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Abstract

Passengers face high costs or multiple transfers when they arrive or depart from the airport. In addition, most transportation modes in a city
typically stop operating from midnight to early morning, making it impossible for passengers to enjoy quality and inexpensive services.
Considering the passenger detour and muti-types, this paper sets up the passenger detour rebate mechanism and constructs the Airport
Reservation Bus (ARB) scheduling model to maximize the profit of ARB enterprise. Meanwhile, an Improved Adaptive Genetic Algorithm
(IAGA) is designed to solve the model, where the crossover and mutation operations are optimized to prevent it from falling into local
optimum. Finally, a case study shows that ARB costs at least 39% less than taxis, with slightly longer travel time. Compared to traditional
GA, TIAGA reduced running time by more than 12%, showing faster convergence.

Keywords: airport reservation bus; differential pricing; vehicle scheduling; improved adaptive genetic algorithm.

Investigacion sobre la programacion de autobuses de reserva en
aeropuertos

Resumen

Los pasajeros afrontan altos costos o multiples trasbordos al viajar al aeropuerto. Ademas, la mayoria de los medios de transporte urbano
cesan su operacion de medianoche a primera hora, privando a los pasajeros de servicios econémicos y de calidad. Considerando desvios y
tipos mixtos de vehiculos, se propone un mecanismo de reembolso por desvio y un modelo de programacién de autobuses de reserva
aeroportuaria (ARB) para maximizar la rentabilidad. Se disefia un Algoritmo Genético Adaptativo Mejorado (IAGA) optimizando cruce y
mutacion para evitar el 6ptimo local. Los casos muestran que el ARB cuesta 39% menos que los taxis con un ligero aumento de tiempo.
En comparacion con el AG tradicional, el IAGA redujo el tiempo de ejecucion en mas del 12%, lo que demuestra una convergencia mas
rapida.

Palabras clave: autobuis con reserva de aeropuerto; tarificacion diferencial; programacion de vehiculos; algoritmo genético adaptativo
mejorado.

Fare studies are mainly divided into two categories, fixed
fare and differential fare. Regarding fixed fare, Zhou (2001)
[1] et al developed a bi-level transit fare optimization method
based on line capacity constraints. Borndorfer (2012) [2] et

1 Introduction

If the airport connection service is not good enough, it would
be inconvenient for passengers. Currently, the public

transportation modes from airport to urban area mainly include
‘airport bus + bus/subway’, ‘railway + bus/subway’ and cab,
etc., which are difficult to balance the convenience, economy
and comfort of travel. Nevertheless, the Airport Reservation Bus
in this paper strives for a compromise among the three, while
reducing the total social cost, easing traffic pressure and
improving the efficiency of passenger distribution.

al proposed a nonlinear fare optimization method based on a
discrete choice model. However, these studies predominantly
adopted fixed fares and overlooked the impact of detours on
passenger cost. Due to the unfairness of fixed fare,
differential pricing is attracting more and more attentions.
Emele (2013) [3] et al introduced a variable pricing
mechanism into the fare planning for flexible transport
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services. Kamel (2020) [4] et al constructed a platform for
optimizing time-based transit fares in large multimodal
transportation networks. Guo (2021) [5] et al established a
time-dependent transit pricing model considering elasticity
and time-distributed demand. While these studies explored
dynamic pricing mechanisms, they seldom connected fare
adjustments with detour distances.

Vehicle scheduling is categorized into single-vehicle
type and multiple-vehicle type. Concerning the single-
vehicle type, Smith (2003) [6] et al established a bi-
objective scheduling optimization model based on
balancing the maximum number of deviations and
minimum unused slack time. Gebeyehu (2008) [7] et al
applied the GIS technology to the design of Demand
Responsive Transit routes. Ye (2015) [8] et al constructed
an optimization model for taxi ridesharing routes. Li
(2024) [9] et al proposed a real-time dynamic route
planning algorithm for DRT. Notably, these single-vehicle
studies overlooked the efficiency potential of mixed fleets,
a research dimension that subsequent multi-fleet studies
have begun to address. In terms of multi-vehicle type,
Golden (1984) [10] et al first proposed the multi-vehicle
route planning problem. Tarantilis (2003) [11] et al
designed a metaheuristic algorithm to solve it with a fixed
vehicle size. Dondo (2008) [12] et al, Barkaoui (2013) [13]
et al and Goeke (2015) [14] et al proposed a hybrid local
improvement algorithm, improved adaptive genetic
algorithm, and hybrid heuristic algorithm respectively.
Gasque (2022) [15] et al established two mixed-integer
programming models for taking delivery without
separation as well as taking delivery with separation and
proposed an adaptive large-neighborhood search element
heuristic algorithm. Although these multi-vehicle studies
optimized routes, they rarely combined mixed types with
detour management.

