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Abstract 
Passengers face high costs or multiple transfers when they arrive or depart from the airport. In addition, most transportation modes in a city 
typically stop operating from midnight to early morning, making it impossible for passengers to enjoy quality and inexpensive services. 
Considering the passenger detour and muti-types, this paper sets up the passenger detour rebate mechanism and constructs the Airport 
Reservation Bus (ARB) scheduling model to maximize the profit of ARB enterprise. Meanwhile, an Improved Adaptive Genetic Algorithm 
(IAGA) is designed to solve the model, where the crossover and mutation operations are optimized to prevent it from falling into local 
optimum. Finally, a case study shows that ARB costs at least 39% less than taxis, with slightly longer travel time. Compared to traditional 
GA, IAGA reduced running time by more than 12%, showing faster convergence. 
 
Keywords: airport reservation bus; differential pricing; vehicle scheduling; improved adaptive genetic algorithm. 

 
 

Investigación sobre la programación de autobuses de reserva en 
aeropuertos 

 
Resumen 
Los pasajeros afrontan altos costos o múltiples trasbordos al viajar al aeropuerto. Además, la mayoría de los medios de transporte urbano 
cesan su operación de medianoche a primera hora, privando a los pasajeros de servicios económicos y de calidad. Considerando desvíos y 
tipos mixtos de vehículos, se propone un mecanismo de reembolso por desvío y un modelo de programación de autobuses de reserva 
aeroportuaria (ARB) para maximizar la rentabilidad. Se diseña un Algoritmo Genético Adaptativo Mejorado (IAGA) optimizando cruce y 
mutación para evitar el óptimo local. Los casos muestran que el ARB cuesta 39% menos que los taxis con un ligero aumento de tiempo. 
En comparación con el AG tradicional, el IAGA redujo el tiempo de ejecución en más del 12%, lo que demuestra una convergencia más 
rápida. 
 
Palabras clave: autobús con reserva de aeropuerto; tarificación diferencial; programación de vehículos; algoritmo genético adaptativo 
mejorado. 

 
 
 

1 Introduction 
 
If the airport connection service is not good enough, it would 

be inconvenient for passengers. Currently, the public 
transportation modes from airport to urban area mainly include 
‘airport bus + bus/subway’, ‘railway + bus/subway’ and cab, 
etc., which are difficult to balance the convenience, economy 
and comfort of travel. Nevertheless, the Airport Reservation Bus 
in this paper strives for a compromise among the three, while 
reducing the total social cost, easing traffic pressure and 
improving the efficiency of passenger distribution. 

 
How to cite: Li, J., Chen,  L., Li, X., and Liu, H., Research on airport reservation bus scheduling. DYNA, (92)238, pp. 9-18, July - September, 2025. 

Fare studies are mainly divided into two categories, fixed 
fare and differential fare. Regarding fixed fare, Zhou (2001) 
[1] et al developed a bi-level transit fare optimization method 
based on line capacity constraints. Borndörfer (2012) [2] et 
al proposed a nonlinear fare optimization method based on a 
discrete choice model. However, these studies predominantly 
adopted fixed fares and overlooked the impact of detours on 
passenger cost. Due to the unfairness of fixed fare, 
differential pricing is attracting more and more attentions. 
Emele (2013) [3] et al introduced a variable pricing 
mechanism into the fare planning for flexible transport 
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services. Kamel (2020) [4] et al constructed a platform for 
optimizing time-based transit fares in large multimodal 
transportation networks. Guo (2021) [5] et al established a 
time-dependent transit pricing model considering elasticity 
and time-distributed demand. While these studies explored 
dynamic pricing mechanisms, they seldom connected fare 
adjustments with detour distances. 

Vehicle scheduling is categorized into single-vehicle 
type and multiple-vehicle type. Concerning the single-
vehicle type, Smith (2003) [6] et al established a bi-
objective scheduling optimization model based on 
balancing the maximum number of deviations and 
minimum unused slack time. Gebeyehu (2008) [7] et al 
applied the GIS technology to the design of Demand 
Responsive Transit routes. Ye (2015) [8] et al constructed 
an optimization model for taxi ridesharing routes. Li 
(2024) [9] et al proposed a real-time dynamic route 
planning algorithm for DRT. Notably, these single-vehicle 
studies overlooked the efficiency potential of mixed fleets, 
a research dimension that subsequent multi-fleet studies 
have begun to address. In terms of multi-vehicle type, 
Golden (1984) [10] et al first proposed the multi-vehicle 
route planning problem. Tarantilis (2003) [11] et al 
designed a metaheuristic algorithm to solve it with a fixed 
vehicle size. Dondo (2008) [12] et al, Barkaoui (2013) [13] 
et al and Goeke (2015) [14] et al proposed a hybrid local 
improvement algorithm, improved adaptive genetic 
algorithm, and hybrid heuristic algorithm respectively. 
Gasque (2022) [15] et al established two mixed-integer 
programming models for taking delivery without 
separation as well as taking delivery with separation and 
proposed an adaptive large-neighborhood search element 
heuristic algorithm. Although these multi-vehicle studies 
optimized routes, they rarely combined mixed types with 
detour management. 

Though existing research has made significant progress 
in fares and scheduling models, there remain the following 
problems: the fixed fare is typically adopted, without 
considering the effect of detours. Concerning vehicle 
scheduling, scholars pay less attention to the variability of 
vehicle types. With respect to algorithms, the Adaptive 
Genetic Algorithm (AGA) is more widely used because of its 
high robustness and efficiency, while suffers from problems 
such as premature convergence and local optimization. 
Aiming at the above problems, this paper simultaneously 
considers the passenger detour and the mixed vehicle types 
and proposes a passenger detour rebate mechanism. With the 
goal of maximizing the profit of the Airport Reservation Bus 
(ARB) enterprise, then the ARB scheduling model is 
constructed. Finally, an Improved Adaptive Genetic 
Algorithm (IAGA) is designed to solve it. 

 
2 Airport reservation bus scheduling model based on 

passenger detour compensation 
 

2.1 Problem description 
 
The problem is divided into the delivery stage and pick-

up stage, described as follows: the delivery stage involves  

 
Figure 1. Passengers boarding at the airport and their routes a) Passengers; 
b) Routes for them 
Source: Own elaboration. 

 
 

 
Figure 2. Add passengers alighting at the airport a) Add passengers; b)Final 
routes 
Source: Own elaboration. 

 
 

transporting passengers boarding at the airport. In this stage, 
the origin is fixed at the airport. The pick-up stage is to collect 
passengers alighting at the airport. According to distance of 
detours, a fare discount is rebated to detour passengers. 

The process of generating the routes of the ARB is shown 
in Fig. 1 (a) – 2 (b). The demands of passengers boarding at 
the airport and their routes are in Fig. 1 (a) - (b). Based on 
this, taking passengers alighting at the airport into routing 
consideration, the final planning is in Fig. 2 (a) - (b). 

