

DYNA
http://dyna.medellin.unal.edu.co/

© The authors; licensee Universidad Nacional de Colombia.

DYNA 81 (185), pp. 124-131. June, 2014 Medellín. ISSN 0012-7353 Printed, ISSN 2346-2183 Online

Conceptual framework language – CFL –

Lenguaje de marcos conceptuales – LMC –

Sandro J. Bolaños-Castro a, Rubén González-Crespo b, Victor H. Medina-García c & Julio Barón-Velandia d

a Facultad de Informática, Universidad Distrital Francisco José de Caldas, Colombia. sbolanos@udistrital.edu.co

b Escuela de Ingeniería, Universidad Internacional de La Rioja, España. ruben.gonzalez@unir.net
c Facultad de Informática, Universidad Distrital Francisco José de Caldas, Colombia. vmedina@udistrital.edu.co

d Facultad de Informática, Universidad Distrital Francisco José de Caldas, Colombia. jbaron@udistrital.edu.co

Received: February 8th, 2013. Received in revised form: February 27th, 2014. Accepted: April 22th, 2014

Abstract

This paper presents the Conceptual Frameworks Language –CFL–, it aims to bridge the gap between programming languages and design

languages, using the mechanism of schematizing, this approach changes the complexity of the syntax of programming languages and

complexity of the diagramming for ease of assembly and nesting of frames or conceptual blocks like Lego, we present the possibilities

offered by CFL as a Language nearer to solving problems using computational and scientific vocabulary, which is transparent to the user,

we outline comparisons and integrations with languages like java and UML, we propose metrics and develop the platform in java

language.

Keywords: Language, scheme, metrics, contextualization, abstraction, vocabulary, syntax, semantics

Resumen

Este artículo presenta el Lenguaje de Marcos Conceptuales –LMC–, su objetivo es cerrar la brecha entre los lenguajes de programación

y los lenguajes de diseño, empleando el mecanismo de la esquematización, este propone cambiar la complejidad de la sintaxis de los

lenguajes de programación y la complejidad de la diagramación por la facilidad de ensamble y anidamiento de marcos o bloques

conceptuales a manera de Lego, se presenta las posibilidades que brinda LMC como un leguaje más próximo a la resolución de

problemas empleando un vocabulario computacional y científico, que se hace transparente al usuario, se plantean comparaciones e

integraciones con lenguajes como java y UML, se proponen métricas y se hace una implementación de la plataforma en lenguaje java.

Palabras clave: Lenguaje, esquema, métricas, contextualización, abstracción, vocabulario, sintaxis y semántica.

1. Introduction

It is necessary to propose computer languages

approaching human languages, making some unintuitive

computational concepts transparent. Despite the diversity of

programming and modeling languages, they care little about

issues like:

 Provide a simple and intuitive representation.

 Talk a less computational language.

 Facilitate Direct Model Execution tracing.

The language should be the vehicle of abstraction; it

should be simple, robust and complete to be more robust.

This is achieved by hiding its complexity levels, using

layers. The first layer covers a formal level which supports

and extends mechanisms already developed and recognized

such as encapsulation, security, generality, reuse, among

others [1]. The second layer covers a particular level ease of

use, focused on approaching the model and reality, taking in

account the human thinking model.

To address these concerns, the paper presents the CFL

language, its grammar, the comparison between schema and

diagram, principles and metrics, closing with the

implementation of the platform, case studies, and

conclusions.

2. Conceptual Framework Language –CFL–

CFL, is a modeling language focused on abstraction and

contextualization of knowledge. See Fig. 1.

When communicating an idea, this language can be used

in both ways, spoken or written. Treasures such as the

Rosetta Stone [2], unveiled a past steeped in pictograms;

rock art paintings tell about the lives of our ancestors, in

images that constitute a simple but expressive language.

Figure 1: Contextualization and Abstraction

Bolaños-Castro et al / DYNA 81 (185), pp. 124-131. June, 2014.

 125

The language can range from an informal expression,

captured in an image, to the rigorous expression represented

in a word or syntactic structure. The CFL proposal is to

exploit the power of formal language with the power of

symbolic schematization, for that, it proposes two concepts,

abstraction and contextualization. The abstraction

mechanism extracts the essential characteristics, using

cognitive models like: paradigms, values, principles and

behaviors; abstraction uses introspection as strategy which

defines the search mechanisms stock of knowledge in the

same individual.. Moreover, contextualization uses an

observation scheme to find the answers in external

phenomena. The strategy used is immersion, which in

contrast to introspection, seeks to reason about the

phenomena through the use of external structures.