Though existing research has made significant progress
in fares and scheduling models, there remain the following
problems: the fixed fare is typically adopted, without
considering the effect of detours. Concerning vehicle
scheduling, scholars pay less attention to the variability of
vehicle types. With respect to algorithms, the Adaptive
Genetic Algorithm (AGA) is more widely used because of its
high robustness and efficiency, while suffers from problems
such as premature convergence and local optimization.
Aiming at the above problems, this paper simultaneously
considers the passenger detour and the mixed vehicle types
and proposes a passenger detour rebate mechanism. With the
goal of maximizing the profit of the Airport Reservation Bus
(ARB) enterprise, then the ARB scheduling model is
constructed. Finally, an Improved Adaptive Genetic
Algorithm (IAGA) is designed to solve it.

2 Airport reservation bus scheduling model based on
passenger detour compensation

2.1 Problem description

The problem is divided into the delivery stage and pick-
up stage, described as follows: the delivery stage involves

Figure 1. Passengers boarding at the airport and their routes a) Passengers;
b) Routes for them
Source: Own elaboration.

Figure 2. Add passengers alighting at the airport a) Add passengers; b)Final
routes
Source: Own elaboration.

transporting passengers boarding at the airport. In this stage,
the origin is fixed at the airport. The pick-up stage is to collect
passengers alighting at the airport. According to distance of
detours, a fare discount is rebated to detour passengers.

The process of generating the routes of the ARB is shown
in Fig. 1 (a) — 2 (b). The demands of passengers boarding at
the airport and their routes are in Fig. 1 (a) - (b). Based on
this, taking passengers alighting at the airport into routing
consideration, the final planning is in Fig. 2 (a) - (b).

The solid area in the above figure is for passengers
boarding at the airport and the dashed is for passengers
alighting at the airport. The ARB delivers passengers to the
destination while picking up passengers to the airport. Upon
completion of the pick-up and drop-off, the bus returns to the
terminal to wait for the next round of pick-ups and drop-offs.

2.2 Model building

2.2.1  Model assumptions

(1) The seat reservations are accepted only between the
airport and the points of demand, not between points of
demand;

(2) For passengers alighting/boarding at the airport, only
their arrival/departure time window at the airport is
considered.

(3) The vehicle type and fleet size are known;

(4) Vehicle speed is constant and known.

(5) There is only one airport within the service area.

(6) The vehicle makes only one round trip at a given time.

2.2.2  Definition of parameters

The definition of the parameters involved are in Table 1.
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Table 1.
Parameter Definition.
Symbol Definition
Ji Airport.
G Freeway entrance/exit.
M The set of boarding and alighting points, m is the total number
of points.
K The set of vehicle types, K = {1,2, ..., h}, h is the sequence of
the vehicle type.
K The set of the number for vehicles type h, K, = {1,2, ..., k}, k
h is sequence of the vehicle.
Q The set of passengers.
Q. The set of passengers alighting at the airport.
Qp The set of passengers boarding at the airport.

i The sequence of the point, i € M.

q The sequence of the passenger, g € Q.
lij Ideal distance traveled from point i to point j.
Qi’j Number of passengers for vehicle k from i to the J.
p* Fare per kilometer of vehicle k in the urban area.
g (lflf )  Floating fare for vehicle k from i to J.
C, Value of time for passengers.
L’i‘j Actual distance traveled by vehicle k from i to j.
Alim Passenger detour coefficient.
Cho Fixed costs of type h.
N The service life of the vehicle.
Chy Variable cost of unit distance for vehicle type h.
Cy Wage for driver.
|4 Speed of vehicle.
to Individual passenger boarding or alighting time.
4 Penalty cost factor for late arrival of vehicles at the airport.
i Number of passengers late arrival for vehicle k.
Té‘] Departure moment of vehicle k from J.
(T, T4 Expected arrival time window, g € Q,,.
' 9% Expected departure time window, g € Q.
Qix Number of passengers in vehicle k arriving at point i.
Qy Capacity of vehicle k.
Ty Waiting time of passenger q.
T***  Maximum tolerated waiting time for passenger q.
Tax  Maximum travel time of vehicle.
vk 1, vehicle k traveling from i to j.
i 0, otherwise.
v 1, passenger g served by vehicle k.

0, otherwise.
Source: Own elaboration.

2.2.3 Model assumptions

Route planning is a major task of vehicle scheduling. This
paper formulates a route planning model to maximize the
profit of ARB enterprises by optimizing operational
efficiency. The model introduces a differential pricing
mechanism that rebates passengers for detours and imposes
penalty fees if their time requirements are unmet. The
objective function is defined as:

maxP=R—-C;—C,—C3—0C, 1)

Where P, R, C;, C;, C5, C, mean profit, fare revenue, fixed
cost, variable cost, penalty cost for late arrival and for late
departure respectively.

1. Fare revenue R

The fare revenue R consists of the basic fare Ry, r and the

rebate R, based on mileage pricing.

11

Figure 3 Shortest and actual routes.
Source: Own elaboration.
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The basic fare R, is a primary function proportional to
the ideal distance of passengers [16-18].

Ror=2 20

hEK KEKy, iEM jEM

[p* - Ly - (QF + Q)] 3)

The rebate R, is related to the passenger detour distance.
The formula proposed in this paper is as follows.