The solid area in the above figure is for passengers 
boarding at the airport and the dashed is for passengers 
alighting at the airport. The ARB delivers passengers to the 
destination while picking up passengers to the airport. Upon 
completion of the pick-up and drop-off, the bus returns to the 
terminal to wait for the next round of pick-ups and drop-offs. 

 
2.2 Model building 
 
2.2.1 Model assumptions 

 
(1) The seat reservations are accepted only between the 

airport and the points of demand, not between points of 
demand; 

(2) For passengers alighting/boarding at the airport, only 
their arrival/departure time window at the airport is 
considered. 

(3) The vehicle type and fleet size are known; 
(4) Vehicle speed is constant and known. 
(5) There is only one airport within the service area. 
(6) The vehicle makes only one round trip at a given time. 
 

2.2.2 Definition of parameters 
 
The definition of the parameters involved are in Table 1. 
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Table 1. 
Parameter Definition. 

Symbol Definition 
𝐽𝐽 Airport. 
𝐺𝐺 Freeway entrance/exit. 

𝑀𝑀 The set of boarding and alighting points, 𝑚𝑚 is the total number 
of points. 

𝐾𝐾 The set of vehicle types, 𝐾𝐾 = {1,2, … , ℎ}, ℎ is the sequence of 
the vehicle type. 

𝐾𝐾ℎ The set of the number for vehicles type ℎ, 𝐾𝐾ℎ = {1,2, … , 𝑘𝑘}, 𝑘𝑘 
is sequence of the vehicle. 

𝑄𝑄 The set of passengers. 
𝑄𝑄𝑎𝑎 The set of passengers alighting at the airport. 
𝑄𝑄𝑏𝑏 The set of passengers boarding at the airport. 
𝑖𝑖 The sequence of the point, 𝑖𝑖 ∈ 𝑀𝑀. 
𝑞𝑞 The sequence of the passenger, 𝑞𝑞 ∈ 𝑄𝑄. 
𝑙𝑙𝑖𝑖𝑖𝑖 Ideal distance traveled from point 𝑖𝑖 to point 𝑗𝑗. 
𝑄𝑄𝑖𝑖𝑖𝑖𝑘𝑘  Number of passengers for vehicle 𝑘𝑘 from 𝑖𝑖 to the 𝐽𝐽. 
𝑝𝑝𝑘𝑘 Fare per kilometer of vehicle 𝑘𝑘 in the urban area. 

𝑔𝑔(𝑙𝑙𝑖𝑖𝑖𝑖
𝑘𝑘𝑘𝑘) Floating fare for vehicle 𝑘𝑘 from 𝑖𝑖 to 𝐽𝐽. 
𝐶𝐶𝑣𝑣 Value of time for passengers. 
𝐿𝐿𝑖𝑖𝑖𝑖𝑘𝑘  Actual distance traveled by vehicle 𝑘𝑘 from 𝑖𝑖 to 𝑗𝑗. 
𝜆𝜆𝑙𝑙𝑙𝑙𝑙𝑙 Passenger detour coefficient. 
𝐶𝐶ℎ0 Fixed costs of type ℎ. 
𝑁𝑁 The service life of the vehicle. 
𝐶𝐶ℎ1 Variable cost of unit distance for vehicle type ℎ. 
𝐶𝐶𝑑𝑑 Wage for driver. 
𝑉𝑉 Speed of vehicle. 
𝑡𝑡0 Individual passenger boarding or alighting time. 
𝜑𝜑 Penalty cost factor for late arrival of vehicles at the airport. 
𝑄𝑄𝑙𝑙𝑘𝑘 Number of passengers late arrival for vehicle 𝑘𝑘. 
𝑇𝑇𝑑𝑑𝑑𝑑𝑘𝑘  Departure moment of vehicle 𝑘𝑘 from 𝐽𝐽. 

[𝑇𝑇𝑞𝑞𝑒𝑒 ,𝑇𝑇𝑞𝑞𝑙𝑙] 
Expected arrival time window, 𝑞𝑞 ∈ 𝑄𝑄𝑎𝑎. 
Expected departure time window, 𝑞𝑞 ∈ 𝑄𝑄𝑏𝑏. 

𝑄𝑄𝑖𝑖𝑖𝑖 Number of passengers in vehicle k arriving at point 𝑖𝑖. 
𝑄𝑄𝑘𝑘 Capacity of vehicle 𝑘𝑘. 
𝑇𝑇𝑞𝑞𝑤𝑤 Waiting time of passenger 𝑞𝑞. 
𝑇𝑇𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 Maximum tolerated waiting time for passenger 𝑞𝑞. 
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 Maximum travel time of vehicle. 

𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘 1, vehicle 𝑘𝑘 traveling from 𝑖𝑖 to 𝑗𝑗. 
0, otherwise. 

𝑌𝑌𝑞𝑞𝑘𝑘 1, passenger 𝑞𝑞 served by vehicle 𝑘𝑘. 
0, otherwise. 

Source: Own elaboration. 
 
 

2.2.3 Model assumptions 
 
Route planning is a major task of vehicle scheduling. This 

paper formulates a route planning model to maximize the 
profit of ARB enterprises by optimizing operational 
efficiency. The model introduces a differential pricing 
mechanism that rebates passengers for detours and imposes 
penalty fees if their time requirements are unmet. The 
objective function is defined as:  

 
𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃 = 𝑅𝑅 − 𝐶𝐶1 − 𝐶𝐶2 − 𝐶𝐶3 − 𝐶𝐶4 (1) 

 
Where 𝑃𝑃,𝑅𝑅,𝐶𝐶1,𝐶𝐶2,𝐶𝐶3,𝐶𝐶4 mean profit, fare revenue, fixed 

cost, variable cost, penalty cost for late arrival and for late 
departure respectively. 
1. Fare revenue 𝑅𝑅 

The fare revenue 𝑅𝑅 consists of the basic fare 𝑅𝑅𝑏𝑏𝑏𝑏 and the 
rebate 𝑅𝑅𝑟𝑟 based on mileage pricing. 
 

 
Figure 3 Shortest and actual routes. 
Source: Own elaboration. 

 
 

𝑅𝑅 = 𝑅𝑅𝑏𝑏𝑏𝑏 − 𝑅𝑅𝑟𝑟 (2) 
 
The basic fare 𝑅𝑅𝑏𝑏𝑏𝑏 is a primary function proportional to 

the ideal distance of passengers [16-18]. 
 

𝑅𝑅𝑏𝑏𝑏𝑏 = � � ��[𝑝𝑝𝑘𝑘 ⋅ 𝑙𝑙𝑖𝑖𝑖𝑖 ⋅ (𝑄𝑄𝑖𝑖𝑖𝑖𝑘𝑘 + 𝑄𝑄𝐽𝐽𝐽𝐽𝑘𝑘 )]
𝑗𝑗∈𝑀𝑀𝑖𝑖∈𝑀𝑀𝑘𝑘∈𝐾𝐾ℎℎ∈𝐾𝐾

 (3) 

 
The rebate 𝑅𝑅𝑟𝑟 is related to the passenger detour distance. 

