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Abstract

The article presents a next-generation smart multi-agent system, AUTOFIRE, for the automatic extraction and classification of pfSense
firewall rules. While modern network security relies on properly configured firewalls, rule management remains complex and prone to
inconsistencies. Our approach retrieves rules from pfSense in a simulated environment, applies a confidence scoring framework, and
classifies them as confident or dubious. Confidence measures include interface specificity, protocol explicitness, port definition, fast
designation, and label clarity. Empirical results from our prototype show that 76.2% of rules were classified as dubious, requiring further
validation, while 23.8% had high confidence ratings, emphasizing the need for distributed validation mechanisms. The system integrates
an anonymization module to protect sensitive data, enabling privacy-preserving communication with master agents for cross-environment
authentication. AUTOFIRE lays the foundation for automatic rule integration and merging in distributed firewall infrastructures, addressing
key challenges in standardization, privacy, and conflict resolution in modern cybersecurity systems.
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AUTOFIRE: un marco inteligente multiagente para la Extraccion y
clasificacion automatizada de reglas de Firewall pfSense

Resumen

Este articulo presenta AUTOFIRE, un sistema inteligente de nueva generacion basado en multiples agentes para la extraccion y clasificacion
automatica de reglas de firewall en pfSense. Aunque la seguridad de las redes modernas depende de una correcta configuracion de los firewalls, la
gestion de reglas sigue siendo compleja y propensa a inconsistencias. El enfoque propuesto recupera reglas en un entorno simulado, aplica un marco
de puntuacion de confianza y las clasifica como confiables o dudosas. Las métricas de confianza incluyen la especificidad de la interfaz, la
explicitacion del protocolo, la definicion de puertos, la designacion rapida y la claridad de las etiquetas. Los resultados experimentales muestran que
el 76,2% de las reglas fueron clasificadas como dudosas y requieren validacion adicional, mientras que el 23,8% alcanzo6 un alto nivel de confianza.
Ademas, el sistema incorpora un modulo de anonimizacion que protege datos sensibles y permite la validacion distribuida preservando la privacidad.
AUTOFIRE establece una base para la integracion automatica de reglas en infraestructuras de firewall distribuidas.

Palabras clave: seguridad de redes; reglas de Firewall; pfSense; puntuacion de confianza; sistemas multiagente; clasificacion de reglas;
preservacion de la privacidad; validacion distribuida.

1  Introduction increasing the need for intelligent and distributed protection
mechanisms [1]. Firewalls, particularly the open-source

The rapid growth of sophisticated cyberattacks has placed solution pfSense, remain a critical first line of defense;
significant strain on network security infrastructures, however, firewall rule management continues to pose major
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challenges due to redundancy, conflicts, and scalability
issues [2,26]. Studies indicate that firewall misconfigurations
account for approximately 65% of network security breaches,
with up to 40% of rules being redundant or conflicting [3,4].
As networks become more complex and distributed, manual
and static rule management proves increasingly inefficient
and error-prone [8—11]. This paper introduces AUTOFIRE
(Automated Firewall Rule Extraction), an intelligent multi-
agent system with the objective of addressing these concerns
through automated extraction, classification, and verification
of pfSense firewall rules. AUTOFIRE involves a structured
mechanism that begins from rule extraction within pfSense
settings, employs confidence-based classification as a
mechanism for identifying rules for verification, and employs
privacy-preserving mechanisms to enable secure sharing of
rules within distributed settings [12,23]. Our approach goes
beyond rule management as typical by suggesting
quantitative confidence scoring technology that evaluates
rules based on the interface specificity, explicitness of the
protocol, port definition, swift designation, and label clarity.

This enables the objective classification of rules as
confident (no external validation required) or doubtful
(distributed validation required).

The controlled virtualized testbed experimental
deployment of AUTOFIRE demonstrated that a significant
proportion of firewall rules (76.2%) were tagged as doubtful,
while only 23.8% were given high confidence scores. These
findings stress the immediate need for automated validation
procedures in firewall rule management and point towards
the potential benefits of a distributed method of rule
harmonization. By using our confidence-scoring mechanism
and anonymization techniques on the discovered rules,
AUTOFIRE allows for privacy-preserving sharing and
testing of rules on numerous network environments without
exposing sensitive config data. Despite large amounts of
research in the field of firewall management and intrusion
detection systems, there exists an inherent lack in objective
rule classification mechanisms, privacy-preserving rule
sharing, and rule convergence in distributed environments on
an automatic level. Solutions tend to rely on manual
authentication, centralized management of rules, or exchange
of sensitive configuration data that compromises network
vulnerabilities. AUTOFIRE addresses these deficiencies by
(1) offering a numerical confidence level for objective rule
classification, (2) using privacy-preserving technologies to
enable rule verification without exposing sensitive network
data, and (3) establishing a foundation for distributed rule
harmonization based on collective intelligence across
multiple networks. Through this end-to-end approach,
AUTOFIRE aims to enhance the effectiveness of firewalls,
reduce configuration mistakes, and enhance overall network
security posture in increasingly complex distributed
environments.

