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Abstract

Accurate prediction of construction productivity remains a critical challenge in the civil engineering sector, particularly for deep foundation works
such as bored piles in residential projects. This study proposes a data-driven predictive model based on Support Vector Machine (SVM) to estimate
the productivity of bored piles in high-rise residential construction projects in Iraq. Real-world data were collected from the Iraq Gate Residential
Complex and used to train and validate the model. Key influencing factors included pile geometry, soil type, equipment specifications, crew size,
and working hours. The model achieved a mean prediction accuracy of 99.89% and a correlation coefficient (R) of 97.02%, demonstrating superior
performance over conventional estimation methods. These findings highlight the practical value of machine learning approaches in enhancing
resource planning and decision-making during early project phases. The proposed SVM-based model can support contractors and engineers in
forecasting performance outcomes and minimizing scheduling uncertainties in similar construction settings.

Keywords: support vector machine; construction productivity; bored piles; predictive modeling; Iraq; residential towers.

Desarrollo de un modelo predictivo basado en maquinas de soporte
vectorial para la productividad de pilotes perforados en proyectos de
construccion residencial en Irak

Resumen

La prediccion precisa de la productividad de la construccion sigue siendo un desafio critico en el sector de la ingenieria civil,
particularmente para obras de cimentacion profunda como pilotes perforados en proyectos residenciales. Este estudio propone un modelo
predictivo basado en datos, basado en Maquinas de Vectores de Soporte (MVS), para estimar la productividad de pilotes perforados en
proyectos de construccion residencial de gran altura en Irak. Se recopilaron datos reales del Complejo Residencial Iraq Gate y se utilizaron
para entrenar y validar el modelo. Los factores clave de influencia incluyeron la geometria de los pilotes, el tipo de suelo, las
especificaciones del equipo, el tamafo de la cuadrilla y las horas de trabajo. El modelo alcanz6 una precision de prediccion media del 99,89
% vy un coeficiente de correlacion (R) del 97,02 %, lo que demuestra un rendimiento superior al de los métodos de estimacion
convencionales. Estos hallazgos resaltan el valor practico de los enfoques de aprendizaje automatico para mejorar la planificacion de
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recursos y la toma de decisiones durante las fases iniciales del proyecto. El modelo propuesto, basado en MVS, puede ayudar a contratistas
e ingenieros a pronosticar los resultados de rendimiento y minimizar las incertidumbres de programacion en entornos de construccion

similares.

Palabras clave: maquina de vectores de soporte; productividad en la construccion; pilotes perforados; modelado predictivo; Irak; torres

residenciales.

1 Introduction

Predicting construction productivity remains a major
challenge due to the sector’s inherent variability in project
scope, workforce capabilities, and environmental factors [1].
These challenges are further exacerbated by the lack of
reliable historical data and the limited adoption of advanced
data analytics in construction planning and management [2].
Artificial Intelligence (Al), especially machine learning
algorithms such as Support Vector Machines (SVM), has
emerged as a powerful tool for modeling complex, nonlinear
interactions between project variables [3]. Prior studies have
demonstrated the potential of SVMs in forecasting
productivity across a range of construction applications [4,5].
For instance, Al-Zwainy and Aidan [6] developed SVM-
based models for brickwork productivity in Iraq, reporting
strong correlation and improved estimation accuracy. Other
researchers have explored hybrid models combining SVM
with optimization algorithms such as Symbiotic Organisms
Search (SOS) and feature selection techniques to enhance
predictive precision [7,8]. Additionally, SVM has proven
useful in modeling productivity based on motion data from
workers [9], and in comparing machine learning models for
tasks such as shovel productivity prediction, where Random
Forest models slightly outperformed SVM in certain
scenarios [10].

Despite these advances, there is a clear research gap in
applying SVM-based modeling to deep foundation activities,
such as bored pile construction, particularly within the
context of large-scale residential projects in Iraq [11]. Local
construction projects often suffer from inconsistent
productivity, especially during piling operations, which are
influenced by factors such as soil type, pile geometry, drilling
equipment, and workforce dynamics, these factors are not
always captured adequately by traditional estimation
methods [12].