The formula proposed in this paper is as follows. 
 
𝑅𝑅𝑟𝑟 = � � ��(𝑔𝑔(𝑙𝑙𝑖𝑖𝑖𝑖

𝑘𝑘𝑘𝑘) ⋅ 𝑄𝑄𝑖𝑖𝑖𝑖𝑘𝑘 + 𝑔𝑔(𝑙𝑙𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘) ⋅ 𝑄𝑄𝐽𝐽𝐽𝐽𝑘𝑘 �

𝑖𝑖∈𝑀𝑀𝑘𝑘∈𝐾𝐾ℎℎ∈𝐾𝐾

 (4) 

 

𝑔𝑔�𝑙𝑙𝑖𝑖𝑖𝑖
𝑘𝑘𝑘𝑘� = �

�𝐶𝐶𝑣𝑣 ∙ �𝐿𝐿𝑖𝑖𝑖𝑖𝑘𝑘 − 𝜆𝜆𝑙𝑙𝑙𝑙𝑙𝑙 ∙ 𝑙𝑙𝑖𝑖𝑖𝑖��/𝑉𝑉, 𝐿𝐿𝑖𝑖𝑖𝑖𝑘𝑘 /𝑙𝑙𝑖𝑖𝑖𝑖 ≥ 𝜆𝜆𝑙𝑙𝑙𝑙𝑙𝑙
0,𝐿𝐿𝑖𝑖𝑖𝑖𝑘𝑘 /𝑙𝑙𝑖𝑖𝑖𝑖 < 𝜆𝜆𝑙𝑙𝑙𝑙𝑙𝑙

 (5) 

 
When a passenger detour is greater than or equal to 𝜆𝜆𝑙𝑙𝑙𝑙𝑙𝑙, 

passenger time delayed by the detour is converted into money 
and rebated to him. The shortest and actual distance for 
passengers are shown in Fig. 3. 

For passenger 6, the actual distance is ideal distance, so 
detour does not exist. For passenger 3, whose ideal distance 
is 𝑓𝑓 + 𝑘𝑘, the actual distance is 𝑔𝑔 + ℎ + 𝑖𝑖 + 𝑗𝑗 + 𝑘𝑘. If 
(𝑔𝑔 + ℎ + 𝑖𝑖 + 𝑗𝑗 + 𝑘𝑘) (𝑓𝑓 + 𝑘𝑘)⁄ > 𝜆𝜆𝑙𝑙𝑙𝑙𝑙𝑙, it is necessary to 
rebate him. 
2.Fixed cost 𝐶𝐶1 

Fixed cost 𝐶𝐶1 is related to the number of vehicles and their 
service life [16-18]. 

 

𝐶𝐶1 =
∑ ∑ 𝐶𝐶ℎ0𝑘𝑘∈𝐾𝐾ℎℎ∈𝐾𝐾

365𝑁𝑁  (6) 

 
3. Variable cost 𝐶𝐶2 

Variable cost 𝐶𝐶2 includes fuel consumption and driver 
cost, which are related to distance [16-18]. 

 

𝐶𝐶2 = � � ��(𝐶𝐶ℎ1 ⋅ 𝑙𝑙𝑖𝑖𝑖𝑖 ⋅ 𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘 + 𝐶𝐶𝑑𝑑 ⋅ (
𝑙𝑙𝑖𝑖𝑖𝑖 ⋅ 𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘

𝑉𝑉
𝑗𝑗∈𝑀𝑀𝑖𝑖∈𝑀𝑀𝑘𝑘∈𝐾𝐾ℎℎ∈𝐾𝐾

+
∑ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑄𝑄𝑖𝑖𝑖𝑖𝑘𝑘 ,𝑄𝑄𝐽𝐽𝐽𝐽𝑘𝑘 )𝑖𝑖∈𝑀𝑀 ⋅ 𝑡𝑡0

60 )) 

(7) 
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4. Penalty cost for late arrival at the airport 𝐶𝐶3 
𝐶𝐶3 is the penalty cost for vehicles arriving late at the 

airport. Since airport passengers are highly time sensitive, 
late arrival may cause passenger miss their flights and incur 
a great loss [16-18]. 

 

𝐶𝐶3 = �
� � � (𝜑𝜑 ∙ 𝑌𝑌𝑞𝑞𝑘𝑘)

𝑘𝑘∈𝐾𝐾ℎℎ∈𝐾𝐾𝑞𝑞∈𝑄𝑄𝑎𝑎

, (𝑇𝑇𝑋𝑋1 > 𝑇𝑇𝑞𝑞𝑙𝑙)

0, (𝑇𝑇𝑋𝑋1 ≤ 𝑇𝑇𝑞𝑞𝑙𝑙)
 (8) 

 

𝑇𝑇𝑋𝑋1 = 𝑇𝑇𝑑𝑑𝑑𝑑𝑘𝑘 +
∑ ∑ 𝑙𝑙𝑖𝑖𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘𝑗𝑗∈𝑀𝑀𝑖𝑖∈𝑀𝑀

𝑉𝑉 +
∑ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑄𝑄𝑖𝑖𝑖𝑖𝑘𝑘 ,𝑄𝑄𝐽𝐽𝐽𝐽𝑘𝑘 )𝑚𝑚
𝑖𝑖=1 ⋅ 𝑡𝑡0

60  (9) 

 
5. Penalty cost for late departure from the airport 𝐶𝐶4 

𝐶𝐶4 is the penalty cost for a vehicle departing the airport late. 
If a vehicle leaves the airport later than 𝑇𝑇𝑞𝑞𝑙𝑙, it will cause the 
passenger wait too long. The formula proposed is as follows. 

 

𝐶𝐶4 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧0.5 � � � 𝐶𝐶𝑋𝑋2

𝑘𝑘∈𝐾𝐾ℎℎ∈𝐾𝐾𝑞𝑞∈𝑄𝑄𝑎𝑎

, (0 < 𝑇𝑇𝑑𝑑𝑑𝑑𝑘𝑘 − 𝑇𝑇𝑞𝑞𝑙𝑙 ≤ 5)

0.73 � � � 𝐶𝐶𝑋𝑋2
𝑘𝑘∈𝐾𝐾ℎℎ∈𝐾𝐾𝑞𝑞∈𝑄𝑄𝑎𝑎

, (5 < 𝑇𝑇𝑑𝑑𝑑𝑑𝑘𝑘 − 𝑇𝑇𝑞𝑞𝑙𝑙 ≤ 20)

100 � � � 𝐶𝐶𝑋𝑋2
𝑘𝑘∈𝐾𝐾ℎℎ∈𝐾𝐾𝑞𝑞∈𝑄𝑄𝑎𝑎

, (𝑇𝑇𝑑𝑑𝑑𝑑𝑘𝑘 − 𝑇𝑇𝑞𝑞𝑙𝑙 > 20)

 (10) 

 
𝐶𝐶𝑋𝑋2 = �𝑇𝑇𝑑𝑑𝑑𝑑𝑘𝑘 − 𝑇𝑇𝑞𝑞𝑙𝑙� ∙ 𝑌𝑌𝑞𝑞𝑘𝑘 (11) 

 
2.2.4  Constraints 

 
1. Origin and destination constraints 

Vehicles entering and exiting a point of demand are the 
same. 

