  

 
Table 5. 
Expected number of failures for 𝑡𝑡 = 1000.  

Parameter 𝑩𝑩 𝑴𝑴(𝒕𝒕) 

700 1.469 

800 1.904 

900 2.434 

1000 3.071 

Source: Authors. 
 
 

• Identify the parameters: The fundamental parameters for 
this model include the operating temperature and fixed 
applied mechanical stress. 

• The experimental failure data of the material were 
collected at various temperatures to capture the variation 
in the failure rate with temperature. 

• Apply the Neyman Type A distribution to the collected 
data to estimate the model parameters and the material 
survival function using the maximum likelihood 
estimators given by Equations (47), (48), and (49). 

• The estimated survival function (36) was used to predict 
the reliability of the material under defined operational 
conditions. 

• Equations (45) or (46) were used to estimate the mean 
time to failure. 

To validate the model, a comparison of the reliability 
predictions with the actual failure data obtained under 
controlled operational conditions must be conducted as well 
as a sensitivity analysis to understand the impact of each 
parameter on the model and refine the application procedure 
based on these insights. 

 
5 Discussion 

 
The application of the Neyman Type A distribution is 

especially pertinent in engineering contexts where material 
failures at low temperatures are critical. This scenario is often 
encountered in metallic structures and components used in 
extremely cold environments such as polar regions, 
aerospace applications, and equipment employed in low-
temperature chemical processes. These conditions are 
noteworthy for inducing brittleness and fatigue in metals, 
phenomena that occur when materials are exposed to 
temperatures below their ductile–brittle transition point. In 
such scenarios, conventional failure characteristics observed 
at normal or elevated temperatures do not apply, rendering 
traditional reliability analyses insufficient. 

With its ability to model failure behaviors in multimodal 
distributions, the Neyman Type A distribution is a valuable 
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statistical tool for predicting the reliability of these materials 
under reduced thermal stress conditions. For instance, 
aircrafts operating at high altitudes encounter extremely low 
temperatures that can compromise the integrity of metallic 
components, necessitating a reliability model that can 
adequately predict the likelihood of failure. Similarly, in 
polar regions, engineering structures and equipment must 
withstand not only intense cold, but also significant 
temperature variations, which can adversely affect their 
performance and durability.  

The implementation of a model based on the Neyman 
Type A distribution in engineering projects allows designers 
and engineers to conduct more refined and accurate 
assessments of the reliability and performance of materials 
and components under low-temperature conditions. By 
integrating this model into the design processes, it is possible 
to simulate the failure behavior of materials over time and 
under various environmental stress conditions, leading to 
improvements in material selection, structural design, and 
maintenance strategies. By quantifying the failure risk more 
accurately, engineers can optimize the design to withstand 
adverse conditions and enhance the safety and efficiency. 
Furthermore, the model can be employed to develop 
accelerated testing plans, helping to identify weaknesses in 
engineering designs and ensuring that selected materials meet 
the durability and reliability requirements before large-scale 
implementation. This not only extends the lifespan of 
components, but also reduces maintenance and replacement 
costs, significantly contributing to the sustainability and 
economic efficiency of engineering projects. 

Therefore, the selection of the Neyman Type A 
distribution for this study is grounded in the necessity of a 
statistical model that can accurately reflect the peculiarities 
of failures at low temperatures, allowing for a more precise 
and reliable analysis of the lifespan and failure behavior of 
metallic materials in these demanding contexts. 

 
6 Conclusion 

 
In this study, we introduced a novel statistical model 

utilizing the Neyman Type A distribution for reliability 
analysis, specifically tailored to address the challenges of 
modeling material failures at low temperatures. The 
development of the model was driven by the need to 
understand and predict the brittle fracture of metals under 
cold conditions, a scenario that is often overlooked in 
conventional reliability engineering. Through our research, 
we have not only demonstrated the humped behavior of the 
hazard function and its convergence to a constant rate λ, but 
also highlighted the utility of the model in accurately 
describing the inversely proportional relationship between 
failure risk and stress. This unique characteristic underscores 
the significance of the model in engineering applications in 
which low-temperature performance is critical. 

Our findings align closely with the initial objectives of 
this study, providing a robust framework for analyzing the 
reliability of materials in environments subjected to thermal 
stress. The predictive capacity of the model for early failure 
and its behavior under varying stress conditions offers 
substantial advancement in the field of reliability 

engineering. Future research directions include testing the 
model against alternative stress scenarios, conducting 
sensitivity analyses of the parameters, and validating the 
model with experimental data to enhance its comparability 
with the existing models. Additionally, exploring the 
interaction between mechanical load and temperature in a 
nonthermal life-stress relationship model presents an exciting 
avenue for extending the applicability of our work. This 
study not only fills a gap in the existing literature, but also 
sets the stage for more comprehensive and accurate reliability 
assessments in engineering disciplines concerned with low-
temperature material performance. 
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