This study aims to address this gap by developing a
Support Vector Machine-based predictive model for
estimating the productivity of bored piles in high-rise
residential projects in Iraq. The model is trained on real-
world data collected from the Iraq Gate Residential Complex
in Baghdad, incorporating variables such as pile length,
diameter, soil classification, drilling equipment type, crew
size, and working hours. The main objectives of this research
are to:

1. Develop a robust SVM model tailored to predicting the
productivity of bored piles.

2. Identify the most significant input parameters
influencing productivity outcomes.

3. Validate the proposed model using field data and
benchmark it against conventional estimation
approaches.
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By bridging traditional estimation approaches with Al-
driven predictive modeling, this research contributes a
practical decision-support tool for project planners and
stakeholders, particularly in environments where predictive
models are scarce but highly needed [13,14].

2 Methodology

This research adopts a data-driven modeling approach
based on real-world data collected from the Iraq Gate
Residential Complex (IGRCP), a large-scale housing project
in Baghdad. The IGRCP consists of 48 towers using bored
pile foundations with diameters ranging from 1.5 to 2.0
meters and depths between 45 and 65 meters. Relevant
parameters including pile dimensions, soil classification,
drilling equipment type, crew size, and working hours were
extracted and used as input variables for model development.
The modeling methodology comprises three stages:

1. Data collection and preprocessing,
2. SVM model training and validation, and
3. Model evaluation.

In the first stage, over 500 verified bored pile records
were obtained from field reports and site visits. Each record
included measurable inputs and the actual number of
completed piles per shift. These data were cleaned,
normalized, and formatted for supervised learning, following
procedures similar to those described by Al-Zwainy et al.
[15]. Categorical variables such as "Drilling equipment used"
and "Soil type" were encoded using label encoding. For
instance, five distinct equipment types were identified in the
dataset and labeled from 1 to 5, while two main soil types
(e.g., cohesive clay and sandy silt) were encoded as 1 and 2,
respectively. Although label encoding may introduce
ordinality bias, we mitigated this by using kernel-based SVM
(normalized polynomial kernel), which captures nonlinear
relationships without assuming linear scaling of inputs.
Sensitivity analysis confirmed that model performance was
not significantly affected by this encoding approach.

In the second stage, the dataset was split into 75% for
training and 25% for validation, as determined using Weka
software. Different kernel functions were evaluated, and the
normalized polynomial kernel yielded the best performance
in terms of Root Mean Square Error (RMSE = 0.501) and
correlation coefficient (R = 94.66%). Parameter optimization
for C and Epsilon was carried out via trial-and-error to
improve model precision, consistent with the procedures
outlined in Cheng et al. [16] and Famouri et al. [17].

The selection of the normalized polynomial kernel was
based not only on performance metrics but also on its
theoretical and practical suitability for construction
productivity modeling. First, polynomial kernels effectively
model nonlinear interactions between variables, which are
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common in construction, such as the interaction between pile
geometry and equipment efficiency. Unlike RBF kernels that
produce localized solutions, polynomial kernels offer global
generalization, making them more suitable for heterogeneous
site conditions. Second, polynomial kernels allow for partial
interpretability, enabling the derivation of approximate
prediction formulas that support practical decision-making.

This contrasts with RBF, which operates as a black-box
model. Third, the normalized polynomial kernel showed
greater robustness across parameter settings and data
partitions and required less computational overhead
compared to RBF in our experiments. These factors
collectively supported its adoption in this study.

A simplified linear formulation of the final model was
extracted using Weka, enabling users to estimate productivity
directly from key field parameters. This contributes to model
interpretability and practical deployment on-site without
requiring full algorithmic execution.

The methodology intentionally avoids theoretical
elaborations on SVM Type 1/Type 2 and regression forms,
focusing instead on applied configuration and practical
performance metrics. Evaluation indicators such as RMSE
and R were selected in line with recommendations by
Hammoody et al. [18], ensuring validity in a construction-
specific context.

The methodological structure is consistent with prior
SVM applications in construction productivity modeling,
including those conducted by Al-Zwainy and Aidan [6], and
extends their scope by addressing deep foundation works—a
relatively underexplored area in Iraqi construction research.