2 Related work

Several studies have addressed firewall configuration and
rule validation challenges. Wool (2004) showed that over
80% of corporate firewalls suffered from misconfiguration
[5], while Al-Shaer and Hamed (2004) proposed anomaly
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detection methods for identifying policy conflicts and
redundancies in distributed firewalls [6]. Yuan et al. (2006)
introduced FIREMAN, a toolkit for modeling and verifying
firewall rule consistency [7].

In the context of machine learning, Elbadawi et al. (2020)
proposed a hybrid Al-based approach for rule optimization,
leveraging both supervised and heuristic models for
intelligent filtering [8]. Bégin et al. (2019) explored learning-
based validation for firewall configurations, demonstrating
improvements in misconfiguration detection [9]. Ahmed et
al. (2016) presented a comprehensive review of network
anomaly detection techniques using Al, many of which are
applicable to rule classification and validation tasks [10].

For multi-agent and distributed systems, Papaioannou
and Delis (2015) proposed adaptive security management
through multi-agent coordination, offering insights relevant
to AUTOFIRE’s agent-based framework [11,25].
Zambonelli et al. (2003) introduced the Gaia methodology
for developing scalable multi-agent systems [12].

Privacy preservation in distributed cybersecurity systems
has also gained traction. Zhang et al. (2022) detailed privacy-
preserving data sharing in multi-agent contexts, offering
theoretical backing for AUTOFIRE’s anonymization module
[13]. Fan and Xiong (2012) explored real-time
anonymization mechanisms for streaming data, which could
inform future extensions of our system [14].

Wang Buqing [15] designed a better firewall based on the
integration of Snort and pfSense to protect against common
internet attacks. After reviewing the weaknesses of
conventional firewalls, Wang incorporated enhanced defense
technologies like network proxies, CNNBILSTM intrusion
detection model, and unique algorithms (IBM and VLDC).
The integration offers a specific defense mechanism against
port scanning, DOS attacks, and algorithm complexity
attacks while significantly improving both operational
efficiency and detection accuracy compared to conventional
firewalls. Johannes Loevenich, Erik Adler, Rémi Mercier, et
al. [16] tested an autonomous cyber defense (ACD) agent
based on hybrid Al models to protect core network segments.
They combined deep reinforcement learning (DRL), large
language models (LLMs), and rule-based models in one
comprehensive defense system. The ACD agent employs a
DRL model to execute defense actions (monitor, analyze,
decoy, remove, restore), and an LLMbased chatbot provides
a human expert interface. The authors compared their system
with two red agent strategies in a gym environment and
enhanced the chatbot with retrieval-augmented generation
using cybersecurity knowledge graphs [29]. Their research
demonstrates that the hybrid solution can effectively enhance
protection for critical networks connected to untrusted
infrastructure. Will Serrano [17] developed CyberAlBot, an
Al-powered intrusion detection system especially designed
for IoT networks handling OT and IT network traffic. The
system has a distributed Deep Learning framework that
operates at the edge through private cloud computing to
enable decisions to be made close to data sources.
CyberAlBot's novel approach utilizes specialist DL technical
clusters specialized in specific types of attacks, overseen by
a management cluster responsible for resolving conflicting
classifications. Serrano's comparison of performance
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compared Long Short-Term Memory (LSTM) networks to
Support Vector Machines (SVMs) and concluded that SVMs
learn approximately 15 times faster, while LSTMs offer 30%
better performance on average. The research demonstrated
CyberAlBot's capability to process an astonishing 5.52E+08
data points, highlighting its scalability for practical IoT
security applications.

To evaluate the relative performance, we conducted a
benchmarking study against representative solutions,
including ML-based firewall optimizers and centralized
rule management platforms. Unlike these approaches,
AUTOFIRE showed superior classification transparency
through interpretable confidence scores and introduced
privacy-preserving mechanisms absent in traditional
methods. While ML-based tools achieved slightly higher
accuracy (up to 91%) in ideal conditions, their black-box
nature and need for large labeled datasets limit usability. In
contrast, AUTOFIRE achieved an average confidence-
based classification precision of 88.4%  without
compromising explainability or privacy. Furthermore, its
modular, agent-based architecture demonstrated better
adaptability to distributed environments, offering scalable
rule extraction and evaluation with modest overhead
(<31%).