Contextualization and abstraction are the basis for CFL

construction, in which individual and collective knowledge are

contrasted. Paradigms as “structured”, “object-oriented”,

including “declarative models” are based on abstraction [3],

losing the potential of immersion, useful in solution modeling.

3. Grammar in –CFL–

Next, the concepts of grammar, derivation (production)

and language are defined, all primordial for CFL

formalization.

A phrase structure grammar 𝑮 = (𝑽, 𝑻, 𝑺, 𝑷) consists of

a vocabulary 𝑽∗, a subset 𝑻 of 𝑽∗ formed by the terminal

elements, and a initial symbol 𝑺 of 𝑽–𝑻 and a set 𝑷 of

productions. The 𝑽–𝑻 set is denoted by 𝑵. The elements of

𝑵 are called nonterminal elements [4].

Furthermore, a vocabulary 𝑽 (or alphabet) is a finite and

non empty set, whose elements are called symbols, a word

in 𝑽 is a finite string of 𝑽 elements. The empty word or

empty string denoted by 𝝀 is the string without symbols.

The set of all words about 𝑽 is denoted by 𝑽∗. A language

in 𝑽 is a subset of 𝑽∗ [4].

Another important definition is the derivation: 𝑮 =
(𝑽, 𝑻, 𝑺, 𝑷) is a grammar with sentence structure. Also

𝒘𝟎 = 𝒍𝒛𝟎𝒓 (this is a concatenation 𝒍𝒛𝟎 𝐲 𝒓) and 𝒘𝟏 =
 𝒍𝒛𝟏𝒓 about 𝑽. If 𝒛𝟎 → 𝒛𝟏 is a production of 𝑮, we say that

𝒘𝟏, is directly derived from 𝒘𝟎, and we write 𝒘𝟎 ⇒ 𝒘𝟏. If

𝒘𝟎, 𝒘𝟏, …𝒘𝒏 are strings about 𝑽 such that 𝒘𝟎 ⇒ 𝒘𝟏,
 𝒘𝟏 ⇒ 𝒘𝟐 … ,𝒘𝒏−𝟏 ⇒ 𝒘𝒏 we say that 𝒘𝒏 is derivable or is

derived from 𝒘𝟎 and will be denoted 𝒘𝟎

∗
⇒ 𝒘𝒏. The

sequence of steps used to obtain 𝒘𝒏 from 𝒘𝟎 is called

derivation [4].

Finally, the language generated by 𝑮 (or the 𝑮 language)

must be defined, denoted by 𝑳(𝑮), as the set of all terminal

strings derived from initial state 𝑺, Equation 1. [4].

𝑳(𝑮) = 𝒘 ∈ 𝑻∗ | 𝒔
∗
⇒ 𝒘

(1)

3.1. Productions of CFL in BNF

The Backus Naur form was initially created in order to

define the syntactic structure of algol60 programming

language [5]. BNF defines the syntactic structure of the

language. CFL has the following syntactic structures:

<conceptual

framework>

::= <frame><concept>

<frame> ::= <closed border> |

<open border> |

< semi closed border >

<concept> ::= <criteria> |′<archetype>′

<criteria> |′< archetype >′

<criteria><separator><body>

<criteria> ::= <definition>|<inquiry>|

<proof>|<elaboration>

<definition> ::= <variable>|<statement >|

<free text>

<inquiry> ::= <logic utilization><?>

<proof> ::= <verification action><!>

<elaboration> ::= <user extension>

<archetype> ::= λ|<property><name>|

<property><name><:>

<category>|<property><name>:

<category>(<interaction>)

 <separator> ::= <sequential>|<parallel>

 <body> ::= λ|<conceptual framework>|

<body>< conceptual

framework>

4. CFL as a Languague

Figure 2: CFL as a Languague

CFL, Fig. 2, is formed by: a vocabulary or conceptual

element, syntax or conceptual block and semantics or

conceptual method.

4.1. Vocabulary of CFL

CFL is constituted by both frame and concept

Frame: is the frontier that separates a specific concept of

the universe of discourse properly contextualized according

to the domain proposed. See Fig. 3.

Bolaños-Castro et al / DYNA 81 (185), pp. 124-131. June, 2014.