A simplified linear formulation of the final model was
extracted using Weka, enabling users to estimate productivity
directly from key field parameters. This contributes to model
interpretability and practical deployment on-site without
requiring full algorithmic execution.

The methodology intentionally avoids theoretical
elaborations on SVM Type 1, Type 2 and regression forms,
focusing instead on applied configuration and practical
performance metrics. Evaluation indicators such as RMSE
and R were selected in line with recommendations by
Hammoody et al. [18], ensuring validity in a construction-
specific context.

The methodological structure is consistent with prior
SVM applications in construction productivity modeling,
including those conducted by Al-Zwainy and Aidan [6], and
extends their scope by addressing deep foundation works—a
relatively underexplored area in Iraqi construction research.

In most cases, SVM learning algorithms have proved to
be superior to neural network learning algorithms, a trend
which has become evident in recent years for both
classification and regression tasks [19]. One of the main
strengths of SVMs is the fact that computational complexity
of the algorithm is independent of the dimensionality of the
input space. Moreover, the sophisticated learning model of
SVMs is designed to match the ability of the model to the
complexity of the input data, thereby ensuring strong
performance on hitherto unseen, future information. Support
Vector Machine can be classified into [20]:

a. Classification SVM type 1: For this type of SVM,
training involves the minimization of the error function:
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a. Classification SVM type 2: In contrast to Classification
SVM Type 1, the Classification SVM Type 2 model
minimizes the error function:

b.
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Also, support vector machine can be classification based
on regression, the task is then to find a functional form for f
that can correctly predict new cases that the SVM has not
been presented with before. This can be achieved by training
the SVM model on a sample set, i.e., training set, a process
that involves, like classification sequential optimization of an
error function. Depending on the definition of this error
function, two types of SVM models can be [21]:

A. Regression SVM type 1: For this type of SVM the error
function is:
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B. Regression SVM type 2: For this SVM model, the error
function is given by:
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The kernel framework has been extensively adapted to a
variety of learning tasks, including regression, classification,
ranking, and novelty detection, as demonstrated in numerous
studies. Support Vector Machines (SVMs), in particular,
have consistently been recognized as one of the leading
machine learning methods due to their proven success across
a broad range of real-world applications [22,23]. This
widespread applicability and robustness have been frequently
cited as key factors contributing to their prominence in both
academic research and industrial practice [24,25].

The kernel method maps samples nonlinearly into a space
of higher dimensions, so that it can deal with cases when the
relationship is nonlinear between the class labels and
attributes, unlike the linear kernel. Furthermore, the linear
kernel is considered a special case of the Radial Basis
Function (RBF) kernel, as demonstrated by [24], where the
linear kernel with penalty parameter C performs precisely
like the RBF kernel with some parameters. In addition, the
sigmoid kernel exhibits behavior similar to that of the RBF
kernel for certain parameter settings, A variety of kernels can
be employed in Support Vector Machine models, including
linear, polynomial, radial basis function (RBF), and sigmoid
kernels [26,27]:

1) Polynomial kernel:

k(x,y)y=(x.y+D)p (5)
2) Radial basis function kernel:
k(x,y)=exp(-y abs( x-y)2) (6)
3) Sigmoid kernel:
k(x,y)=tanh(kx.y-5) 7

where:
p, v and 9 is kernel parameter.

y=fx)+e ®)

The key knowledge of SVM regression is to map the input
data x into a high-dimensional feature space by a non-linear
mapping and to do linear regression in this space". The
regression model is defined as [28-30]:

x and y are input and output function, respectively, and
defined in the high-dimensional feature space.

e is the independently random error.

3 Results

The performance of the proposed Support Vector
Machine (SVM)-based model was evaluated using both
cross-validation and hold-out testing to ensure accuracy and
robustness. Following reviewer guidance, we applied 10-fold
cross-validation to validate the model on multiple data splits.
The results demonstrated high and consistent predictive
power across folds, with an average Root Mean Square Error
(RMSE) of 0.501 and a mean correlation coefficient (R) of
94.66%, with a standard deviation of +2.1%. This validates

the model’s generalization capacity and confirms that the
observed performance is not an artifact of a particular data
split.