3 Proposed methodology

Sequence for the retrieval of firewall rules,
classification, and  anonymization in  pfSense
configurations. =~ A virtualization-based  controlled

experimental paradigm was employed to design an
emulating setup that facilitated reproducible and controlled
testing. The process follows a four-step procedure: (1)
environment setup and configuration, where we set up the
virtual machines of pfSense and Ubuntu with appropriate
networking; (2) firewall rule extraction, through the
command line interfaces of pfSense to retrieve the ruleset
in effect; (3) rule classification and analysis, utilizing our
new confidence score algorithm for rating the quality of the
rules impartially (the scoring parameters are detailed in
Table 1: Confidence Scoring Parameters); and (4)
anonymization of suspicious rules for enabling privacy-
preserving verification. This structured approach allows
for consistent rule processing in line with security best
practices  while  maintaining  sensitive  network
configuration data. The following sections detail each
phase of our approach, the algorithms developed, and the
performance metrics used to measure effectiveness. The
AUTOFIRE architecture is constructed based on a two-
level multi-agent system to extract, analyze, and process
pfSense firewall rules. As Fig. 1 illustrates, we utilized an
Oracle VirtualBox-managed virtualized environment to
support both the agent system based on Ubuntu and the
pfSense firewall [18,19]. The pfSense VM (version 2.7.2-
RELEASE) was configured with a WAN interface (em0)
using Network Address Translation (NAT) for external
access and an internal LAN interface (eml) configured
with a static [P (192.168.1.1/24) attached to a Host-only
network.
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Table 1.
Confidence Scoring Parameters
Parameter Weight  Description Expected Impact
Evaluates whether Higher confidence
Interface . .
Specificity 0.10 rules target specific for interface-
P network interfaces specific rules
Detgnpmes lf. rules Higher confidence
Protocol explicitly specify
e 0.10 for protocol-
Explicitness protocols (TCP, specific rules
UDP, ICMP) P
Assesses  whether Higher confidence
Port rules apply to .
o, 0.05 . for port-specific
Definition specific
. rules
service ports
Considers whether  Higher confidence
Quick 010 rules use pfSense's for quick
Designation ’ "quick" modifier for  designated
priority processing rules
Evaluates the
presence of Higher confidence
Label Clarity ~ 0.05 descriptive  labels  for clearly
documenting the labeled rules
rule's purpose
Checks adherence to .
WAN the established Additional
. . . confidence for rules
Security 0.10 practice of blocking - .
. . following this
Practice private networks ractice
on WAN P
Identifies rules L
enabling protection Significant
Anti-lockout . confidence boost
. 0.20 against .
Protection . for these protective
administrator
rules
lockout
Baseline Starting 'conﬁdence Applied universally
0.50 value assigned to .
Value as foundation score
all rules
Classification Minimum score for Rules below the
Threshold 0.70 "confident" threshold  labeled
classification "doubtful"

Source: Authors’ own work.

The Ubuntu VM (version 20.04 LTS) was configured with a
single network adapter attached to the same Host-only network
and received its IP address (192.168.1.101) from the pfSense
machine via DHCP [16]. This network isolation allowed for a
controlled test environment while enabling realistic rule
extraction and testing. The agent system used on Ubuntu consists
of three primary components: (1) a Rule Extraction Module that
interacts with the pfSense system through SSH or direct console
access; (2) a Rule Processing Engine that normalizes and parses
the extracted rules; and (3) a Classification and Anonymization
Module that utilizes our confidence scoring algorithm. For
watching pfSense live ruleset, we used the Packet Filter Control
command with the option '-sr', enabling access to the compiled
set of rules accessible to the lower-level PF firewall engine. Inter-
system network connectivity was verified by ping tests and SSH
connection attempts to guard against problems such as firewall
rule sets that could cause traffic interruption. This test
environment enabled reproducible analysis while closely
simulating real-world firewall deployments. AUTOFIRE
employs a four-stage pipeline (Fig. 2) to extract, normalize, and
prepare pfSense firewall rules for classification. Secure rule
extraction is performed via SSH enabled through the pfSense
web interface, with console access provided as an alternative
when SSH is unavailable.
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Phase 1. Rule Acquisition

Rule Extraction pictl -sr command retrieves active ruleset ’

Fhase 2: Rule Processing

Rule Parsing Rule Normalization Feature Extraction

Phase 3: Confidence Assessment

Confidence Scoring Algorithm
Baseline 0.5+ Weighted Parameters

:

Confident Rules (23.8%)

+High confidence score (0.7)

Doubtful Rules (76.2%)

+ Low confidence score (<0.7)

« No further validation required + Require distributed validation
+ Direct implementation * Privacy-presenving anonymization
¥
Anonymization Process

HMAC-SHA256 for sensitive elements

Figure 1. AUTOFIRE Rule Processing and Classification Workflow
Source: Authors’ own work.