)

Dl ol + 9@ - ok

4)
ek Keky, ieM
g(lkf _ {[Cv (LY = Ay - L)1V L /1y = A )
Y 0,L¥,/liy < Ayim

When a passenger detour is greater than or equal to A,
passenger time delayed by the detour is converted into money
and rebated to him. The shortest and actual distance for
passengers are shown in Fig. 3.

For passenger 6, the actual distance is ideal distance, so
detour does not exist. For passenger 3, whose ideal distance
is f +k, the actual distance is g+h+i+j+k. If
(g+h+i+j+k)/(f+k)> Ay, it is necessary to
rebate him.
2.Fixed cost C;

Fixed cost C; is related to the number of vehicles and their
service life [16-18].

Yhek Zkek, C
= hek 2keky Cho (6)
365N
3. Variable cost C,
Variable cost C, includes fuel consumption and driver
cost, which are related to distance [16-18].

Lj - Yk
Z(Cm i Y+ Cq - (T”

hek Keky, M jem
4 Yiemmax(QF, Q%) - to

60

C
%)

)
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4. Penalty cost for late arrival at the airport C;

C; is the penalty cost for vehicles arriving late at the
airport. Since airport passengers are highly time sensitive,
late arrival may cause passenger miss their flights and incur
a great loss [16-18].

IR RGN

G = q€Qq hEK keEKp, (®)
0, (Tys < T8
Niem o .Yk m . max l“ ky. ¢
TX1 =T§]+ IEM LjeM tijlij + i=1 (Qz] Q]l) 0 (9)

/4 60

5. Penalty cost for late departure from the airport C,

C, is the penalty cost for a vehicle departing the airport late.
If a vehicle leaves the airport later than T/, it will cause the
passenger wait too long. The formula proposed is as follows.

{

2.2.4 Constraints

Z sz,(o <Td]_Tl < 5)
qEQa hGKkEKh

cxz,(s < T§ — T} <20)

q€EQq heK kEKh (10)
CXZ ,(TY, =Tk > 20)
qEQa heK kKEK},
Cxz = (Tdy — T4) - Y¢ (11)

1. Origin and destination constraints
Vehicles entering and exiting a point of demand are the
same.

Zn’;sL(jeM,keKh)

ieM

(12)

2. Vehicle capacity constraints
The number of passengers in a vehicle is less than or equal
to the its capacity.

Qir < Qp

{Qik‘l‘Qik]—Q}‘iSQk'(kEK’“iEM)

(13)

3. Connection service supply constraints
Each demand is served by only one vehicle.

Z vE=1,(q €M)

hEK keKp,

(14)

4. Maximum travel time of vehicle

ZLEMZ]GM le
%4

Yiemmax(Qf, Q) to
60
=< Tmaxv (k € Kh)

k
ij

(15)

5. Passenger detour constraints

A= (16)

(L_’f] N iemmax(Q, QF) - to
74 60

i

Improved adaptive genetic algorithm

Aiim

3

The problem studied in this paper is the Vehicle Routing
Problem with Time Window constraints, which is a well-
known NP-hard problem solved by heuristic algorithms
efficiently. Genetic Algorithm (GA) has the advantages of
parallelism and global optimization. It continuously
generates new individuals and populations in the process of
reproduction, and seeks a better solution, which is applicable
to the solution of complex optimization problems.

Demand Points Vehicle Types
| |

[ \
[s 6]~ [afu]s[efol t]~[o]]~[1]
- e

m+K1+K2+]1 m+KI1+K2+2 m+1+2(K1+K2)

:

Figure 4 Chromosome coding schematic.
Source: Own elaboration.

Vehicle

]

Passenger

000®
©J0C] ' JOI0] -/

l '

D Vehicle Number . Alighting Number O Boarding Number

Figure 5 Chromosome coding forms.
Source: Own elaboration.

In the traditional GA, the crossover probability P, and
mutation probability P, are fixed values. In the process of
large-scale problem, the early maturity often occurs. This
paper proposes an IAGA to set P, and P,, as dynamic values,
which improves the solving efficiency while setting the
minimum value of P. and P,, to ensure the evolution speed in
the early stage is high enough to avoid falling into the local
optimal solution.

3.1  Chromosome coding and population initialization

3.1.1  Chromosome coding

Considering mixed vehicle types, it is necessary to add
vehicle type auxiliary codes for chromosome coding. The
chromosome is encoded into individuals of length m + 1 +
2(K; + K5). The coding scheme is shown in Fig. 4.
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In this paper, there are two vehicle types. Where 1 in the
vehicle types represents the type a, -1 is the vehicle type b,
and 0 means the vehicle is not being used. The demand point
0 is the airport.

Taking (0,14,3,6,8,0,0,2,13,9,1,4,0,7,1,11,5,12,0,1,0,-1,-
1) as an example, the chromosome coding form is shown in
Fig. 5. There are 15 demand points and 4 vehicles, with two
each of vehicle type a and b.