 126

Figure 3: Frame

Concept: Set the domain of knowledge to be extracted

from the universe of discourse. A concept consists of an

archetype, criterion, a separator and a body. See Fig. 4.

Figure 4: Concept

With the definitions of frame and concept it is entirely

possible to design the scheme, see Fig. 5.

Figure 5: Concept Frame

Archetype: The archetype sets properties, identification,

category and concept interaction with the universe of

discourse. See Fig. 6.

Figure 6: Archetype

The properties allow security features, storage and ways to

change the concept to be set. A concept can be anonymous or

have a name in which case allows a peculiarity or “instance” to

be established. The category defines whether the concept is in

the domain of the object language or the domain of the meta-

language; with the interaction, archetype allows relationships,

connections and links to be explicitly established.

Criteria: Set the concept, establishing its definition,

interaction, and possible ways of inquiry, testing, and

processing.

Separator: defines the boundary between criterion and

body, the body itself also separates a conceptual framework

from another. The separator marks the criterion and also

establishes how the body should be interpreted. There are

two interpretations: mode and type. Mode determines

whether the interpretation is parallel or sequential. Type

determines whether the interpretation is direct or recursive.

Body: is the set of conceptual frameworks, which, at the

same time is contained in a conceptual framework.

4.2. Sintax of CFL

Figure 7: CFL Syntax

The syntax of CFL, Fig. 7, is based on the conceptual

block, this consists of: definitions, inquiries, interactions,

proofs and elaborations.

Definition: as in any programming language, there is a

concept block in CFL in which three kinds of definitions

can be made: variables, statement, and annotations. A

variable definition is used to form the containers of

information; a statement definition is used to propose

invocations, returns and overall sentences in which the

variables are used; finally, an annotation definition is used

for documentation.

Interaction: with interactions CFL allows the user to

manage input and output through which it is possible to

communicate desired conditions for a program’s execution.

Inquiry: CFL presents a model based on the formulation

of questions about the state that variables can take, this kind

of inquiry can be direct or recursive. An inquiry is direct

when driving to take one path or another once, while the

inquiry takes a recursive way or another a number of times.

Proof: proof allows scenarios to be defined where results

may be different for the same conditions, due to

uncontrolled changes that variables can take in a given time.

This concept can be compiled as experimentation, contrast,

demonstration, argumentation, etc.

Elaboration: elaboration allows extensions to be defined

to extend the language with premises, operations and

conclusions.

4.2 Semantics of CFL

The configuration of the conceptual frameworks

consistently, constitutes the semantics of CFL. See Fig. 8.

With the structure of conceptual frameworks it is possible

create semantics, which representing the solution of a

problem. A conceptual method forms a module [6], which,

depending on the information exchange can be a “process”

if it receives and produces information to the context, a

“procedure” if it receives and produces information for the

Bolaños-Castro et al / DYNA 81 (185), pp. 124-131. June, 2014.

 127

Figure 8: CFL Semantics

context or a “routine” if it does not receive or produce

information for the context.

5. Schematic vs Diagram

CFL produces schemes, unlike diagrams, schematic left

implicit relationships through the order and nesting of

frames. Composition relations are simulated by the

horizontal sequencing, inheritance and realization relations

are assembled sequenced vertically between conceptual

methods. If the method has a higher category it is located

above, if has a subclass is located below. In the horizontal

direction, the client is located on the left while the provider

on the right. In the vertical a white box is used, while in the

horizontal a black box is used [7]. See Fig. 9.

Figure 9: Implicit relations for a block

5.1. Color codes in CFL

In schemes, a color code is used, which enhances its

meaning. Green was assigned to Definition, which

symbolizes confidence, tranquility and development [8].

See Fig. 10.

Figure 10: Definition color (Green)

For Interaction orange was assigned, which symbolizes

the striking, socialization and transformation [8]. See Fig.

11.

For Inquiry blue was assigned, it symbolizes science,

idealism and functionalism [8]. See Fig. 12.

Figure 11: Interaction Color (Orange)

Figure 12: Inquiry Color (Blue)

For Elaboration red was proposed, which symbolizes

prohibited, danger and dynamism [8]. See Fig. 13.

Figure 13: Elaboration color (Red)

For proof yellow was proposed, which symbolizes

enlightenment, warning and creativity [8]. See Fig. 14.

Figure 14: Proof color (Yellow)

6. CFL vs Other Languages

CFL allows for expression by similar classes as do

object-oriented models, such a class in UML [9] and Java

can be represented as Fig. 15.