To further guard against overfitting, we created a separate
unseen test set comprising 15% of the dataset. The model was
evaluated on this set independently. On the test data, the
model achieved an RMSE 0f 0.537 and an R value 0f92.81%,
which are slightly lower than cross-validation results but still
indicate strong predictive performance and no signs of
overfitting.

Additionally, to contextualize the performance of the
SVM model, we conducted a benchmarking comparison
using two standard baseline models trained on the same
dataset Multiple Linear Regression (MLR) and Artificial
Neural Network (ANN) with a single hidden layer using
backpropagation, Table (1) summarizes the performance of
each model:

These results clearly demonstrate that the proposed SVM
model significantly outperforms both linear and ANN-based
approaches in capturing the complex nonlinear relationships
influencing bored pile productivity. This strengthens the
contribution of the study and justifies the use of a normalized
polynomial kernel.

These outcomes confirm the robustness of the model in
predicting bored pile productivity across varying site
conditions and input parameter combinations. The
incorporation of cross-validation, independent testing, and
benchmarking against alternative methods strengthens the
reliability and practical applicability of the model for real-
world construction planning scenarios.

4 Discussion

The results of the SVM-based productivity prediction
model demonstrate promising performance, with high
correlation and low RMSE across validation schemes. This
section provides a deeper interpretation of these findings,
discusses the influence of key parameters, evaluates the
model in relation to industry baselines, and reflects on its
practical deployment potential.

Interpretation of Model Behavior: Among the input
parameters, pile diameter, pile depth, and drilling equipment
type emerged as the most influential factors. The model’s
sensitivity to these variables is consistent with engineering
logic. Larger diameters and deeper piles typically require
more time and specialized equipment, directly impacting
productivity. Equipment type, particularly rotary drilling rigs
with higher torque, contributed to faster progress and better
performance, explaining why SVM associated higher
weights to these input classes. Crew size and shift length had
a lesser but still observable effect.

Table 1.
Summarizes Performance of Each Model
Correlation
Model RMSE Coefficient (R)
SVM (Normalized Polynomial) 0.501 0.9466
ANN 0.683 0.8694
MLR 0.924 0.7345

Source: Authors.
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Comparative Model Evaluation: In response to
reviewer comments, baseline models (Multiple Linear
Regression and Artificial Neural Networks) were
implemented for benchmarking. The SVM model
significantly outperformed both, as shown in the results
section. While we did not perform formal statistical
significance testing (e.g., ANOVA), the observed differences
in RMSE (SVM = 0.501 vs. MLR = 0.924) and correlation
(SVM R =0.9466 vs. MLR R = 0.7345) indicate practically
meaningful superiority. Future work may include formal
inferential statistics to further substantiate these findings.

Real-World Relevance and Validation Scope:
Although real-time or time-based validation was not
performed due to data structure limitations, the dataset was
derived from actual bored pile operations across multiple
towers within the Iraq Gate Residential Complex. The
consistency of performance across cross-validation folds and
the hold-out test set (R = 92.81%) gives confidence in the
model’s generalizability. In practical terms, the model can be
integrated into early project planning workflows to estimate
shift productivity and allocate equipment efficiently.

Clarification of Equation (6): Equation (6) is a linearized
approximation extracted from the trained SVM model using the
Weka software’s model interpretation function. While the SVM
operates in a nonlinear high-dimensional space, the simplified
formula allows field engineers to make quick estimates without
requiring software implementation. This equation is not intended
to reflect a theoretical linear process but rather to serve as a
practical decision-support tool. In summary, the model exhibits
high robustness, clear interpretability of key variables, and
substantial improvement over traditional approaches. While
some limitations (e.g., absence of time-sequenced data, lack of
formal statistical testing) are acknowledged, the model’s practical
accuracy and adaptability make it a valuable contribution to
construction productivity forecasting research.

In this study, the researcher used interviews approach
used with the engineers experts to determine the main factors
affecting on productivity of bored piles of Iraq Gate
residential complex Project, also, quantitative approach used
to gather the real data from (Amwaj International company)
by filling a form for each pile in project, which contains the
input factors and the Number of Completed Piles as output,
where, SVM model require a lot of actual data were gain
between 2018 and 2021, the researcher succeeded in
gathering well trusted data for more than five hundred bored
piles through the project’ visits, most effective factors can
be shown in Table (2).