Vehicle 1 (a): Airport - Point 14 - Point 3 - Point 6 - Point
8 -Airport

Vehicle 2 (a): Non-operational

Vehicle 3 (b): Airport - Point 2 - Point 13 - Point 9 - Point
10 - Point 15 - Point 4 - Airport

Vehicle 4 (b): Airport - Point 7 - Point 1 - Point 11 - Point
5 - Point 12 — Airport

3.1.2 Population initialization

In this paper, a randomized generation method was
chosen to generate the initial population. A passenger is
randomly selected and assigned to a vehicle. If the number of
passengers does not exceed the capacity, add the point into
the route. Otherwise, re-select a vehicle among the rest and
determine whether it is overcrowded until the passenger is
assigned to a particular vehicle. Repeat until all demands are
met.

3.2 Genetic operation

3.2.1 Selection operation

In this paper, the selection operation is based on Monte
Carlo Method, and the selection probability of a chromosome
is the ratio of its fitness value to the sum of the fitness values
of all chromosome. Therefore, the larger the fitness value, the
greater the probability of being selected.

3.2.2 Crossover operation

The Adaptive Genetic Algorithm (AGA) proposed by M.
Srinivas makes the crossover probability P. relevant to the fitness
value, which can solve the problem of premature convergence
effectively. However, in the early stage of AGA, the evolution
speed of good individuals is slow, which reduces the operational
efficiency and even leads to the local optimum.

This paper improves the crossover probability P. of AGA,
which ensures that the fitness value can flexibly change the
crossover probability to improve the operational efficiency.
Meanwhile, the minimum crossover probability is set to ensure
that it evolves quickly in the early stage, to avoid falling into the
local optimum. The improved formula are as follows.

(PC1 - Pcz)(fup - fmean)

P —
P = { “ fmax — fmean
Pcl' fup < fmean

Where
fmax——Maximum fitness value of all chromosomes
fup Larger fitness value in two chromosomes

rJU 2 mean
fup = 1 (17)

13

fmean——Mean of all chromosome fitness values
P,,——Maximum crossover probability
P,,——Minimum crossover probability

When chromosome X and Y perform crossover operation,
point chain 1 of vehicle i is randomly selected from X, and
point chain 2 of vehicle j is randomly selected from Y. The
type of vehicle i and j may be the same or different.

(1) The same vehicle type.

In this case, it does not need to consider vehicle type
crossover and only chain crossover can be considered.

Step 1: add the points in chain 2 to chain 1 sequentially.
For each point, conduct a feasibility test of the corresponding
vehicle type on chain 1. If the constraints are satisfied, insert
it into chain 1 and delete points duplicated with chain 1 on
other chains of the X chromosome. Otherwise, remain in
chain 2.

Step 2: update the chromosome X.

Step 3: set the operated vehicle in chain 2 on chromosome
Y to 0, complement missing demand points and randomly
select an assigned vehicle to deliver the demand points. If
points cannot be assigned to them, arrange for a new vehicle.
If it is not available, keep the original chromosome Y to enter
the offspring.

(2) The different vehicle types.

Step 1: if vehicle i and j are type a and b respectively,
draw out the points in chain 1, and sequentially place the
drawn points into chain 2 until the constraint of type b is
satisfied.

Step 2: conduct the aforementioned procedure for the
same vehicle type according to the case where both vehicles
are type a and both are type b respectively, to obtain
temporary chromosome X; and X,.

Step 3: calculate the fitness f; and f, for X; and X,.
Generate a random number y, if y < ——, remain X, into the
offspring, otherwise remain X,. SCW:{f) the sequence of
chromosomes X and Y and perform the above operation.

3.2.3 Mutation operation

The improved mutation probability B,, of AGA proposed
by M. Srinivas plays the same role as P.. Therefore, it is
necessary to set a minimum mutation probability. The
improved formula are as follows.

_ (Pm1 - sz)(fup - fmean)

my ’ fup = fmean

fmax - fmean

P = { (18)
Pmlifup < fmean

Where

By,,——Maximum mutation probability

By,——Minimum mutation probability

The mutation operation is divided into two stages, point
mutation and vehicle type mutation. The procedure is as
follows:

Step I: select individuals in turn from the crossover
operation.

Step II: determine whether the individual is mutated or
not. If mutated, turn to step III. Otherwise, turn to step V.

Step III: Stage 1 - Point Mutation.
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Step 1: randomly select an assigned vehicle and record its
point chain.

Step 2: randomly choose a point x in the chain and remove it.

Step 3: add point x to the chain of another assigned vehicle,
if the new chain satisfies the capacity constraints of the
corresponding vehicle type, then the insertion is successful.
Otherwise, search for the next vehicle. If fail to assign it, then
determine whether a vehicle is available. If there is, assign the
point to the new vehicle, otherwise turn to Step IV;

Step 4: update the chromosome.

Step IV: Stage 2 - Vehicle type mutation.

Step 5: randomly select a vehicle and record its chain and type.

Step 6: determine whether the chain satisfies the
constraints of the other vehicle type. If so, turn to Step 8,
otherwise, turn to the next step.

Step 7: draw out all points in the chain sequentially until
the capacity constraint of the other type is satisfied. Then,
assign the drawn points to other assigned vehicles for the
other type. If failed, arrange a new vehicle. If there are no
available vehicles, readjust the point drawn scheme. If all
schemes can not satisfy the constraints, the mutation fails and
remain the chromosome. Otherwise, turn to the next step.

