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Abstract 

This paper presents the Conceptual Frameworks Language –CFL–, it aims to bridge the gap between programming languages and design 

languages, using the mechanism of schematizing, this approach  changes the complexity of the syntax of programming languages and 

complexity of the diagramming for ease of assembly and nesting of frames or conceptual blocks like Lego, we present the possibilities 

offered by CFL as a Language nearer to solving problems using computational and scientific vocabulary, which is transparent to the user, 

we outline comparisons and integrations with languages like java and UML, we propose metrics and develop the platform in java 

language. 
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Resumen 

Este  artículo presenta el Lenguaje de Marcos Conceptuales  –LMC–,  su objetivo es cerrar la brecha entre los lenguajes de programación 

y los lenguajes de diseño, empleando el mecanismo de la esquematización,  este propone cambiar la complejidad de la sintaxis de los 

lenguajes de programación y la complejidad de la diagramación por la facilidad de ensamble y anidamiento de marcos o bloques 

conceptuales a manera de Lego, se presenta las posibilidades que brinda LMC como un leguaje más próximo  a la resolución de 

problemas empleando un vocabulario computacional y científico, que se hace transparente al usuario, se plantean comparaciones e 

integraciones con lenguajes como java y UML,  se proponen métricas y se hace una implementación de la plataforma en lenguaje java. 

 

Palabras clave: Lenguaje, esquema, métricas, contextualización, abstracción, vocabulario, sintaxis y semántica. 

 

1.  Introduction 

 

It is necessary to propose computer languages 

approaching human languages, making some unintuitive 

computational concepts transparent. Despite the diversity of 

programming and modeling languages, they care little about 

issues like: 

 

 Provide a simple and intuitive representation. 

 Talk a less computational language. 

 Facilitate Direct Model Execution tracing.  

 

The language should be the vehicle of abstraction; it 

should be simple, robust and complete to be more robust. 

This is achieved by hiding its complexity levels, using 

layers. The first layer covers a formal level which supports 

and extends mechanisms already developed and recognized 

such as encapsulation, security, generality, reuse, among 

others [1]. The second layer covers a particular level ease of 

use, focused on approaching the model and reality, taking in 

account the human thinking model. 

To address these concerns, the paper presents the CFL 

language, its grammar, the comparison between schema and 

diagram, principles and metrics, closing with the 

implementation of the platform, case studies, and 

conclusions. 

 

2.  Conceptual Framework Language –CFL–  

 

CFL, is a modeling language focused on abstraction and 

contextualization of knowledge. See Fig. 1. 

When communicating an idea, this language can be used 

in both ways, spoken or written. Treasures such as the 

Rosetta Stone [2], unveiled a past steeped in pictograms; 

rock art paintings tell about the lives of our ancestors, in 

images that constitute a simple but expressive language. 

 

 
Figure 1: Contextualization and Abstraction 
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The language can range from an informal expression, 

captured in an image, to the rigorous expression represented 

in a word or syntactic structure. The CFL proposal is to 

exploit the power of formal language with the power of 

symbolic schematization, for that, it proposes two concepts, 

abstraction and contextualization. The abstraction 

mechanism extracts the essential characteristics, using 

cognitive models like: paradigms, values, principles and 

behaviors; abstraction uses introspection as strategy which 

defines the search mechanisms stock of knowledge in the 

same individual.. Moreover, contextualization uses an 

observation scheme to find the answers in external 

phenomena. The strategy used is immersion, which in 

contrast to introspection, seeks to reason about the 

phenomena through the use of external structures. 

Contextualization and abstraction are the basis for CFL 

construction, in which individual and collective knowledge are 

contrasted. Paradigms as “structured”, “object-oriented”, 

including “declarative models” are based on abstraction [3], 

losing the potential of immersion, useful in solution modeling. 

 
3.  Grammar in –CFL–  

 

Next, the concepts of grammar, derivation (production) 

and language are defined, all primordial for CFL 

formalization. 

A phrase structure grammar 𝑮 = (𝑽, 𝑻, 𝑺, 𝑷) consists of 

a vocabulary 𝑽∗, a subset 𝑻 of 𝑽∗ formed by the terminal 

elements, and a initial symbol 𝑺 of 𝑽–𝑻 and a set 𝑷 of 

productions. The 𝑽–𝑻 set is denoted by 𝑵. The elements of 

𝑵 are called nonterminal elements [4]. 

Furthermore, a vocabulary 𝑽 (or alphabet) is a finite and 

non empty set, whose elements are called symbols, a word 

in 𝑽 is a finite string of 𝑽 elements. The empty word or 

empty string denoted by 𝝀 is the string without symbols. 