 
�𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘 ≤ 1
𝑖𝑖∈𝑀𝑀

, (𝑗𝑗 ∈ 𝑀𝑀, 𝑘𝑘 ∈ 𝐾𝐾ℎ) (12) 

 
2. Vehicle capacity constraints 

The number of passengers in a vehicle is less than or equal 
to the its capacity. 

 

�
𝑄𝑄𝑖𝑖𝑖𝑖 ≤ 𝑄𝑄𝑘𝑘

𝑄𝑄𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑖𝑖𝑖𝑖𝑘𝑘 − 𝑄𝑄𝐽𝐽𝐽𝐽𝑘𝑘 ≤ 𝑄𝑄𝑘𝑘
, (𝑘𝑘 ∈ 𝐾𝐾ℎ , 𝑖𝑖 ∈ 𝑀𝑀) (13) 

 
3. Connection service supply constraints 

Each demand is served by only one vehicle. 
 

� � 𝑌𝑌𝑞𝑞𝑘𝑘
𝑘𝑘∈𝐾𝐾ℎℎ∈𝐾𝐾

= 1, (𝑞𝑞 ∈ 𝑀𝑀) (14) 

 
4. Maximum travel time of vehicle 

 
∑ ∑ 𝑙𝑙𝑖𝑖𝑖𝑖 ∙ 𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘𝑗𝑗∈𝑀𝑀𝑖𝑖∈𝑀𝑀

𝑉𝑉 +
∑ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑄𝑄𝑖𝑖𝑖𝑖𝑘𝑘 ,𝑄𝑄𝐽𝐽𝐽𝐽𝑘𝑘 ) ∙𝑖𝑖∈𝑀𝑀 𝑡𝑡0

60
≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, (𝑘𝑘 ∈ 𝐾𝐾ℎ) 

(15) 

5. Passenger detour constraints 
 

𝜆𝜆 = (
𝐿𝐿𝑖𝑖𝑖𝑖𝑘𝑘

𝑉𝑉 +
∑ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑄𝑄𝑖𝑖𝑖𝑖𝑘𝑘 ,𝑄𝑄𝐽𝐽𝐽𝐽𝑘𝑘 )𝑖𝑖∈𝑀𝑀 ⋅ 𝑡𝑡0

60 )
𝑙𝑙𝑖𝑖𝑖𝑖
𝑉𝑉� ≤ 𝜆𝜆𝑙𝑙𝑙𝑙𝑙𝑙 (16) 

 
3 Improved adaptive genetic algorithm 

 
The problem studied in this paper is the Vehicle Routing 

Problem with Time Window constraints, which is a well-
known NP-hard problem solved by heuristic algorithms 
efficiently. Genetic Algorithm (GA) has the advantages of 
parallelism and global optimization. It continuously 
generates new individuals and populations in the process of 
reproduction, and seeks a better solution, which is applicable 
to the solution of complex optimization problems. 

 

 
Figure 4 Chromosome coding schematic. 
Source: Own elaboration. 

 
 

 
Figure 5 Chromosome coding forms. 
Source: Own elaboration. 

 
 
In the traditional GA, the crossover probability 𝑃𝑃𝑐𝑐 and 

mutation probability 𝑃𝑃𝑚𝑚 are fixed values. In the process of 
large-scale problem, the early maturity often occurs. This 
paper proposes an IAGA to set 𝑃𝑃𝑐𝑐 and 𝑃𝑃𝑚𝑚 as dynamic values, 
which improves the solving efficiency while setting the 
minimum value of 𝑃𝑃𝑐𝑐 and 𝑃𝑃𝑚𝑚 to ensure the evolution speed in 
the early stage is high enough to avoid falling into the local 
optimal solution. 

 
3.1 Chromosome coding and population initialization 

 
3.1.1 Chromosome coding 

 
Considering mixed vehicle types, it is necessary to add 

vehicle type auxiliary codes for chromosome coding. The 
chromosome is encoded into individuals of length 𝑚𝑚 + 1 +
2(𝐾𝐾1 + 𝐾𝐾2). The coding scheme is shown in Fig. 4. 
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In this paper, there are two vehicle types. Where 1 in the 
vehicle types represents the type a, -1 is the vehicle type b, 
and 0 means the vehicle is not being used. The demand point 
0 is the airport. 

Taking (0,14,3,6,8,0,0,2,13,9,1,4,0,7,1,11,5,12,0,1,0,-1,-
1) as an example, the chromosome coding form is shown in 
Fig. 5. There are 15 demand points and 4 vehicles, with two 
each of vehicle type a and b. 

Vehicle 1 (a): Airport - Point 14 - Point 3 - Point 6 - Point 
8 -Airport 

Vehicle 2 (a): Non-operational 
Vehicle 3 (b): Airport - Point 2 - Point 13 - Point 9 - Point 

10 - Point 15 - Point 4 - Airport 
Vehicle 4 (b): Airport - Point 7 - Point 1 - Point 11 - Point 

5 - Point 12 – Airport 
 

3.1.2  Population initialization 
 
In this paper, a randomized generation method was 

chosen to generate the initial population. A passenger is 
randomly selected and assigned to a vehicle. If the number of 
passengers does not exceed the capacity, add the point into 
the route. Otherwise, re-select a vehicle among the rest and 
determine whether it is overcrowded until the passenger is 
assigned to a particular vehicle. Repeat until all demands are 
met. 

 
3.2 Genetic operation 

 
3.2.1  Selection operation 

 
In this paper, the selection operation is based on Monte 

Carlo Method, and the selection probability of a chromosome 
is the ratio of its fitness value to the sum of the fitness values 
of all chromosome. Therefore, the larger the fitness value, the 
greater the probability of being selected. 

 
3.2.2  Crossover operation 

 
The Adaptive Genetic Algorithm (AGA) proposed by M. 

Srinivas makes the crossover probability 𝑃𝑃𝑐𝑐 relevant to the fitness 
value, which can solve the problem of premature convergence 
effectively. However, in the early stage of AGA, the evolution 
speed of good individuals is slow, which reduces the operational 
efficiency and even leads to the local optimum. 

This paper improves the crossover probability 𝑃𝑃𝑐𝑐 of AGA, 
which ensures that the fitness value can flexibly change the 
crossover probability to improve the operational efficiency. 
Meanwhile, the minimum crossover probability is set to ensure 
that it evolves quickly in the early stage, to avoid falling into the 
local optimum. The improved formula are as follows. 