Step 8: replace the vehicle type with the other one.

Step V: update the chromosome.

3.3 Solution flow
The TAGA is used for model solving, and the specific
flow is shown in Fig. 6.

3.4 Algorithm comparison

In order to verify the advantages of the IAGA, the
algorithms are compared with 20 and 30 demands

| Randomly generate initial |

scheduling schemes

4){ Calculate the fitness value ‘

Selection based on Monte Carlo Method

Perform point chain and vehicle type crossover. Then,
delete duplicate points and supplement missing points

Perform point mutation and vehicle type mutation.

.

Get new scheduling schemes

No —. _—
iteration= Max iteration

Output scheduling schemes

Figure 6 Schematic diagram of the IAGA.
Source: Own elaboration.

Table 2.
Algorithm comparison data.
Demand Longitude Latitude Time Demand Longitude Latitude Time

1 101.27  31.05 13:45 16 101.29  31.07 14:00
2 101.3 31.02 13:50 17 101.24  31.02 14:30
3 101.21 31.06 13:45 18 101.24 31 13:55
4 101.25  31.03 13:45 19 101.2 31.04 14:15
5 101.21 31.02 13:50 20 101.27  31.03 14:25
6 101.23 31.1 1425 21 101.28  31.04 14:30
7 101.22  31.01 14:30 22 101.25  31.02 14:15
8 101.25  31.01 13:55 23 101.27  31.04 14:05
9 101.22  31.08 13:30 24 101.29  31.09 13:50
10 101.22  31.02 14:25 25 101.23  31.04 14:00
11 101.2 31.05 13:55 26 101.3 31.03 13:55
12 101.2 31.05 1430 27 101.28  31.05 13:45
13 101.21 31.05 14:.00 28 101.28  31.02 14:10
14 101.27 31 13:25 29 101.26 ~ 31.06 14:05
15 101.3 31.09 14:25 30 101.27  31.03  14:00

Source: Own elaboration.

respectively. The fitness of the traditional GA is set as the
value of the objective function and the algorithm parameters
are the same as the IAGA. Taking the arrival time window at
the airport as an example, the data in the table is T}, and qu
is 15 minutes in advance, shown in Table 2. The 20 demands
are the top 20 data in Table 2.

The changes in the objective function values for each
group are in Fig. 7 (a), 7 (b) and the results is in Table 3, 4.

Compared with the traditional GA, the running time of
the TAGA corresponding to 20 and 30 demands decreased by
12.02% and 14.08% respectively and the number of iterations
has been reduced by 23.6% and 35.7%.

4  Case study

4.1  Service areas and example profiles

Take Changchun Nanguan District, an area with high
density passenger flow, as the object.

anEA Um0

0 10 20 30 40 0 e 70 S0 9 100 0 1o 20 30 40 S0 e 70 S0 9 100
Teration: Terations,

Figure 7 Different demands a) Demands = 20; b) Demands = 30.
Source: Own elaboration.

Table 3.
Comparison of the results of 20 demands.

Algorithm  Running time (s) Iterations objective function value
Traditional GA 43.76 89 797.66
IAGA 385 68 806.3
Change (%) -12.02 -23.6 +1.08

Source: Own elaboration.

Table 4.
Comparison of the results of 30 demands.

Algorithm  Running time (s) Iterations objective function value
Traditional GA 49.08 42 1094.0
IAGA 42.17 27 11313
Change (%) -14.08 -35.7 +3.41

Source: Own elaboration.
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Figure 8 Road information a) Road network; b) Public transportation.
Source: Own elaboration.
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Figure 9 Reservation demand distribution.
Source: Own elaboration.

The road network is in Fig. 8 (a), and the coverage of
public transportation around the area is shown in Fig. 8 (b).
The existing transportation modes from urban area to
Changchun Longjia International Airport (International Air
Transport Association: CGQ) are in Fig. 8 (b)
Taking arrival flights of 19:00-22:30 and departure flights
of 22:30-00:30 as an example, 50 passenger demand points
are randomly generated. The total number of passengers is
58, where 44 passengers board at airport and 14 passengers
alight at airport. The distribution of demand points are in Fig.
9 and the demand data is shown in Table 5, in which point 51
and 52 are freeway entrance/exit and airport.

Table 5.
Passenger travel data.

Expected time window Number of

No. Longitude Latitude passengers
Arrival Departure Boarding Alighting

1 125.31673143.860387 - 20:15-20:20 1 0
2 125.31934943.861980 - 20:05-20:10 1 0
3 125.32497143.861299 - 19:35-19:40 1 0
4 125.32462843.859814 21:00-21:15 - 0 1
5 125.32046543.855977 - 20:20-20:25 1 0
6 125.33158143.858541 - 20:35-20:40 1 0
7 125.33492743.860804 - 20:40-20:45 1 0
8 125.32986343.862197 - 20:10-20:15 1 0
9 125.33398343.854801 - 20:05-20:10 2 0
10 125.33964843.858576 20:50-21:05 - 0 1
11 125.32887643.858515 - 19:55-20:00 2 0
12 125.348403 43.860031 - 20:20-20:25 1 0
13 125.34166543.855296 - 20:35-20:40 2 0
14 125.35785143.863526 - 19:10-19:15 1 0
15 125.35961143.857728 - 19:55-20:00 1 0
16 125.35477643.862816 - 20:30-20:35 1 0
17 125.35939643.848783 - 20:05-20:10 2 0