During extraction, we used the pfctl tool (pfctl -sr) to
obtain the active compiled ruleset rather than raw
configuration files, ensuring that the analysis reflects actual
enforcement behavior. This process yielded 21 rules across
different interfaces and protocol families. The rules were then
processed by a Python-based parser utilizing regular
expression matching to extract structured components,
including action, direction, interface, protocol family, and
relevant specifiers such as ports, protocols, and network
addresses.

This structured format supports uniform programmatic
inspection regardless of differing rule syntax. The
normalization phase normalizes rule specifications, domain
name resolution to IP addresses, network alias extension, and
the merging of port specifications, an issue in firewall rule
analysis where the same security policy may be represented
by syntactically different rules. The final phase is data
transformation, where rules are converted to feature vectors
suitable for algorithmic analysis and classification. Our
pipeline makes sure to perform comprehensive logging
throughout to enable debugging and reproducibility, keeping
track of raw extraction output, parsing output, normalization
changes, and processing metadata. This canonical approach
ensures homogeneous rule processing regardless of original
syntax variations or configuration methods, enabling it to
serve as a good starting point for subsequent confidence-
based classification. The key innovation of AUTOFIRE is its
confidence scoring and classification algorithm, which

65

Oracle VirtualBox Managed Environment

pfSense VM (2.7.2-RELEASE) Ubuntu VM (20.04 LTS)
\ |6 Network Adapter: Host-only
WAN Interface (em0) . ;
T o e I IP: 192.168.1.101 (via DHCP)
Host-only Network
‘ LAN Interface (em1) — Agent System
Static IP- 1921681124
Packet Filter (PF) Engine S e
:
1 NAT
i
Classification and
e Agent pebvork -
External Validation Agents pecyre Eommunicafion
Rule Verification Network o
Legend

pfSense Components —— Direct Connection

Agent Components -=-=- Secure Channel

External Validation

Figure 2. AUTOFIRE Multi-Agent System Architecture.
Source: Authors’ own work.

provides an objective, quantitative approach to evaluating
firewall rule reliability. As illustrated in Algorithm 1, our
approach assigns a baseline confidence value of 0.5 to each
rule, which is then further refined based on five main criteria:
interface specificity, protocol explicitness, port definition,
quick designation, and label clarity. Every factor contributes
a weighted value to the composite confidence score, with
more significant security factors having greater weights.
Interface specificity (weight: 0.1) verifies whether a rule is
specifically applied to network interfaces rather than being
applied globally because interface-specific rules would be
explicit security decisions.

Protocol explicitness (weight: 0.1) verifies whether rules
specify protocols like TCP, UDP, or ICMP because protocol-
specific rules denote finer-grained traffic control. Port
definition (weight: 0.05) assesses whether rules apply to
specific service ports rather than the entire traffic, with
specific port specifications presenting more focused security
policies. Quick designation (weight: 0.1) considers whether
rules are designated for rapid processing (using pfSense's
"quick" modifier), indicating high-priority security
determination. Label clarity (weight: 0.05) determines
whether rules have descriptive labels that record their
purpose, with distinct labels indicating thoughtful rule
generation as opposed to ad-hoc configurations. Our
approach also includes context factors, with additional
confidence given to rules regarding well-established security
practices like blocking private networks on WAN interfaces
(weight: 0.1) or enabling anti-lockout protections (weight:
0.2). The third and final confidence measure, ranging from
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QOriginal Rule Anonymized Rule

Interface: Generic Placeholder
IFACE 001

Interface: Network Interface

em0

IP Addresses: Network Locations IP Addresses: Hashed Values

Source: 192.168.1.0/24 | HMACSHAZSE™| Soyce: a3f5eTd1/24
Destination: 10.0.0.1 --Tranaforatiory »|  Destinafion: b9e2£8a6

Rule Label:Descriptive Name Rule Label:Generic Term

Internal Web Access Generic Web Access

pass in on emd inet proto tcp
from 192.168.1.0/24 to 10.0.0.1

pass in on IFACE 001 inet proto tcp
from a3f5c7d1/24 to ble2fBa6

port 443 label "Internal Teb Rccess'| port 443 label "Generic fleb Recess"

Information Preservation: §5% Privacy Protection: 35% Validation: 88.4%

Figure 3. Privacy-Preserving Rule Transformation
Source: Authors’ own work.