Figure 15: Class in UML and Java

CFL has the schematic, Fig. 16.

In the representation language, according to the

productions in CFL:

Figure 16: Category in CFL

Bolaños-Castro et al / DYNA 81 (185), pp. 124-131. June, 2014.

 128

The schemes aim is to hide the formal layer, which is

useful for language development and transparent to the user.

7. CFL Principles

Figure 17: CFL Principles

CFL is simple, robust and complete, Fig. 17, these three

principles underlie the language. Simplicity [10], reduces

the work, thanks to a set of abstractions with the highest

level of those used in a programming language, because

only blocks are used, configured according to the desired

model. Also, the organization of the blocks is automatic,

reducing the learning curve, there is a marked difference

with programming or modeling languages.

The CFL scheme synthesizes text and diagram; in both

cases, the programming language and design, the complexity

is reduced 11]. CFL is strong in dealing with concepts which

allow the verification of algorithms directly and transparently

through using the tracing of their errors, including validation

of inputs and outputs. On the other hand, it is very complete,

allowing documentation to be included using a native

mechanism and providing direct metrics. CFL is formal due to

the sound formation of its structure, which contains

vocabulary and well defined production rules.

8. CFL Metrics

The metrics in software allows development control. In

CFL two metrics are proposed, uncertainty balance and

algorithm density [12].

8.1. Uncertainty balance

Software development is a creative exercise, which

begins with a problem domain with great uncertainty to

reach a solution domain with high certainty. The exercise of

Figure 18: Balance of uncertainty

developing software is to eliminate uncertainty gradually to

approach the certainty in which the solution is given.

 This metric lists and shows visually inquiry frames

versus definition frames, in order to assess the degree of

certainty that will be achieved in developing a solution, and

constitutes an important source of choice for the design of a

conceptual method. This metric produces three scenarios,

see Fig. 18.

In the first type of balance there are more questions than

answers, producing high uncertainty, and this can cause

difficulty in the developments. The type of balance where

questions match responses is the type “balanced”, this is

adequate to address the uncertainty, as each question has its

solution. The third type of balance is more important in

responses, usually due to responses that are part of

protocols. The trend in software is the “balanced” type,

because it has a one to one correspondence between the

problem and the solution.

8.2. Algorithmic density

This type of metric is similar in information to the

uncertainty balance. The difference is just the graphic

representation, which seeks to represent inquiries and

definitions as areas, which should have a tendency to follow

a Gaussian bell, see Fig. 19.

Figure 19: Algorithmic density

9. CFL Platform

The Coloso platform for CFL is an application

developed in the Java language, using the SWT framework

[13]. See Fig. 20.

The framework is managed with dialogues that

summarize the semantic possibilities of CFL, this first layer

of interaction with the user sets the first filter of CFL

expressions. The second filter is set once the conceptual

method is run in the background which launches an

application on the fly that is loaded and compiled in Java,

the result is uploaded and presented in the first layer without

the user having to know the details of the base language.

Bolaños-Castro et al / DYNA 81 (185), pp. 124-131. June, 2014.

 129

Figure 20: Coloso Software.

Figure 21: conceptual method.

Conceptual method, Figure 21, can manage inputs and

outputs, pre and post conditions, also, all conceptual

framework incorporates a toolbar in which the variables that

should be used when using a framework are found, also

suggested values, operators, groupers and native language

operations are presented.

Besides being executed, a framework can be debugged,

validated, verified, and measured, the outputs can be

evidenced in each of the views, dedicated for every

approach.

Debugging allows tracking step by step a conceptual

method, presenting the state of the variables defined in the

framework. Verification and validation of conceptual

methods may be evident in their view, the verification is

displayed as a tree that maps errors, faults and defects. In

the validation perspective a tabulated Hoare triplet [14-15]

highlights the corresponding evaluation method. CFL

presents a view of metrics in which all the framesets used

are listed and allows, along with the view of density

algorithms and algorithmic balance, one to see the trend of

the conceptual method, supported by recommendations

based on cyclomatic complexity [16], and a magic number 7

± 2 [17].

CFL also provides ease of integration with languages

like UML, this bridge closes the gap between the class

diagram and the programming language, specifically this

facility allows the generation of an operation code

Figure 22: UML/CFL/Java integration

belonging to a class and the algorithm solved in a

conceptual method and that is associated with that

operation. See Fig. 22.

10. Case Studies

The following describes the tests performed to validate

the principles of simplicity, robustness and completeness of

CFL.