 

𝑃𝑃𝑐𝑐 = �𝑃𝑃𝑐𝑐1 −
(𝑃𝑃𝑐𝑐1 − 𝑃𝑃𝑐𝑐2)(𝑓𝑓𝑢𝑢𝑢𝑢 − 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
, 𝑓𝑓𝑢𝑢𝑢𝑢 ≥ 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛

𝑃𝑃𝑐𝑐1 , 𝑓𝑓𝑢𝑢𝑢𝑢 < 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
 (17) 

 
Where 
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚——Maximum fitness value of all chromosomes 
𝑓𝑓𝑢𝑢𝑢𝑢——Larger fitness value in two chromosomes 

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚——Mean of all chromosome fitness values 
𝑃𝑃𝑐𝑐1——Maximum crossover probability 
𝑃𝑃𝑐𝑐2——Minimum crossover probability 
When chromosome X and Y perform crossover operation, 

point chain 1 of vehicle i is randomly selected from X, and 
point chain 2 of vehicle j is randomly selected from Y. The 
type of vehicle i and j may be the same or different. 
(1) The same vehicle type. 

In this case, it does not need to consider vehicle type 
crossover and only chain crossover can be considered. 

Step 1: add the points in chain 2 to chain 1 sequentially. 
For each point, conduct a feasibility test of the corresponding 
vehicle type on chain 1. If the constraints are satisfied, insert 
it into chain 1 and delete points duplicated with chain 1 on 
other chains of the X chromosome. Otherwise, remain in 
chain 2. 

Step 2: update the chromosome X. 
Step 3: set the operated vehicle in chain 2 on chromosome 

Y to 0, complement missing demand points and randomly 
select an assigned vehicle to deliver the demand points. If 
points cannot be assigned to them, arrange for a new vehicle. 
If it is not available, keep the original chromosome Y to enter 
the offspring. 
(2) The different vehicle types. 

Step 1: if vehicle i and j are type a and b respectively, 
draw out the points in chain 1, and sequentially place the 
drawn points into chain 2 until the constraint of type b is 
satisfied. 

Step 2: conduct the aforementioned procedure for the 
same vehicle type according to the case where both vehicles 
are type a and both are type b respectively, to obtain 
temporary chromosome 𝑋𝑋1 and 𝑋𝑋2. 

Step 3: calculate the fitness 𝑓𝑓1 and 𝑓𝑓2 for 𝑋𝑋1 and 𝑋𝑋2. 
Generate a random number 𝛾𝛾, if 𝛾𝛾 ≤ 𝑓𝑓1

𝑓𝑓1+𝑓𝑓2
, remain 𝑋𝑋1 into the 

offspring, otherwise remain 𝑋𝑋2. Swap the sequence of 
chromosomes X and Y and perform the above operation. 

 
3.2.3  Mutation operation 

 
The improved mutation probability 𝑃𝑃𝑚𝑚 of AGA proposed 

by M. Srinivas plays the same role as 𝑃𝑃𝑐𝑐. Therefore, it is 
necessary to set a minimum mutation probability. The 
improved formula are as follows. 

 

𝑃𝑃𝑚𝑚 = �𝑃𝑃𝑚𝑚1 −
�𝑃𝑃𝑚𝑚1 − 𝑃𝑃𝑚𝑚2��𝑓𝑓𝑢𝑢𝑢𝑢 − 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒
, 𝑓𝑓𝑢𝑢𝑢𝑢 ≥ 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑃𝑃𝑚𝑚1 , 𝑓𝑓𝑢𝑢𝑢𝑢 < 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
 (18) 

 
Where 
𝑃𝑃𝑚𝑚1——Maximum mutation probability 
𝑃𝑃𝑚𝑚2——Minimum mutation probability 
The mutation operation is divided into two stages, point 

mutation and vehicle type mutation. The procedure is as 
follows: 

Step I: select individuals in turn from the crossover 
operation. 

Step II: determine whether the individual is mutated or 
not. If mutated, turn to step III. Otherwise, turn to step V. 

Step Ⅲ: Stage 1 - Point Mutation. 
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Step 1: randomly select an assigned vehicle and record its 
point chain. 

Step 2: randomly choose a point x in the chain and remove it. 
Step 3: add point x to the chain of another assigned vehicle, 

if the new chain satisfies the capacity constraints of the 
corresponding vehicle type, then the insertion is successful. 
Otherwise, search for the next vehicle. If fail to assign it, then 
determine whether a vehicle is available. If there is, assign the 
point to the new vehicle, otherwise turn to Step IV; 

Step 4: update the chromosome. 
Step IV: Stage 2 - Vehicle type mutation. 
Step 5: randomly select a vehicle and record its chain and type. 
Step 6: determine whether the chain satisfies the 

constraints of the other vehicle type. If so, turn to Step 8, 
otherwise, turn to the next step. 

Step 7: draw out all points in the chain sequentially until 
the capacity constraint of the other type is satisfied. Then, 
assign the drawn points to other assigned vehicles for the 
other type. If failed, arrange a new vehicle. If there are no 
available vehicles, readjust the point drawn scheme. If all 
schemes can not satisfy the constraints, the mutation fails and 
remain the chromosome. Otherwise, turn to the next step. 

Step 8: replace the vehicle type with the other one. 
Step V: update the chromosome. 
 

3.3 Solution flow 
 
The IAGA is used for model solving, and the specific 

flow is shown in Fig. 6. 
 

3.4  Algorithm comparison 
 
In order to verify the advantages of the IAGA, the 

algorithms are compared with 20 and 30 demands 
 

 
Figure 6 Schematic diagram of the IAGA. 
Source: Own elaboration. 

Table 2. 
Algorithm comparison data. 
Demand Longitude Latitude Time Demand Longitude Latitude Time 

1 101.27 31.05 13:45 16 101.29 31.07 14:00 
2 101.3 31.02 13:50 17 101.24 31.02 14:30 
3 101.21 31.06 13:45 18 101.24 31 13:55 
4 101.25 31.03 13:45 19 101.2 31.04 14:15 
5 101.21 31.02 13:50 20 101.27 31.03 14:25 
6 101.23 31.1 14:25 21 101.28 31.04 14:30 
7 101.22 31.01 14:30 22 101.25 31.02 14:15 
8 101.25 31.01 13:55 23 101.27 31.04 14:05 
9 101.22 31.08 13:30 24 101.29 31.09 13:50 

10 101.22 31.02 14:25 25 101.23 31.04 14:00 
11 101.2 31.05 13:55 26 101.3 31.03 13:55 
12 101.2 31.05 14:30 27 101.28 31.05 13:45 
13 101.21 31.05 14:00 28 101.28 31.02 14:10 
14 101.27 31 13:25 29 101.26 31.06 14:05 
15 101.3 31.09 14:25 30 101.27 31.03 14:00 

Source: Own elaboration. 
 

respectively. The fitness of the traditional GA is set as the 
value of the objective function and the algorithm parameters 
are the same as the IAGA. Taking the arrival time window at 
the airport as an example, the data in the table is 𝑇𝑇𝑞𝑞𝑙𝑙, and 𝑇𝑇𝑞𝑞𝑒𝑒 
is 15 minutes in advance, shown in Table 2. The 20 demands 
are the top 20 data in Table 2. 