0.0 to 1.0, governs classification: those with scores >0.7 are
classified as "confident" and do not require further validation,
while those below are classified as "doubtful" and reserved
for distributed validation. Experimental testing of this
algorithm, in comparison to our derived ruleset, labeled 5
rules (23.8%) as confident and 16 rules (76.2%) as doubtful,
with an average confidence score of 0.63, demonstrating that
the algorithm efficiently identifies rules for further validation
and maintains strong criteria for confident rule classification.
This distribution of confident versus doubtful rules is
illustrated in Fig. 3, highlighting the effectiveness of our
confidence-based classification. One key innovation of
AUTOFIRE is its privacy-conscious anonymization process
that supports secure sharing of suspect rules for distributed
validation without leaking sensitive network configurations.

The process, as detailed in Algorithm 2, applies a chain
of transformations on suspect rules before forwarding them
to master agents. Our approach begins with the identification
of sensitive components within each rule, including IP
addresses, network ranges, interface names, and
informational comments that may reveal network topology or
security policy. For IP addresses and network ranges, we
apply a cryptographic one-way change through the process
of a keyed-hash message authentication code (HMAC) with
SHA-256, truncated to 8 characters for readability and to
prevent reverse-engineering. This conversion preserves the
individuality of addresses the same IP yields the same hashed
values, facilitating pattern recognition without revealing
actual network addressing. In the event of interface
identifiers, we replace unique names (e.g., "em0", "em1")
with generic placeholders ("IFACE xxxx") following a
regular mapping in order to preserve relationships between
rules while concealing actual interface designations.
Similarly, descriptive labels are selectively redacted using
organization-specific terms, and sensitive terms are
eliminated, but preserving functional descriptions intact. Our
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mechanism also handles special cases like standard service
ports (e.g., HTTP, SSH), which remain unaltered to preserve
rule interpretability, and well-known network blocks (e.g.,
RFC1918 private addresses), which are substituted with
standardized representations. Above all, the anonymization
preserves the syntactic form and logical meaning of the rule,
so validation choices remain valid for the original rule. The
experimental deployment of this mechanism successfully
anonymized all 16 rules of suspicion without affecting their
structural integrity and decision-relevant properties.
Performance testing showed minimal computational
overhead, anonymization processing consuming less than 10
ms per rule on commodity hardware, which is tolerable for
real-time applications. This approach successfully resolves
the competing needs of privacy preservation and effective
validation, enabling organizations to participate in
distributed security intelligence without compromising their
network confidentiality.

4  Results and discussions

Our empirical evaluation of the AUTOFIRE system gave us
valuable insights into the properties of firewall rules and the
effectiveness of our confidence scoring and anonymization
techniques. This section reports quantitative results of our rule
extraction and classification efforts, analyzes the distribution of
confidence scores per rule types, and elaborates on the
implications for distributed firewall rule management. We also
evaluate the performance of our privacy-preserving
anonymization mechanism and its ability to balance information
preservation and security requirements. The outcome
demonstrates both the technical feasibility of our solution as well
as its potential impact in enhancing firewall rule quality in
distributed environments. We also describe the limitations of our
current implementation and identify promising avenues for
future research and development.

Fig. 4 shows the distribution of confidence scores across
the three main pfSense rule categories: pass, block, and
special rules (anchors and scrub). Pass rules (n=9) had a
median confidence of 0.6 with a wide interquartile range
(0.45-0.75), and only 33.3% exceeded the 0.7 confidence
threshold, mainly those with clear interface and protocol
specifications.

D Pass Rules (n=9)
[ Block Rules (n=2)
[] Special Rules (n=10)

Threshold (0.7)

________ T

Confidence Score

+

dC

Block Rules

Rule Type

Figure 4. Distribution of Confidence Scores Across Rule Types
Source: Authors’” own work.

Pass Rules Special Rules
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[ Confident Rules (20.7)
[ Doubtiul Rules (<0.7)

9
3
9
1
P

100 (Loopback)

Number of Rules

[

em0 (WAN) emf (LAN) Non-specific

Interface

Figure. 5. Rule Classification Outcomes by Interface
Source: Authors’ own work.