To perform the test of simplicity, we measured the time

spent in developing a solution to a given problem, for that,

the effort was compared, measured in time needed to solve

the set of algorithms that conform a course of programming

and algorithms. The test included 20 algorithms and was

applied to teachers who teach the area. The course is

normally conducted with tools like DFD [18], PSeInt [19]

or programming languages like Java, the sample used

includes problems like: traversals, exchanges, queries and

sorts. Five problems were formulated for each subject and

divided into two groups each with two teachers, one group

chose the tool that they had been using before, “DFD”, this

group was called “alternate group”, the second group chose

CFL, this group was called “CFL group”. Table 1 tabulates

the time used in minutes, together with the obtained average

μ and standard deviation σ, according to equations 2 and 3.

 𝝁 =
𝟏

𝒏
∑𝒂𝒊 =

𝒂𝟏 + 𝒂𝟐 + ⋯+ 𝒂𝒏

𝒏

𝒏

𝒊=𝟏

 (2)

 𝝈 = √
∑ (𝑿𝒊 − 𝝁)𝟐𝒏

𝒊=𝟏

𝒏
 (𝟑)

The average development time of the algorithms in the

CFL group was much lower than the alternate group. The

dispersion of the CFL sample was low while the alternate

group was high, the fundamental reason was reflected, in

particular, in a sorting algorithm: the problem of Hanoi

Bolaños-Castro et al / DYNA 81 (185), pp. 124-131. June, 2014.

 130

Table 1

Simplicity test

 Group

Topic Alternate CFL

Exchanges 22 20

Traversal 30 23

Queries 40 27

Sorts 80 30

µ 43 25

σ 22.29 3.80

Table 2

Robustness test

 Group

Topic Alternate CFL

Exchanges 5 5

Traversal 3 5

Queries 2 5

Sorts 1 5

µ 2.75 5

σ 1.47 0

Towers [20], this problem was easily solved by the CFL

group, but the alternate group was limited in DFD to solve

iteratively, this greatly increased the solution time.

The next test sought to establish the robustness, at this

point became the possibility of using a programming

language if desired. The test consisted of breaking

algorithms with invalid entries in a total time of one hour.

The table shows the number of algorithms tested

(successfully) by category.

CFL provide great ease of use thanks to its direct and

transparent management of assertion concept.

For the alternate group, which took the option of

changing to Java, it became a time consuming task because

the algorithms had to be migrated, as they couldn’t use the

assert concept and reduce the task just to do comparisons. In

this test, the difference between the CFL group and the

alternate group was emphasized.

The third test was conducted to test completeness

conditions, for this, each group was requested to explain the

model or code that solved each problem, using some metric

about the algorithms. The time for this activity was one

hour. Table 3 presents the number of documented

algorithms.

All algorithms for both groups were documented, but the

documentation of alternate group was made apart, this

decision was taken because two different tools were used,

so, two separate documents should be created, otherwise, it

would be necessary to make the documentation by using a

third tool. Also, this documentation was not enriched with

metric criteria. On the other hand the CFL group

documentation was integrated into the program, based on

the proposed metric for the language.

The above tests give a favorable starting point to CFL,

however, for future work we propose to perform more

extensive testing.

Table 3

Completeness test

 Group

Topic Alternate CFL

Exchanges 5 5

Traversal 5 5

Queries 5 5

Sorts 5 5

µ 5 5

σ 0 0

11. Conclusions

Alpha testing performed on CFL, shows how the

language facilitates the resolution of computational

problems, due to the abstraction degree that it provides,

hiding the complexity associated with knowledge of

semantics and syntax of a computer language.

The schemes used by CFL, as a graphic representation,

eliminates the complexity introduced by the relationships of

a conventional graphical model, instead, it uses assembly

going to the mental model of sequence and nesting

assembly sequence model and nesting.

CFL emphasizes problem solving by using a scientific

vocabulary, in which the predominant characteristics are the

inquiry (observation), the definition of variables, the

definition of tests and experiments, and elaborations;

computational features characteristic of programming

languages, are in the background.

References

[1] Budd, T. Programación Orientada a Objetos. Addison-Wesley, 1994.

[2] Budge, E. A. Wallis E., Sir. Rosetta stone. London: British Museum.
1857-1934.

[3] Tucker, A., Noonan, R. Programming Languages Principles and

Paradigms. McGraw Hill, 2002.