The changes in the objective function values for each 
group are in Fig. 7 (a), 7 (b) and the results is in Table 3, 4. 

Compared with the traditional GA, the running time of 
the IAGA corresponding to 20 and 30 demands decreased by 
12.02% and 14.08% respectively and the number of iterations 
has been reduced by 23.6% and 35.7%. 

 
4 Case study 

 
4.1 Service areas and example profiles 

 
Take Changchun Nanguan District, an area with high 

density passenger flow, as the object. 
 

 
Figure 7 Different demands a) Demands = 20; b) Demands = 30. 
Source: Own elaboration. 

 
Table 3. 
Comparison of the results of 20 demands. 

Algorithm Running time (s) Iterations objective function value 
Traditional GA 43.76 89 797.66 

IAGA 38.5 68 806.3 
Change (%) -12.02 -23.6 +1.08 

Source: Own elaboration. 
 

Table 4. 
Comparison of the results of 30 demands. 

Algorithm Running time (s) Iterations objective function value 
Traditional GA 49.08 42 1094.0 

IAGA 42.17 27 1131.3 
Change (%) -14.08 -35.7 +3.41 

Source: Own elaboration. 
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Figure 8 Road information a) Road network; b) Public transportation. 
Source: Own elaboration. 

 
 

 
Figure 9 Reservation demand distribution. 
Source: Own elaboration. 

 
 
The road network is in Fig. 8 (a), and the coverage of 

public transportation around the area is shown in Fig. 8 (b). 
The existing transportation modes from urban area to 
Changchun Longjia International Airport (International Air 
Transport Association: CGQ) are in Fig. 8 (b) 

Taking arrival flights of 19:00-22:30 and departure flights 
of 22:30-00:30 as an example, 50 passenger demand points 
are randomly generated. The total number of passengers is 
58, where 44 passengers board at airport and 14 passengers 
alight at airport. The distribution of demand points are in Fig. 
9 and the demand data is shown in Table 5, in which point 51 
and 52 are freeway entrance/exit and airport. 

 
 

Table 5. 
Passenger travel data. 

No. Longitude Latitude Expected time window  Number of 
passengers 

Arrival  Departure Boarding Alighting 
1 125.316731 43.860387 - 20:15-20:20 1 0 
2 125.319349 43.861980 - 20:05-20:10 1 0 
3 125.324971 43.861299 - 19:35-19:40 1 0 
4 125.324628 43.859814 21:00-21:15 - 0 1 
5 125.320465 43.855977 - 20:20-20:25 1 0 
6 125.331581 43.858541 - 20:35-20:40 1 0 
7 125.334927 43.860804 - 20:40-20:45 1 0 
8 125.329863 43.862197 - 20:10-20:15 1 0 
9 125.333983 43.854801 - 20:05-20:10 2 0 

10 125.339648 43.858576 20:50-21:05 - 0 1 
11 125.328876 43.858515 - 19:55-20:00 2 0 
12 125.348403 43.860031 - 20:20-20:25 1 0 
13 125.341665 43.855296 - 20:35-20:40 2 0 
14 125.357851 43.863526 - 19:10-19:15 1 0 
15 125.359611 43.857728 - 19:55-20:00 1 0 
16 125.354776 43.862816 - 20:30-20:35 1 0 
17 125.359396 43.848783 - 20:05-20:10 2 0 

No. Longitude Latitude Expected time window  Number of 
passengers 

Arrival  Departure Boarding Alighting 
18 125.346879 43.848828 - 19:00-19:05 1 0 
19 125.340528 43.85053 21:10-21:25 - 0 1 
20 125.339305 43.848333 - 20:15-20:20 1 0 
21 125.334412 43.849757 21:30-21:45 - 0 1 
22 125.327803 43.849076 - 20:10-20:15 1 0 
23 125.330335 43.845795 21:45-22:00 - 0 1 
24 125.335206 43.843195 22:15-22:30 - 0 1 
25 125.327775 43.855069 - 19:10-19:15 1 0 
26 125.323619 43.848271 - 20:30-20:35 1 0 
27 125.322503 43.843474 22:40-22:55 - 0 1 
28 125.325529 43.847861 22:00-22:15 - 0 1 
29 125.291347 43.845888 21:30-21:45 - 0 1 
30 125.29787 43.844278 21:05-21:20 - 0 1 
31 125.300273 43.841369 - 19:35-19:40 1 0 
32 125.297628 43.846277 - 20:20-20:25 1 0 
33 125.299694 43.848287 - 20:40-20:45 2 0 
34 125.305144 43.834249 - 20:30-20:35 1 0 
35 125.296861 43.834125 - 19:00-19:05 1 0 
36 125.293965 43.838057 22:10-22:25 - 0 1 
37 125.306467 43.845906 - 20:35-20:40 1 0 
38 125.310582 43.845887 - 19:10-19:15 1 0 
39 125.320104 43.846667 - 20:20-20:25 1 0 
40 125.311192 43.851894 - 19:05-19:10 2 0 
41 125.314478 43.837229 21:15-21:30 - 0 1 
42 125.309758 43.834102 - 19:10-19:15 2 0 
43 125.310594 43.838707 - 20:15-20:20 1 0 
44 125.331036 43.840939 - 20:35-20:40 1 0 
45 125.330659 43.846738 21:05-21:20 - 0 1 
46 125.326877 43.845568 - 19:35-19:40 1 0 
47 125.332513 43.837778 22:10-22:25 - 0 1 
48 125.34159 43.840317 - 20:20-20:25 1 0 
49 125.341247 43.835673 - 19:05-19:10 2 0 
50 125.347856 43.836292 - 20:05-20:10 1 0 
51 125.470987 43.903319 - - - - 
52 125.705079 43.998125 - - - - 
Source: Own elaboration. 