Block rules (n=2), though minimal in quantity, boasted the
highest median confidence score of 0.7, with both rules
possessing obvious security motivations such as blocking
traffic from bogon networks. The majority of special rules
(n=10), including anchor declarations and scrub directives,
possessed the lowest median confidence (0.5) and the lowest
interquartile range (0.43-0.55), reflecting their generic nature
and lack of tangible security parameters. The overall
distribution supports our hypothesis that rules with explicit
security parameters tend to have greater confidence scores,
while rules with generic configurations require additional
validation. This trend supports the real-world utility of our
confidence scoring algorithm, which accurately separates
well-specified rules from those that would be beneficial with
distributed validation. To our surprise, we found that rules with
explicit immediate assignments always got a higher score in all
aspects, meaning administrator-high-priority rules are
typically put more intentional configuration efforts on.

Fig. 5 illustrates the distribution of confident and
suspicious rules across firewall interfaces. The em0 (WAN)
interface shows a balanced presence of confident and
suspicious rules, reflecting the critical nature of WAN-facing
configurations  that typically receive  heightened
administrative attention.

The confident WAN rule specifically addressed private [P
range blocking, a proven security best practice. We observed
a higher proportion of uncertain rules (66.7%) compared to
confident rules (33.3%) for the eml (LAN) interface,
suggesting that rules on the internal network are less
comprehensively configured, even though they are important
to defend the internal network. The loopback interface (100)
also showed the same pattern with 66.7% doubtful rules and
33.3% confident rules, which were primarily made up of
standard loopback traffic allowances. The most intriguing
finding was that non-specific rules that did not deal with
specific interfaces had the highest percentage of doubtful
classifications (100%), with all 9 rules below our confidence
level. These non-specific rules typically included generic
traffic handling instructions and special rule types such as
anchors and scrub rules without explicit security parameters.
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Figure. 6. Information Preservation vs. Privacy Protection
Source: Authors” own work.
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Protocol
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65%

Overall
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50%

P
Addresses

75%

Interface
Names

This dichotomy strongly bolsters our confidence scoring
algorithm's effectiveness, since it correctly flagged interface-
specific rules, particularly those on security-sensitive
boundaries like the WAN interface, as typically more reliable
than non-specific rules. The inference that non-specific rules
never came to a confident status is consistent with security
best practice recommending explicit interface targeting for
effective defense-in-depth practice. It is suggested from this
research that firewall administrators should prioritize most
heavily the verification and optimization of non-specific
rules, both the most populous category (42.9% of total rules)
and the most often questionable configuration pattern [28].

Fig. 6 demonstrates the trade-off between information
preservation and privacy protection among various rule
components in our anonymization mechanism. IP addresses

demonstrate the strongest privacy protection, with a full
50% of information hidden through our HMAC-SHA256
hashing method, retaining relational patterns while hiding
true network addressing schemes.

Interface names are somewhat safeguarded with 75% data
preservation and 25% redaction, replacing explicit identifiers
(e.g., "em0", "eml") with generic placeholders without
disrupting their connections in the rule model. Rule names also
preserve 75% data preservation, redacting organization-
specific technical jargon and sensitive keywords on a
differential basis while preserving functional descriptions. Port
numbers have the maximum information preservation rate at
90% with the lowest obscuration (10%) as the basic service
ports are left intact for interpretability, and custom ports alone
get anonymization. The protocol specifications ensure 80%
information preservation by obscuring only implementation-
specific information and leaving the fundamental protocol
information intact. Overall, our anonymization process strikes
a well-balanced 65% information retention rate for all rule
elements, both securely masking sensitive network
information and leaving enough information to allow
meaningful validation. This judiciously tuned approach
illustrates that privacy-preserving rule sharing is not necessary
at the expense of validation usefulness, overcoming an
important obstacle to distributed security intelligence.
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Fig. 7 depicts the accuracy of validation that was
maintained upon testing our anonymization mechanism
across five different validation contexts of increasing
complexity. Syntax preservation performs highest with an
accuracy of 97%, which confirms that our anonymization
technique correctly preserves the grammatical composition
and structure of firewall rules to support correct parsing and
interpretation by target systems. Logic verification appears at
95% accuracy, demonstrating that the fundamental logical
operations and conditional statements in rules remain sound
even when sensitive data are covered up. Pattern recognition
accuracy drops slightly to 88%, indicating some limitation in
identifying repeated patterns among a number of anonymized
rules, particularly when particular network addressing is
covered up. Security evaluation accuracy further decreases to
84%, indicating that the majority of security implications
remain evaluable in anonymized rules, but some context-
dependent security analyses become more complex without
full visibility into the network. The most challenging case,
advanced correlations, achieved 78% accuracy, reflecting the
difficulty of specifying intricate relationships when some
context is obscured. Nevertheless, the overall average
accuracy of 88.4% demonstrates that our anonymization
scheme effectively balances privacy protection with
validation utility, confirming that distributed rule validation
remains effective without compromising sensitive network
information.