m’(”"f& Expected time window Number of
o No. Longitude Latitude P passengers
| N Arrival Departure Boarding Alighting
18 125.34687943.848828 - 19:00-19:05 1 0
""'/’/ b 19 125.340528 43.85053 21:10-21:25 - 0 1
P e 20 125.33930543.848333 - 20:15-20:20 1 0
o sy msion 21 125.33441243.849757 21:30-21:45 - 0 1
22 125.327803 43.849076 - 20:10-20:15 1 0
23 125.33033543.84579521:45-22:00 - 0 1
24 125.33520643.84319522:15-22:30 - 0 1
25 125.32777543.855069 - 19:10-19:15 1 0
26 125.32361943.848271 - 20:30-20:35 1 0
27 125.322503 43.843474 22:40-22:55 - 0 1
» 28 125.32552943.847861 22:00-22:15 - 0 1
29 125.29134743.84588821:30-21:45 - 0 1
E 30 125.29787 43.84427821:05-21:20 - 0 1
31 125.300273 43.841369 - 19:35-19:40 1 0
2 32 125.29762843.846277 - 20:20-20:25 1 0
33 125299694 43.848287 - 20:40-20:45 2 0
. 34 125.30514443.834249 - 20:30-20:35 1 0
2 35 125.29686143.834125 - 19:00-19:05 1 0
36 125.29396543.838057 22:10-22:25 - 0 1
‘ 37 125.306467 43.845906 - 20:35-20:40 1 0
38 125.31058243.845887 - 19:10-19:15 1 0
39 125.320104 43.846667 - 20:20-20:25 1 0
40 125.31119243.851894 - 19:05-19:10 2 0
41 125.31447843.83722921:15-21:30 - 0 1
42 125.30975843.834102 - 19:10-19:15 2 0
43 125.310594 43.838707 - 20:15-20:20 1 0
44 125.33103643.840939 - 20:35-20:40 1 0
45 125.33065943.846738 21:05-21:20 - 0 1
46 125.32687743.845568 - 19:35-19:40 1 0
47 125.33251343.83777822:10-22:25 - 0 1
48 125.34159 43.840317 - 20:20-20:25 1 0
49 125.34124743.835673 - 19:05-19:10 2 0
50 125.34785643.836292 - 20:05-20:10 1 0

51 125.47098743.903319 - -
52 125.70507943.998125 - -
Source: Own elaboration.

Table 6.
Model parameters.
Parameter Definition Value
h 1, fleet size of vehicle type a (vehicle) 10
2, fleet size of vehicle type b (vehicle) 10

1.3 (daytime), k € K;
1.6 (evening), k € K;
1.5 (daytime), k € K,
1.8 (evening), k € K,

r  Fare per kilometer of vehicle k
p (yuan/PAX)

C, Value of time for passengers (yuan/h) 43.78
Aym  Passenger detour coefficient 1.2
Cho  Fixed cost of vehicle k (yuan/h) {33(.)?,kk€€KI§1
c Variable cost of unit distance for { 1,k €K,
"M vehicle k (yuan/km) 1.2,kE€K,
Cy Wage for driver (yuan/h) 33
vV Speed of vehicle (km/h) 55
Passenger boarding or alighting time
to . 1/6
(min)

Penalty cost factor for late arrival

?  (yuan/PAX) 10000
Qr  Capacity of vehicle k (PAX) {172' 1765615(1
, 2
Maximum driving hours per vehicle
Tmax (h) 2
NP Initial population 300
F Maximum Iterations 300

Source: Own elaboration.

15



Li et al / Revista DYNA, (92)238, pp. 9-18, July - September, 2025.

4.2 Scheduling and planning analysis

The parameter calibration is shown in Table 6.

The evolutionary iteration process is shown in Fig. 10,
which illustrate the relationship of the iterations and optimal
value. The objective function value increases with the
number of iterations and stabilizes after 210 iterations.

The routes and corresponding vehicle allocation scheme
are shown in Table 7. According to Table 7, a total of six
vehicles are assigned, including two 7-seat and four 12-seat
vehicles. 58 passengers are all delivered to their destinations.
Specific route information is illustrated in Table 8, which
shows that all vehicles return CGQ within 2h.

~——— Improved adaptive genetic algorithm

2000 -

1500

[ewndo

1000 +

woig

500

0 r T . T T )

0 50 100 150 200 250 300
Tterations

Figure 10 Iterative diagram of the evolution of the optimal solution.

Source: Own elaboration.