 
 

Table 6. 
Model parameters. 
Parameter Definition Value 

ℎ 1, fleet size of vehicle type a (vehicle) 10 
2, fleet size of vehicle type b (vehicle) 10 

𝑝𝑝𝑘𝑘 Fare per kilometer of vehicle k 
(yuan/PAX) �

1.3 (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑),𝑘𝑘 ∈ 𝐾𝐾1
1.6 (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒), 𝑘𝑘 ∈ 𝐾𝐾1
1.5 (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑),𝑘𝑘 ∈ 𝐾𝐾2
1.8 (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒), 𝑘𝑘 ∈ 𝐾𝐾2

 

𝐶𝐶𝑣𝑣 Value of time for passengers (yuan/h) 43.78 
𝜆𝜆𝑙𝑙𝑙𝑙𝑙𝑙 Passenger detour coefficient 1.2 

𝐶𝐶ℎ0 Fixed cost of vehicle k (yuan/h) �32.5,𝑘𝑘 ∈ 𝐾𝐾1
40,𝑘𝑘 ∈ 𝐾𝐾2

 

𝐶𝐶ℎ1 Variable cost of unit distance for 
vehicle k (yuan/km) � 1, 𝑘𝑘 ∈ 𝐾𝐾1

1.2,𝑘𝑘 ∈ 𝐾𝐾2
 

𝐶𝐶𝑑𝑑 Wage for driver (yuan/h) 33 
𝑉𝑉 Speed of vehicle (km/h) 55 

𝑡𝑡0 Passenger boarding or alighting time 
(min) 1/6 

𝜑𝜑 Penalty cost factor for late arrival 
(yuan/PAX) 10000 

𝑄𝑄𝑘𝑘 Capacity of vehicle k (PAX) � 7, 𝑘𝑘 ∈ 𝐾𝐾1
12,𝑘𝑘 ∈ 𝐾𝐾2

 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 Maximum driving hours per vehicle 
(h) 2 

NP Initial population 300 
F Maximum Iterations 300 

Source: Own elaboration. 
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4.2 Scheduling and planning analysis 
 
The parameter calibration is shown in Table 6. 
The evolutionary iteration process is shown in Fig. 10, 

which illustrate the relationship of the iterations and optimal 
value. The objective function value increases with the 
number of iterations and stabilizes after 210 iterations. 

The routes and corresponding vehicle allocation scheme 
are shown in Table 7. According to Table 7, a total of six 
vehicles are assigned, including two 7-seat and four 12-seat 
vehicles. 58 passengers are all delivered to their destinations. 
Specific route information is illustrated in Table 8, which 
shows that all vehicles return CGQ within 2h. 

 

 
Figure 10 Iterative diagram of the evolution of the optimal solution. 
Source: Own elaboration. 

 
 

Table 7. 
Solution results. 

No. Vehicle 
type Route 

Number of 
passengers 

(PAX) 

Route 
length 
(km) 

Average 
travel 
time 
(min) 

1 b 52-51-14-18-49-42-35-38-
40-25-4-10-51-52 13 104.6 47.11 

2 a 52-51-3-30-31-41-46-45-19-
51-52 7 96.54 44.13 

3 a 52-51-11-15-29-21-51-52 5 99.4 43.66 

4 b 52-51-12-1-5-20-48-43-39-
32-36-28-47-24-51-52 12 106.51 46.59 

5 b 52-51-8-2-9-22-23-50-17-
51-52 9 100.64 49.36 

6 b 52-51-16-13-7-6-26-33-37-
34-44-27-51-52 12 100.22 46.78 

Source: Own elaboration. 
 
 

Table 8. 
Route information. 

R
ou

te
 

Po
in

t Boardings 
or 

alightings 

Persons 
in 

vehicle 

Travel 
distance 

(km) 

Detour 
factor 

Basic 
fare 

(yuan) 

Rebate 
(yuan) 

Final 
Fare 

(yuan) 

Arrival 
time  

1 

52 +11 11 - - - - - 19:10 
51 -0 11 - - - - - 19:40 
14 -1 10 35.40 1.00 52.30 0.00 52.30 19:53 
18 -1 9 36.60 1.00 54.10 0.00 54.10 19:55 
49 -2 7 38.70 1.00 57.25 0.00 57.25 19:57 
42 -2 5 43.00 1.01 62.95 0.00 62.95 20:02 
35 -1 4 45.90 1.06 63.85 0.00 63.85 20:05 
38 -1 3 47.60 1.11 63.40 0.00 63.40 20:07 

R
ou

te
 

Po
in

t Boardings 
or 

alightings 

Persons 
in 

vehicle 

Travel 
distance 

(km) 

Detour 
factor 

Basic 
fare 

(yuan) 

Rebate 
(yuan) 

Final 
Fare 

(yuan) 

Arrival 
time  

40 -2 1 50.70 1.28 58.60 2.53 56.07 20:10 
25 -1 0 53.10 1.33 58.90 4.25 54.65 20:13 
4 +1 1 40.80 1.04 57.85 0.00 57.85 20:15 

10 +1 2 37.20 1.00 55.00 0.00 55.00 20:19 
51 -0 2 - - - - - 20:35 
52 -3 0 - - - - - 21:04 

2 

52 +3 3 - - - - - 19:35 
51 -0 3 - - - - - 20:05 
3 -1 2 35.40 0.91 59.47 0.00 59.47 20:22 

30 +1 3 44.74 1.05 63.89 0.00 63.89 20:27 
31 -1 2 39.96 0.94 64.15 0.00 64.15 20:27 
41 +1 3 41.98 1.01 62.46 0.00 62.46 20:30 
46 -1 2 42.69 1.09 59.47 0.00 59.47 20:30 
45 +1 3 40.90 1.05 59.47 0.00 59.47 20:31 
19 +1 4 37.50 1.00 57.39 0.00 57.39 20:35 
51 -0 4 - - - - - 20:51 
52 -4 0 - - - - - 21:20 

3 

52 +3 3 - - - - - 19:55 
51 -0 3 - - - - - 20:25 
11 -2 1 38.20 1.00 58.30 0.00 58.30 20:41 
15 -1 0 40.70 1.11 56.22 0.00 56.22 20:44 
29 +1 1 44.50 1.09 61.68 0.00 61.68 20:50 
21 +1 2 38.50 1.00 58.69 0.00 58.69 20:57 
51 -0 2 - - - - - 21:14 
52 -2 2 - - - - - 21:43 

4 

52 +8 8 - - - - - 20:20 
51 -0 8 - - - - - 20:50 
12 -1 7 35.00 1.00 54.14 0.00 54.14 21:03 
1 -1 6 38.40 1.02 57.78 0.00 57.78 21:07 
5 -1 5 40.20 1.05 58.56 0.00 58.56 21:09 

20 -1 4 43.80 1.19 56.61 0.00 56.61 21:13 
48 -1 3 45.40 1.19 58.30 0.00 58.30 21:14 
43 -1 2 48.25 1.15 63.11 0.00 63.11 21:18 
39 -1 1 48.76 1.23 60.38 0.80 59.58 21:18 
32 -1 0 51.66 1.12 68.83 0.00 68.83 21:21 
36 +1 1 43.85 1.00 65.84 0.00 65.84 21:24 
28 +1 2 40.55 1.02 60.25 0.00 60.25 21:27 
47 +1 3 38.75 0.95 61.81 0.00 61.81 21:29 
24 +1 4 37.90 1.00 57.91 0.00 57.91 21:30 
51 -0 4 - - - - - 21:47 
52 -4 0 - - - - - 22:15 