The set of all words about 𝑽 is denoted by 𝑽∗. A language 

in 𝑽 is a subset of 𝑽∗ [4]. 

Another important definition is the derivation: 𝑮 =
(𝑽, 𝑻, 𝑺, 𝑷) is a grammar with sentence structure. Also 

𝒘𝟎  =  𝒍𝒛𝟎𝒓 (this is a concatenation 𝒍𝒛𝟎  𝐲  𝒓) and 𝒘𝟏  =
 𝒍𝒛𝟏𝒓 about 𝑽. If 𝒛𝟎  →  𝒛𝟏 is a production of 𝑮, we say that 

𝒘𝟏, is directly derived from 𝒘𝟎, and we write  𝒘𝟎 ⇒ 𝒘𝟏. If 

𝒘𝟎, 𝒘𝟏, …𝒘𝒏  are strings about 𝑽 such that 𝒘𝟎 ⇒ 𝒘𝟏,
 𝒘𝟏 ⇒ 𝒘𝟐 … ,𝒘𝒏−𝟏 ⇒ 𝒘𝒏 we say that 𝒘𝒏 is derivable or is 

derived from 𝒘𝟎 and will be denoted 𝒘𝟎

∗
⇒ 𝒘𝒏. The 

sequence of steps used to obtain 𝒘𝒏 from 𝒘𝟎 is called 

derivation [4]. 

Finally, the language generated by 𝑮 (or the 𝑮 language) 

must be defined, denoted by 𝑳(𝑮), as the set of all terminal 

strings derived from initial state 𝑺, Equation 1. [4]. 

 

𝑳(𝑮) =  𝒘 ∈  𝑻∗ | 𝒔 
∗
⇒  𝒘  

 
(1) 

 

3.1.  Productions of  CFL in BNF 

 

The Backus Naur form was initially created in order to 

define the syntactic structure of algol60 programming 

language [5]. BNF defines the syntactic structure of the 

language. CFL has the following syntactic structures: 

<conceptual 

framework> 

::= <frame><concept> 

<frame> ::= <closed border> |  

<open border> | 

< semi closed border > 

<concept> ::= <criteria> |′<archetype>′ 

<criteria> |′< archetype >′ 

<criteria><separator><body> 

<criteria> ::= <definition>|<inquiry>|  

<proof>|<elaboration> 

<definition> ::= <variable>|<statement >|  

<free text> 

<inquiry> ::= <logic utilization><?> 

<proof> ::= <verification action><!> 

<elaboration> ::= <user extension> 

<archetype> ::= λ|<property><name>|  

<property><name><:> 

<category>|<property><name>: 

<category>(<interaction>) 

 <separator>    ::= <sequential>|<parallel> 

 <body>    ::= λ|<conceptual framework>|   

<body>< conceptual 

framework> 

 

4.  CFL as a Languague 

 

 

Figure 2: CFL as a Languague 

 

CFL, Fig. 2, is formed by: a vocabulary or conceptual 

element, syntax or conceptual block and semantics or 

conceptual method. 

 

4.1.  Vocabulary of CFL 

 

CFL is constituted by both frame and concept  

 

Frame: is the frontier that separates a specific concept of 

the universe of discourse properly contextualized according 

to the domain proposed. See Fig. 3. 
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Figure 3: Frame 

 

Concept: Set the domain of knowledge to be extracted 

from the universe of discourse. A concept consists of an 

archetype, criterion, a separator and a body. See Fig. 4. 

 

 
Figure 4: Concept 

 

With the definitions of frame and concept it is entirely 

possible to design the scheme, see Fig. 5. 

 

 
Figure 5: Concept Frame 

 

Archetype: The archetype sets properties, identification, 

category and concept interaction with the universe of 

discourse. See Fig. 6. 

 

 
Figure 6: Archetype 

 

The properties allow security features, storage and ways to 

change the concept to be set. A concept can be anonymous or 

have a name in which case allows a peculiarity or “instance” to 

be established. The category defines whether the concept is in 

the domain of the object language or the domain of the meta-

language; with the interaction, archetype allows relationships, 

connections and links to be explicitly established. 

Criteria: Set the concept, establishing its definition, 

interaction, and possible ways of inquiry, testing, and 

processing. 

Separator: defines the boundary between criterion and 

body, the body itself also separates a conceptual framework 

from another. The separator marks the criterion and also 

establishes how the body should be interpreted. There are 

two interpretations:  mode and type. Mode determines 

whether the interpretation is parallel or sequential. Type 

determines whether the interpretation is direct or recursive. 

Body: is the set of conceptual frameworks, which, at the 

same time is contained in a conceptual framework. 