Table 7.
Solution results.
Average
Vehicle Number of | Route travel
No. type Route passengers length time
(PAX) (km) (min)
52-51-14-18-49-42-35-38-
1 b 20-25-4-10-51-52 13 1046  47.11
5 a 2?:;-3-30-3 1-41-46-45-19- 7 96.54 4413
3 a  52-51-11-15-29-21-51-52 5 99.4 43.66
52-51-12-1-5-20-48-43-39-
P 3536284704515 1210631 4659
5 b zﬁ:gé_8_2_9_22_23_50_17_ 9 100.64  49.36
52-51-16-13-7-6-26-33-37-
6 b 34.44.27-51-52 12 10022 46.78
Source: Own elaboration.
Table 8.
Route information.
55» § BoardmgsPer.sons "l.“ravel Detour Basic Rebate Final Arrival
S £ or in distance factor ¢ (yuan) time
B alightings vehicle (km) (yuan) y (yuan)
52 +11 11 - - - - - 19:10
51 -0 11 - - - - - 19:40
14 -1 10 3540 1.00 52.30 0.00 52.30 19:53
1 18 -1 9 36.60 1.00 54.10 0.00 54.10 19:55
49 -2 7 3870 1.00 57.25 0.00 57.25 19:57
42 2 5 43.00 1.01 6295 0.00 62.95 20:02
35 -1 4 4590 1.06 63.85 0.00 63.85 20:05
38 -1 3 47.60 1.11 63.40 0.00 63.40 20:07

55» § BoardingsPen:sons "["ravel our Basic Rebate Final Arrival
2 3 or in distance factor 1 (yuan) are Lo
KA alightings vehicle (km) (yuan) y (yuan)
40 -2 1 50.70 1.28 58.60 2.53 56.07 20:10
25 -1 0 53.10 1.33 5890 425 54.65 20:13
4 +1 1 40.80 1.04 57.85 0.00 57.85 20:15
10 +1 2 3720 1.00 55.00 0.00 55.00 20:19
51 -0 2 - - - - - 20:35
52 -3 0 - - - - - 21:04
52 +3 3 - - - - - 19:35
51 -0 3 - - - - - 20:05
3 -1 2 3540 091 59.47 0.00 59.47 20:22
30 +1 3 4474 1.05 63.89 0.00 63.89 20:27
31 -1 2 39.96 094 64.15 0.00 64.15 20:27
2 41 +1 3 4198 1.01 62.46 0.00 62.46 20:30
46 -1 2 42.69 1.09 59.47 0.00 59.47 20:30
45 +1 3 40.90 1.05 59.47 0.00 59.47 20:31
19 +1 4 37.50 1.00 57.39 0.00 57.39 20:35
51 -0 4 - - - - - 20:51
52 -4 0 - - - - - 21:20
52 +3 3 - - - - - 19:55
51 -0 3 - - - - - 20:25
11 2 1 3820 1.00 5830 0.00 58.30 20:41
3 15 -1 0 40.70 1.11 56.22 0.00 56.22 20:44
29 +1 1 4450 1.09 61.68 0.00 61.68 20:50
21 +1 2 3850 1.00 58.69 0.00 58.69 20:57
51 -0 2 - - - - - 21:14
52 -2 2 - - - - - 2143
52 +8 8 - - - - - 20:20
51 -0 8 - - - - - 20:50
12 -1 7 3500 1.00 54.14 0.00 54.14 21:03
1 -1 6 3840 1.02 57.78 0.00 57.78 21:07
5 -1 5 4020 1.05 5856 0.00 58.56 21:09
20 -1 4 4380 1.19 56.61 0.00 56.61 21:13
48 -1 3 4540 1.19 5830 0.00 5830 21:14
4 43 -1 2 4825 1.15 63.11 0.00 63.11 21:18
39 -1 1 48.76 123 6038 0.80 59.58 21:18
32 -1 0 51.66 1.12 68.83 0.00 68.83 21:21
36 +1 1 4385 1.00 6584 0.00 65.84 21:24
28 +1 2 40.55 1.02 60.25 0.00 60.25 21:27
47 +1 3 38.75 095 61.81 0.00 61.81 21:29
24 +1 4 3790 1.00 57.91 0.00 57.91 21:30
51 -0 4 - - - - - 2147
52 -4 0 - - - - - 22115
52 +8 8 - - - - - 20:10
51 -0 8 - - - - - 20:40
8 -1 7 38.10 1.00 58.17 0.00 58.17 20:56
2 -1 6 4140 1.10 57.52 0.00 57.52 21:00
9 -2 4 40.70 1.09 57.13 0.00 57.13 21:03
5 22 -1 3 4430 1.16 58.17 0.00 58.17 21:07
23 +1 4 39.54  1.02 59.08 0.00 59.08 21:09
50 -1 1 53.80 1.38 59.34 5.57 53.77 21:12
17 -2 2 5434 145 57.52 734 50.18 21:12
51 -0 2 - - - - - 2129
52 -2 0 - - - - - 2159
52 +11 11 - - - - - 20:40
51 -0 11 - - - - - 21:10
16 -1 10 3480 1.00 51.40 0.00 51.40 21:23
13 -2 8 37.60 1.02 54.40 0.00 54.40 21:26
7 -1 7 4140 1.10 55.60 0.00 55.60 21:30
6 -1 6 4290 1.13 56.05 0.00 56.05 21:32
6 26 -1 5 4349 1.10 5845 0.00 58.45 21:33
33 -2 3 4599 1.08 6295 0.00 62.95 21:35
37 -1 2 4632 1.09 6295 0.00 62.95 21:36
34 -1 1 49.02 1.15 63.10 0.00 63.10 21:39
44 -1 0 50.82  1.24 60.55 138 59.17 21:40
27 +1 1 3870  1.00 57.25 0.00 57.25 21:43
51 -0 1 - - - - - 22:00
52 -1 0 - - - - - 22:30

Source: Own elaboration.
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The cost and revenue for each route is illustrated as Table
9. The total profit is 2033 yuan and total cost is 1363 yuan.
All of the penalty cost for vehicle is 0 and there are no
passengers arriving late at the airport. In addition, a majority
of passenger time window are met.