5 

52 +8 8 - - - - - 20:10 
51 -0 8 - - - - - 20:40 
8 -1 7 38.10 1.00 58.17 0.00 58.17 20:56 
2 -1 6 41.40 1.10 57.52 0.00 57.52 21:00 
9 -2 4 40.70 1.09 57.13 0.00 57.13 21:03 

22 -1 3 44.30 1.16 58.17 0.00 58.17 21:07 
23 +1 4 39.54 1.02 59.08 0.00 59.08 21:09 
50 -1 1 53.80 1.38 59.34 5.57 53.77 21:12 
17 -2 2 54.34 1.45 57.52 7.34 50.18 21:12 
51 -0 2 - - - - - 21:29 
52 -2 0 - - - - - 21:59 

6 

52 +11 11 - - - - - 20:40 
51 -0 11 - - - - - 21:10 
16 -1 10 34.80 1.00 51.40 0.00 51.40 21:23 
13 -2 8 37.60 1.02 54.40 0.00 54.40 21:26 
7 -1 7 41.40 1.10 55.60 0.00 55.60 21:30 
6 -1 6 42.90 1.13 56.05 0.00 56.05 21:32 

26 -1 5 43.49 1.10 58.45 0.00 58.45 21:33 
33 -2 3 45.99 1.08 62.95 0.00 62.95 21:35 
37 -1 2 46.32 1.09 62.95 0.00 62.95 21:36 
34 -1 1 49.02 1.15 63.10 0.00 63.10 21:39 
44 -1 0 50.82 1.24 60.55 1.38 59.17 21:40 
27 +1 1 38.70 1.00 57.25 0.00 57.25 21:43 
51 -0 1 - - - - - 22:00 
52 -1 0 - - - - - 22:30 

Source: Own elaboration. 



Li et al / Revista DYNA, (92)238, pp. 9-18, July - September, 2025. 

17 

The cost and revenue for each route is illustrated as Table 
9. The total profit is 2033 yuan and total cost is 1363 yuan. 
All of the penalty cost for vehicle is 0 and there are no 
passengers arriving late at the airport. In addition, a majority 
of passenger time window are met. 

 
Table 9. 
Rebate and cost of each route. 

Route 𝑹𝑹 𝑪𝑪𝟏𝟏 𝑪𝑪𝟐𝟐 𝑪𝑪𝟑𝟑 𝑪𝑪𝟒𝟒 𝑷𝑷 
1 753.69 40 188.46 0 5 520.23 
2 426.3 32.5 154.56 0 0 239.24 
3 293.19 32.5 159.11 0 0 101.58 
4 722.72 40 223.84 0 0 458.88 
5 501.34 40 211.46 0 0 249.88 
6 698.67 40 180.56 0 14.8 463.31 

Total 3395.91 225 1117.99 0 19.8 2033.12 
Source: Own elaboration. 

 
 
Fare rebate is given to some passengers due to detours, 

shown in Table 10. 
 

Table 10. 
Rebate passenger information. 

Route Point Distance (km) Basic fare 
(yuan) 

Rebate 
(yuan) 

Final fare 
(yuan) Ideal Actual 

1 40 39.6 50.70 58.60 2.53 56.07 
25 39.8 53.10 58.90 4.25 54.65 

4 39 39.8 48.76 60.38 0.80 59.58 

5 17 37.6 54.33 57.52 7.34 50.18 
50 39 53.80 59.34 5.57 53.77 

6 44 40.9 50.81 60.55 1.38 59.17 
Source: Own elaboration. 

 
 
The layout of each route is shown in Fig. 11 (a) - 13 (b). 
 

4.3 Comparison of connection methods 
 
In order to compare different connection modes, it 

assumes the distribution of demand remains the same. Point 
44 is taken as an example to compare each connection mode, 
and the calculation results are in Table 11. Due to the inability 
to measure the walking and waiting time of passengers, The 
travel time of airport bus and railway are its running time. 

 

 
Figure 11 Vehicle routes 1-2 a) Route 1; b) Route 2. 
Source: Own elaboration. 

 

 
Figure 12 Vehicle routes 3-4 a) Route 3; b) Route 4. 
Source: Own elaboration. 

 
Figure 13 Vehicle routes 5-6 a) Route 5; b) Route 6. 
Source: Own elaboration. 

 
 

Table 11. 
Comparison of each mode. 

Indicator Airport bus Railway Cab ARB 

Daytime Travel time (min) 46 30 45 55 
Fare (yuan) 27 13 76 39 

Night Travel time (min) - - 45 55 
Fare (yuan) - - 76 48 

Convenience 2 2 1 1 
Note. ‘1’: door-to-door, ‘2’: non-door-to-door. 
Source: Own elaboration. 

 
 
No matter during the daytime or at night, even though 

ARB has a small increase in travel time compared to cab, the 
former is at least 39% less than the latter in terms of fare. As 
a consequence, ARB can attract most of the passengers. 
During the daytime, although the travel time for airport bus 
and railway is less than that of ARB, the former does not take 
walking time and waiting time into account, so it is highly 
likely that the former’s is greater than that of the latter. 
Moreover, ARB offers door-to-door transportation compared 
to the other two modes, and despite the fact that its fare is 
relatively higher, it is still a good choice for those seeking 
efficiency or persons with large luggage. 

 
5 Discussion 

 
5.1 The ARB model balances cost and convenience. 

 
The proposed ARB achieves a fare reduction of more than 

39% compared with taxis through a bypass rebate mechanism 
and mixed vehicle scheduling, while the door-to-door service 
makes up for the shortcomings of traditional public 
transportation that requires walking, which verified the 
feasibility of "low cost + high adaptability". 

 
5.2 A double breakthrough in pricing and algorithms 

 
The pricing mechanism breaks through the limitations of 

traditional fixed fares and combines detour distance with 
time value, which solves the defect that dynamic pricing 
proposed by Emele [3] et al does not consider detours. 
Compared with traditional GA, the IAGA reduces the 
running time by 12%/14% and the number of iterations by 
23%/35%, effectively avoiding the problem of premature 
convergence. 

 
5.3 Limitations and future directions 

 
The model assumes that there is no traffic congestion, but 

it is inevitable in practice. Future research will consider 
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integrating real-time traffic data to improve the model's 
adaptability. 

As the case study with concentrated demand points, 
future research may partition cities into districts to set 
differentiated vehicle round-trip time limits based on demand 
distribution. 

 
6 Conclusion 

 
In order to meet the personalized travel demands and 

improve the quality and efficiency of airport connections, this 
paper proposes ARB mode, which improves convenience for 
passengers, avoids high fares, and provides a new choice. 
The main research content and innovation points of the paper 
are summarized as follows. 

(1) This paper incorporates rebate mechanism into the 
model. The rebate mechanism makes it possible to 
accommodate benefits of both passengers and enterprise in 
the same objective function, which makes the model more 
reasonable. 

(2) An IAGA is proposed. Setting the minimum crossover 
probability and mutation probability improves the 
evolutionary speed in the early stage and avoid it falling into 
local optimum while producing a better and faster result. 
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