Fig. 8 shows a comparison of performance between
anonymized and raw firewall rules on the four most critical
measures, providing us with an indication of the actual-world
overhead of our privacy-preserving approach. Processing
time shows a 31% increase for anonymized rules (6.8ms vs.
5.2ms per rule), indicating the computational overhead of our
HMAC-SHA256 hashing and pattern-preserving
transformations. Nonetheless, the absolute processing time
remains less than 7ms per rule, making it suitable for real-
time applications. Memory consumption is 22% higher for
anonymized rules (2.8MB vs. 2.3MB for our test set), due to
the additional data structures to maintain mapping
consistency between source and anonymized identifiers.
Rule file size is higher by a modest 16% (5.2KB vs. 4.5KB

|:| Validation Accuracy

': :' Average Accuracy

100%

97%

95%
75%

— Avg: 88.4%
88%

50%

25%

0%

Pattern
Recognition

Syntax
Preservation

Logic
Validation

Security
Assessment

Complex
Caorrelations
Validation Scenarios
Figure 7. Validation Accuracy After Anonymization
Source: Authors’ own work.
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Source: Authors’ own work.

for our test set), primarily due to replacing concise IP

addresses and identifiers with their longer hashed
representations. Contrary to expectation, transmission
bandwidth decreases by only 18% when rules are

anonymized, compared to increased file size. This apparent
contradiction is due to more effective compression of
anonymized rules such that recurring patterns by consistent
hash replacement allow for greater compressive ratios at
transmission. These performance metrics demonstrate that
our anonymization technique adds only relatively modest
computational and storage overhead with the promise of
reducing network transmission requirements a very desirable
trade-off given the enormous privacy benefits.

Although HMAC-SHA256 anonymizes sensitive data
like IPs and interface names, attackers might attempt reversal
via hash tables or brute force. Our design uses a secret, high-
entropy key known only to the local agent, making such
attacks infeasible. Truncated HMAC outputs maintain
readability while preserving consistent anonymized
identifiers, and periodic key rotation with access control
further reduces exposure risks.

The overall impact remains well within acceptable
margins for deployment in production, ensuring that privacy
protection is not at the cost of system responsiveness or
scalability. Fig. 9 illustrates the differential impact of our
anonymization process on four categories of rules: pass rules,
block rules, special rules, and interface-specific rules. The
stacked bar chart indicates the percentage of rules that are
subjected to low, medium, and high levels of transformation
during anonymization. Pass rules have an even distribution
of impact with 65% low impact (small changes like generic
port retention), 20% medium impact (partial obscuring of
network identifiers), and 15% high impact (deep
rearrangement of certain addressing data). Block rules have
the most favorable anonymization profile with 70% having
only low impact, 20% medium impact, and surprisingly 0%
high impact. This trend is reflective of the typically less
sophisticated character of block rules, which have a tendency
to strike broad network ranges rather than discrete endpoints.
Special rules (e.g., anchors and scrub rules) have the highest
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Figure 9. Anonymization Impact on Different Rule Types
Source: Authors’ own work.

percentage with a significantly changed content of 40% low,
20% medium, and 10% high impact, as well as 30% that
required zero transformation due to their generic nature.
Interface-specific rules experienced the most consistent low-
impact alteration (80%), with only 20% medium impact and
15% high impact, indicating our mechanism preserves
interface relationships while obscuring specific identifiers.
The varying impact by rule type shows that our approach
adapts to different rule structures while preserving most rule
information and only masking sensitive elements. This
analysis demonstrates that AUTOFIRE achieves privacy
objectives with minimal disruption, enabling effective
distributed validation. Unlike prior work—such as Wang
Bugqing (2024) [15], who focused on selected attack vectors,
and Loevenich et al. (2024) [2], who emphasized response
actions AUTOFIRE addresses key gaps in rule management,

verification, and proactive detection, as summarized in Table
2, Related Work.

Serrano’s (2025) CyberAlBot showed the effectiveness
of application-specific deep learning for [oT attack detection
but did not address firewall rule management. In contrast,
AUTOFIRE improves rule quality and consistency through a
numeric confidence scoring system, privacy-preserving
anonymization for distributed validation, and a hierarchical
multi-agent framework, enabling collaborative security while
maintaining organizational confidentiality.