4.2.  Sintax of CFL 

 

 
Figure 7: CFL Syntax 

 

The syntax of CFL, Fig. 7, is based on the conceptual 

block, this consists of: definitions, inquiries, interactions, 

proofs and elaborations. 

Definition: as in any programming language, there is a 

concept block in CFL in which three kinds of definitions 

can be made: variables, statement, and annotations. A 

variable definition is used to form the containers of 

information; a statement definition is used to propose 

invocations, returns and overall sentences in which the 

variables are used; finally, an annotation definition is used 

for documentation. 

Interaction: with interactions CFL allows the user to 

manage input and output through which it is possible to 

communicate desired conditions for a program’s execution. 

Inquiry: CFL presents a model based on the formulation 

of questions about the state that variables can take, this kind 

of inquiry can be direct or recursive. An inquiry is direct 

when driving to take one path or another once, while the 

inquiry takes a recursive way or another a number of times. 

Proof: proof allows scenarios to be defined where results 

may be different for the same conditions, due to 

uncontrolled changes that variables can take in a given time. 

This concept can be compiled as experimentation, contrast, 

demonstration, argumentation, etc. 

Elaboration: elaboration allows extensions to be defined 

to extend the language with premises, operations and 

conclusions. 

 
4.2  Semantics of CFL 

 

The configuration of the conceptual frameworks 

consistently, constitutes the semantics of CFL. See Fig. 8. 

With the structure of conceptual frameworks it is possible 

create semantics, which representing the solution of a 

problem. A conceptual method forms a module [6], which, 

depending on the information exchange can be a “process” 

if it receives and produces information to the context, a 

“procedure” if it receives and produces information for the  
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Figure 8: CFL Semantics 

 

context or a “routine” if it does not receive or produce 

information for the context. 

 

5.  Schematic vs Diagram  

 

CFL produces schemes, unlike diagrams, schematic left 

implicit relationships through the order and nesting of 

frames. Composition relations are simulated by the 

horizontal sequencing, inheritance and realization relations 

are assembled sequenced vertically between conceptual 

methods. If the method has a higher category it is located 

above, if has a subclass is located below. In the horizontal 

direction, the client is located on the left while the provider 

on the right. In the vertical a white box is used, while in the 

horizontal a black box is used [7]. See Fig. 9.  

 

 
Figure 9: Implicit relations for a block 

 

5.1.  Color codes in CFL  

 

In schemes, a color code is used, which enhances its 

meaning. Green was assigned to Definition, which 

symbolizes confidence, tranquility and development [8]. 

See Fig. 10. 

 

 
Figure 10: Definition color (Green) 

 

For Interaction orange was assigned, which symbolizes 

the striking, socialization and transformation [8]. See Fig. 

11. 

For Inquiry blue was assigned, it symbolizes science, 

idealism and functionalism [8]. See Fig. 12. 

 

 
Figure 11:  Interaction Color (Orange) 

 

 

 
Figure 12: Inquiry Color  (Blue) 

 

For Elaboration red was proposed, which symbolizes 

prohibited, danger and dynamism [8]. See Fig. 13. 

 

 
Figure 13: Elaboration color (Red) 

 

For proof yellow was proposed, which symbolizes 

enlightenment, warning and creativity [8]. See Fig. 14. 

 

 
Figure 14: Proof color (Yellow) 

 

6.  CFL vs Other Languages  

 

CFL allows for expression by similar classes as do 

object-oriented models, such a class in UML [9] and Java 

can be represented as Fig. 15. 

 

 

Figure 15: Class in UML and Java 

 
CFL has the schematic, Fig. 16.  

In the representation language, according to the 

productions in CFL: 

 
 

 
Figure 16: Category in CFL 



Bolaños-Castro et al / DYNA 81 (185), pp. 124-131. June, 2014. 

 128 

 
 

The schemes aim is to hide the formal layer, which is 

useful for language development and transparent to the user. 

 

7.  CFL Principles 

 

 

Figure 17: CFL Principles 

 

CFL is simple, robust and complete, Fig. 17, these three 

principles underlie the language. Simplicity [10], reduces 

the work, thanks to a set of abstractions with the highest 

level of those used in a programming language, because 

only blocks are used, configured according to the desired 

model. Also, the organization of the blocks is automatic, 

reducing the learning curve, there is a marked difference 

with programming or modeling languages.  

The CFL scheme synthesizes text and diagram; in both 

cases, the programming language and design, the complexity 

is reduced 11]. CFL is strong in dealing with concepts which 

allow the verification of algorithms directly and transparently 

through using the tracing of their errors, including validation 

of inputs and outputs. On the other hand, it is very complete, 

allowing documentation to be included using a native 

mechanism and providing direct metrics. CFL is formal due to 

the sound formation of its structure, which contains 

vocabulary and well defined production rules. 