Table 2.
Affecting Factors on bored piles productivity
Variables Description Max Min
Fl:c[ig;s F1 Pile Length (meter) 65 45
F2 Pile Diameter (meter) 2.0 1.5
F3 Working Hours (hrs.) 24 8
F4 Crew Size 10 2
F5 Drilling equipment used 5 1
F6 Soil Type 2 1
FI;C;;E;S v Number ;iflgsompleted 20 12

Source: Authors.
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Table 3.
Effect of Data Division on SVM Performance - Bored Piles Productivity Model.

No. Training Validation Coefficient of Correlation (r)
set % set % %
1 60 40 85.55
2 65 35 87.67
3 70 30 89.87
4 75 25 92.85
5 80 20 90.23

Source: Authors.

SVM models need to be in a systematic method to
improve its performance, through data division and pre-
processing, development of model architecture, training
model optimization, stopping criteria, and verification model
with validation.

Trial and error process was used to select the best data
division, by using Weka software, using the default
parameters of this software, it can be seen from Table (2) that
the best division is 75% for training set, and 25% for
validation set, according to appropriated testing error and
coefficient of correlation (r). Thus, this division was adopted
in SVM model. Table (3) demonstrates dividing the data into
training and validation.

The effect of using different choices for Kernel (such as
normalized poly kernel, poly kernel, RBF kernel) was
investigated and illustrated in Table (4). It can be seen that
the performance of SVM model was sensitive to Kernel

Table 4.
Effects of select kernel on Performance of SVM- Bored Piles Productivity Model.
Coefficient
No. Data Typeof  n\jAE  RMSR  Correlation
Division Kernel o
®%
Normalized
% for Poly 0455 0.501 94.66
traming Kernel
— set, and Pol
2 25% for y 0.241 0.717 92.85
o Kernel
validation RBF
3 set 0311 0.831 93.85
Kernel

Source: Authors.

Table 5.
Effort of change the parameter C on Performance of SVM- Bored Piles
Productivity Model.

Parameter Correlation

No. Effect © MAE RMSE Coefficient
(r) %
1 Data 1.0 0.455 0.501 94.66
2 Division: 2.0 0.524 0.514 94.43
3 75% for 3.0 0.566 0.611 94.10
4 training set, 4.0 0.589 0.615 93.86

and 25%
5 valig)artion 5.0 0.612 0.700 93.34
set

6 Type of 6.0 0.645 0.777 93.11
7 Kernel: 7.0 0.689 0.800 92.96
8 Normalized 8.0 0.723 0.834 91.88
9 Poly 9.0 0.789 0.898 91.36
10 Kernel 10.0 0.801 0912 90.22

Source: Authors.
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method. The normalized poly kernel chosen in SVM model,
has the lowest Root Mean Square Error (RMSE) (0.501) and
maximum Coefficient Correlation (94.66%), It is believed
that kernel is considered optimal, thus, it was chosen in SVM
Model.

The effect of the internal parameters (C and EPSILON)
that control the SVM algorithm on the performance of the
model was analysed for the model. The effect of the
parameter (C) on the performance of the model is shown in
Table (5). It can be noted the performance of the SVM model
is very sensitive to the parameter (C) change. Thus, the
obtained optimal value for the parameter (C) is 1.0 with the
lowest values of RMSE (0.501) and the highest correlation
coefficient (1) (94.66%), so it was used in this model.

Table (6) illustrates the effect of the parameter Epsilon on
performance of SVM-bored piles productivity model, where
the best value parameter Epsilon equal to 0.02 and had the
best Correlation coefficient (94.99%) and lowest values of
RMSE (0.500), so it was applied in this model.

The modest number of association (connection) weights
got by WEKA software for the ideal SVM model (SVM-
Bored Piles Productivity Model) empowers the system to be
converted into relative straightforward equation. To exhibit
this, the association weights and limit levels (bais) of SVM
model as appeared in Table (7). By threshold of levels and
the connecting weights, the estimate productivity of the bored
piles can be expressed as equation No.6:

Table 6.
Effort of Change the Parameter Epsilon on Performance of SVM- Bored
Piles Productivity Model.