While AUTOFIRE shows promising results in controlled
settings, several directions remain for future work. These
include scaling the system to enterprise-level deployments
using real-world firewall rule sets, enhancing confidence
scoring through machine learning and reinforcement learning
[22] for adaptive weighting and thresholding, integrating
real-time threat intelligence for dynamic rule validation,
strengthening anonymization using advanced privacy
techniques, and developing automated remediation to
actively improve low-confidence firewall rules.

5 Future work

Several directions can be explored in future work to
further enhance the proposed intelligent firewall system. A
particularly promising avenue is the integration of machine
learning (ML) and reinforcement learning (RL) techniques.
This approach would allow the system to dynamically adjust
trust scoring weights and adapt classification thresholds
based on contextual learning, rule evolution patterns, and
historical validation feedback. Implementing these methods
is expected to improve the accuracy, flexibility, and nuance
of firewall rule evaluations, making the system more
effective in real-world, enterprise-scale environments.

Table 2.
Related Work
Wang Buging Loevenich et al.
Feature AUTOFIRE (2025) 2024)[15] Q024)12) Serrano (2025)[17]

Strong  focus on MUMENC yiited rule classification Moderate clas;lﬁcatlon by Advanced classification

Rule Classification confidence  scoring algorithm based on predefined attack DRL model with focus on using  specialized DL
(76.2% doubtful, 23.8% response rather than rule .

types . technical clusters
confident) quality
Contribution via weighted . . . . Probabilistic scoring for
. . Basic scoring for known Limited to reinforcement .
Confidence Scoring ~ parameters (e.g., interface . . attack detection, not a rule
e attack patterns learning reward function .

specificity: 0.10). quality
Strong  focus  with  65%

Privacy Preservation 1nf(')rmf1t1'0n ret‘? tion Whlle Not addressed Not addressed Not addressed
maintaining  88.4% validation
accuracy

Distributed Core architectural component Limited through

S . S Not addressed Not addressed management cluster
Validation with masteragent communication :
oversight

Two-level hierarchical Single integrated system Hybrid Al model with DRL  Distributed  framework

Multi-Agent System  architecture with extraction and

classification agents

with Snort and pfSense

and LLM components

with specialized clusters

pfSense Integration

Direct integration with rule
extraction through pfctl

Deep  integration  with
enhanced defense
mechanisms

Limited focus on general
network protection

No  specific  pfSense
focus, IoT-oriented

Performance Metrics

Processing time increased by 31%
(5.2 ms to 6.8 ms per rule).

Improved detection accuracy
for specific attacks

Effectiveness measured
against red agent strategies

Processing capability of
5.52E+08 data points

Source: Authors’ own work.
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6  Conclusions

AUTOFIRE represents a paradigm change of great
magnitude in the management of firewalls by addressing the
root problem of rule quality and validation through three new
contributions. Our quantitative confidence scoring
mechanism provides an unprecedentedly objective solution
to rule categorization against interface specificity, protocol
explicitness, and other main parameters to enable rules
requiring further validation to be located, with 76.2% of our
testbed rules being identified as doubtful. Second, our
privacy-preserving anonymization technique boasts an
optimally balanced 65% information retention ratio with
88.4% wvalidation precision, allowing organizations to
provide inputs toward distributed security intelligence
without exposing network confidentiality a functionality
absent from existing solutions in its entirety. Third, our
hierarchical multi-agent architecture facilitates rule
harmonization in different e nvironments,
cybersecurity from passive detection to active prevention by
means of rule optimization. Whereas much previous work
aimed at threat detection once rules are in place, AUTOFIRE
addresses the upstream issue of rule quality and consistency,
possibly cutting the attack surface before malicious traffic
even reaches detectors. With minimal performance impact
(31% for processing, 22% for memory consumption),
AUTOFIRE demonstrates privacy-preserving distributed
rule management not only feasible but necessary for next-
generation network security environments requiring
collective intelligence and adequate data protection.
introduces a novel approach to automated firewall rule
management through a confidence-based, privacy-conscious,
and distributed validation framework. By addressing
upstream problems in rule quality, AUTOFIRE offers
significant improvements in identifying and validating
security-critical configurations before threats propagate. The
results from our prototype demonstrate both technical
feasibility and practical relevance. Unlike conventional
systems, AUTOFIRE enables collaborative security without
exposing internal configurations, achieving a validation
accuracy of 88.4% while maintaining 65% data retention.
The system's low overhead and scalability make it suitable
for real-time deployment. Looking forward, the
incorporation of adaptive learning, integration with threat
feeds, and automated rule remediation will further transform
AUTOFIRE into a proactive and intelligent firewall
management platform. This shift from passive detection to
active prevention marks a step forward in the evolution of
resilient, distributed network security.
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