Table 9.
Rebate and cost of each route.
Route R Cy C, C; C4 P
1 753.69 40 188.46 0 5 520.23
2 426.3 32.5 154.56 0 0 239.24
3 293.19 32.5 159.11 0 0 101.58
4 722.72 40 223.84 0 0 458.88
5 501.34 40 211.46 0 0 249.88
6 698.67 40 180.56 0 148 463.31
Total 339591 225 111799 0 19.8  2033.12

Source: Own elaboration.

Fare rebate is given to some passengers due to detours,
shown in Table 10.

Table 10.
Rebate passenger information.

RoutePoin tDistance (km)  Basic fare Rebate Final fare

Ideal Actual (yuan) (yuan) (yuan)

1 40 39.6 50.70 58.60 2.53 56.07
25 39.8 53.10 58.90 425 54.65

4 39 39.8 48.76 60.38 0.80 59.58

5 17 37.6 54.33 57.52 7.34 50.18
50 39 53.80 59.34 5.57 53.77

6 44 409 50.81 60.55 1.38 59.17

Source: Own elaboration.

The layout of each route is shown in Fig. 11 (a) - 13 (b).

4.3  Comparison of connection methods

In order to compare different connection modes, it
assumes the distribution of demand remains the same. Point
44 is taken as an example to compare each connection mode,
and the calculation results are in Table 11. Due to the inability
to measure the walking and waiting time of passengers, The
travel time of airport bus and railway are its running time.
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Figure 11 Vehicle routes 1-2 a) Route 1; b) Route 2.
Source: Own elaboration.

Figure 12 Vehicle routes 3-4 a) Route 3; b) Route 4.
Source: Own elaboration.
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Figure 13 Vehicle routes 5-6 a) Route 5; b) Route 6.
Source: Own elaboration.

Table 11.
Comparison of each mode.
Indicator Airport bus Railway Cab ARB
Daytime Travel time (min) 46 30 45 55
Fare (yuan) 27 13 76 39
. Travel time (min - - 45 55
Night Fare (yua(n) ) ; ; 76 48
Convenience 2 2 1 1

17

Note. ‘1’: door-to-door, ‘2’: non-door-to-door.
Source: Own elaboration.

No matter during the daytime or at night, even though
ARB has a small increase in travel time compared to cab, the
former is at least 39% less than the latter in terms of fare. As
a consequence, ARB can attract most of the passengers.
During the daytime, although the travel time for airport bus
and railway is less than that of ARB, the former does not take
walking time and waiting time into account, so it is highly
likely that the former’s is greater than that of the latter.
Moreover, ARB offers door-to-door transportation compared
to the other two modes, and despite the fact that its fare is
relatively higher, it is still a good choice for those seeking
efficiency or persons with large luggage.

5 Discussion

5.1  The ARB model balances cost and convenience.
The proposed ARB achieves a fare reduction of more than
39% compared with taxis through a bypass rebate mechanism
and mixed vehicle scheduling, while the door-to-door service
makes up for the shortcomings of traditional public
transportation that requires walking, which verified the
feasibility of "low cost + high adaptability".

5.2  Adouble breakthrough in pricing and algorithms
The pricing mechanism breaks through the limitations of
traditional fixed fares and combines detour distance with
time value, which solves the defect that dynamic pricing
proposed by Emele [3] et al does not consider detours.
Compared with traditional GA, the IAGA reduces the
running time by 12%/14% and the number of iterations by
23%/35%, effectively avoiding the problem of premature
convergence.

5.3  Limitations and future directions

The model assumes that there is no traffic congestion, but
it is inevitable in practice. Future research will consider
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integrating real-time traffic data to improve the model's [10]

adaptability.

As the case study with concentrated demand points,
future research may partition cities into districts to set
differentiated vehicle round-trip time limits based on demand
distribution.

6 Conclusion

In order to meet the personalized travel demands and
improve the quality and efficiency of airport connections, this
paper proposes ARB mode, which improves convenience for
passengers, avoids high fares, and provides a new choice.
The main research content and innovation points of the paper
are summarized as follows.

(1) This paper incorporates rebate mechanism into the
model. The rebate mechanism makes it possible to
accommodate benefits of both passengers and enterprise in
the same objective function, which makes the model more
reasonable.

(2) AnIAGA is proposed. Setting the minimum crossover
probability and mutation probability improves the
evolutionary speed in the early stage and avoid it falling into
local optimum while producing a better and faster result.
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