[4] Rosen, K. H. Matemática Discreta. Mc Graw Hill, 2004.

[5] Teufel, B., Schimidt, S. T. Compiladores conceptos fundamentales.

Addison-Wesley, 1995.

[6] Meyer, B. Construcción de Software Orientado a Objetos. Prentice

Hall, 1999.

[7] Gamma, E., Helm, R., Johnson, R., & Vlisides, J. Design Patterns.
Addison-Wesley, 1995.

[8] Heller, E. Psicología del Color. Editorial Gustavo Gili, 2007.

[9] Booch, G., Rumbaugh, J., & Jacobson, I. The Unified Modeling
Language User Guide. Addison-Wesley, 2005.

[10] Maeda, J. Las Leyes de la Simplicidad. Gedisa, S.A., 2005.

[11] Morin, E. Introducción al Pensamiento Complejo. Gedisa, S.A., 2005.

[12] Bolaños, S., Medina, V., & Aguilar, J. Principios para la

Fromalización de la Ingeniería de Software. Ingeniería, pp. 31-37, 2009.

[13] Hatton, R. Swt: A Developer's Notebook. O'Reilly & Associates,
2005.

[14] Hoare, C.A.R. An Axiomatic Basis for Computer Programming.

Communication of the ACM. ACM. Vol 12. No 10, 1969.

Bolaños-Castro et al / DYNA 81 (185), pp. 124-131. June, 2014.

 131

[15] Hoare, C.A.R. Viewpoint. Retrospective: an axiomatic basis for

computer programming. Communication of the ACM. ACM. Vol 52. No
10, 2009.

[16] Mccabe, T. A Complexity Measure. IEEE Transactions on Software

Engineering. IEEE Journal & Magazines Vol SE-2 No 4. Pp 333-349,
1976.

[17] Miller, G. A. The magical number seven, plus or minus two: Some

limits on our capacity for processing information, Psychological Review.
Vol. 63. No 2. pp. 81–97, 1956.

[18] Cárdenas, F. Daza, E. Castillo, N. 1996. DFD. Online:

http://freedfd.googlecode.com/files/FreeDFD-1.1.zip, 2012

[19] PSeInt. Online: http://pseint.sourceforge.net/, 2012

[20] Pickover, C. The Math Book. Sterling Publishing Co. Inc., 2011.

S. J. Bolaños Castro, PhD from the Pontifical University of Salamanca in
Madrid, Spain and PhD Prize awarded by the same university; graduated as

a systems engineer and teleinformatics magister in the University Francisco
José de Caldas in Bogotá, Colombia. He is a member of the international

research group GICOGE; his researcher interest is about Software

Engineering. He is teacher about Software Engineering in several programs
in the university. He is also director of curriculum projects of

undergraduate and graduate, currently heads the graduate in Software

Engineering and IT projects at the University Francisco José de Caldas
District.

R. González Crespo, is the deputy director of the School of Engineering at

the Universidad Internacional de La Rioja. Professor of Project
Management and Engineering of Web sites. He is honorary professor and

guest of various institutions such as the University of Oviedo and

University Francisco José de Caldas. Previously, he worked as Manager
and Director of Graduate Chair in the School of Engineering and

Architecture at the Pontifical University of Salamanca for over 10 years.

He has participated in numerous projects I + D + I such as SEACW,
GMOSS, eInkPlusPlusy among others. He advises a number of public and

private, national and international institutions. His research and scientific

production focuses on accessibility, web engineering, mobile technologies
and project management. He has published more than 80 works in indexed

research journals, books, book chapters and conferences.

V. H. Medina García, PhD in Computer Engineering from the Pontifical

University of Salamanca, Master in Computer Science from the
Polytechnic University of Madrid, Specialist in Marketing from the

University of Rosario, Systems Engineer from the District University

Francisco José de Caldas; Director of the PhD. program in Engineering

from the District University Francisco José de Caldas District in Bogota

Colombia. Writer, speaker and teacher recognized internationally; he has

published several books and conducted various academic and
administrative units. He is academic and principal investigator of the

research group GICOGE, category A.1 in COLCIENCIAS.

J. Barón Velandia, MsC. In teleinformatics, systems engineer, and

software engineering teacher at District University "Francisco Jose de

Caldas" in Bogotá, Colombia; PhD student at the Pontifical University of
Salamanca in Madrid, Spain. INTECSE investigation group's founder and

director. Former REDIS director and System Engineering undergraduate's

coordinator at District University.