Parameter Correlation
No. Effect . MAE RMSE Coefficient
Epsilon
r) %
1 D 0.001 0.455 0.501 94.66
ata
2 Division: 0.002 0.524 0.500 94.99
3 75% for 0.003 0.566 0.511 94.10
training set,
451 and 25% for 0.004 0.589 0.515 93.86
validation set. 0.005 0.612 0.600 93.34
6 0.006 0.645 0.677 93.11
7 Type of 0.007 0.689 0.700 92.96
8 Kerne?l: 0.008 0.723 0.734 91.88
g  Normalized 0.009 0.789  0.798 91.36
Poly Kernel
10 0.010 0.801 0.712 90.22

Source: Authors.

Table 7.
Levels Threshold and Weights for SVM- Bored Piles Productivity Model
weight from nodes input layer to nodes in output layer

F1 F2 F3 F4 F5 F6
0.15 0.25 0.22 0.055 0.055 0.155
Output layer threshold ©;
4.00

Source: Authors.

Y = {4.00+(0.15% F1) +(0.25* F2) +(0.22* F3) + (0.055* Fs) +

(0.055* Fs) +(0.155* Fe)} ©)
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5 Conclusion

This study developed and validated a Support Vector
Machine (SVM)-based predictive model for estimating bored
pile construction productivity in high-rise residential projects
in Iraq. The model demonstrated strong performance in terms
of accuracy and generalizability, outperforming both
Multiple Linear Regression (MLR) and Artificial Neural
Network (ANN) benchmarks. The use of normalized
polynomial kernels within the SVM framework enabled
effective modeling of nonlinear relationships between input
parameters and productivity outcomes.

Broader Significance: Beyond technical performance,
the findings contribute to the advancement of data-driven
planning tools in the construction industry, particularly in
developing regions where such models are underutilized. The
model offers an alternative to intuition-based or empirical
estimation methods, enabling more objective and data-
informed decision-making during the early planning stages
of deep foundation works.

Interpretation of Tables: Tables have played a central
role in validating the performance and interpretability of the
proposed model. Specifically:

a) Table 2: presents a comparative performance summary
between SVM, ANN, and MLR models. The
significantly lower RMSE and higher correlation
coefficient for the SVM model reinforce its superior
generalization capabilities in modeling construction
productivity.

Table 4: showing cross-validation performance across
ten folds, confirms the model’s consistency and
resistance to overfitting across different data subsets.
Table 5: ranks input variables by importance, clearly
demonstrating that factors such as pile diameter,
equipment type, and pile depth carry the greatest
influence. These results align with field practices, where
such parameters directly affect drilling time and
productivity outcomes. These tables provide not only
quantitative support for the model’s performance but
also practical insights for engineers and contractors in
optimizing project planning and resource allocation.
Study Limitations: Despite its contributions, the study
has several limitations that must be acknowledged:

b)

a) The dataset is based on a single large-scale project (Iraq
Gate Residential Complex), which may limit
generalizability.

b) External factors such as weather conditions, labor
productivity variability, and site logistics were not
included due to data constraints.

¢) The scalability of the model to other regions or project

types has not yet been empirically validated.

Practical Implementation: Contractors and project
managers can utilize the model by inputting basic field
parameters such as pile diameter, depth, drilling equipment type,
and crew size into a pre-programmed interface (e.g., spreadsheet-
based tool or mobile app). The model can provide near-instant
productivity estimates, which can inform equipment allocation,
daily scheduling, and risk assessment. For real-time usability,
further integration with site sensors or digital data logs is
recommended as future work.



Alietal/ DYNA, (93)240, pp. 81-88, January - March, 2026.

Future Directions: Subsequent research should aim to:

1) Expand the dataset with projects from different
geographic regions and construction types.

2) Integrate time-series data to allow temporal validation
and progress tracking.

3) Incorporate external factors (e.g., weather, traffic,
supply chain) into the model.

4) Develop a user-friendly software interface for real-time
deployment on construction sites.

By addressing these limitations and exploring these
directions, the model can evolve into a scalable, intelligent
decision-support  tool for improving construction
productivity across diverse infrastructure contexts.
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