 

8.  CFL Metrics  

 

The metrics in software allows development control. In 

CFL two metrics are proposed, uncertainty balance and 

algorithm density [12]. 

 

8.1.  Uncertainty balance  

 

Software development is a creative exercise, which 

begins with a problem domain with great uncertainty to 

reach a solution domain with high certainty. The exercise of  

 
Figure 18: Balance of uncertainty 

 

developing software is to eliminate uncertainty gradually to 

approach the certainty in which the solution is given. 

 This metric lists and shows visually inquiry frames 

versus definition frames, in order to assess the degree of 

certainty that will be achieved in developing a solution, and 

constitutes an important source of choice for the design of a 

conceptual method. This metric produces three scenarios, 

see Fig. 18. 

In the first type of balance there are more questions than 

answers, producing high uncertainty, and this can cause 

difficulty in the developments. The type of balance where 

questions match responses is the type “balanced”, this is 

adequate to address the uncertainty, as each question has its 

solution. The third type of balance is more important in 

responses, usually due to responses that are part of 

protocols. The trend in software is the “balanced” type, 

because it has a one to one correspondence between the 

problem and the solution.  

 

8.2.  Algorithmic density  

 

This type of metric is similar in information to the 

uncertainty balance. The difference is just the graphic 

representation, which seeks to represent inquiries and 

definitions as areas, which should have a tendency to follow 

a Gaussian bell, see Fig. 19. 

 

 
Figure 19: Algorithmic density 

 

9.  CFL Platform  

 

The Coloso platform for CFL is an application 

developed in the Java language, using the SWT framework 

[13]. See Fig. 20. 

The framework is managed with dialogues that 

summarize the semantic possibilities of CFL, this first layer 

of interaction with the user sets the first filter of CFL 

expressions. The second filter is set once the conceptual 

method is run in the background which launches an 

application on the fly that is loaded and compiled in Java, 

the result is uploaded and presented in the first layer without 

the user having to know the details of the base language. 
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Figure  20: Coloso Software. 

 

 
Figure  21: conceptual method. 

 

Conceptual method, Figure 21, can manage inputs and 

outputs, pre and post conditions, also, all conceptual 

framework incorporates a toolbar in which the variables that 

should be used when using a framework are found, also 

suggested values, operators, groupers and native language 

operations are presented. 

Besides being executed, a framework can be debugged, 

validated, verified, and measured, the outputs can be 

evidenced in each of the views, dedicated for every 

approach.  

Debugging allows tracking step by step a conceptual 

method, presenting the state of the variables defined in the 

framework. Verification and validation of conceptual 

methods may be evident in their view, the verification is 

displayed as a tree that maps errors, faults and defects. In 

the validation perspective a tabulated Hoare triplet [14-15] 

highlights the corresponding evaluation method. CFL 

presents a view of metrics in which all the framesets used 

are listed and allows, along with the view of density 

algorithms and algorithmic balance, one to see the trend of 

the conceptual method, supported by recommendations 

based on cyclomatic complexity [16], and a magic number 7 

± 2 [17]. 

CFL also provides ease of integration with languages 

like UML, this bridge closes the gap between the class 

diagram and the programming language, specifically this 

facility allows the generation of an operation code  

 
Figure  22: UML/CFL/Java integration 

 

belonging to a class and the algorithm solved in a 

conceptual method and that is associated with that 

operation. See Fig. 22. 

 

10.  Case Studies  

 

The following describes the tests performed to validate 

the principles of simplicity, robustness and completeness of 

CFL. 

 

To perform the test of simplicity, we measured the time 

spent in developing a solution to a given problem, for that, 

the effort was compared, measured in time needed to solve 

the set of algorithms that conform a course of programming 

and algorithms. The test included 20 algorithms and was 

applied to teachers who teach the area. The course is 

normally conducted with tools like DFD [18], PSeInt [19] 

or programming languages like Java, the sample used 

includes problems like: traversals, exchanges, queries and 

sorts. Five problems were formulated for each subject and 

divided into two groups each with two teachers, one group 

chose the tool that they had been using before, “DFD”, this 

group was called “alternate group”, the second group chose 

CFL, this group was called “CFL group”. Table 1 tabulates 

the time used in minutes, together with the obtained average 

μ and standard deviation σ, according to equations 2 and 3.  

 

     𝝁 =
𝟏

𝒏
∑𝒂𝒊 = 

𝒂𝟏 + 𝒂𝟐 + ⋯+ 𝒂𝒏  

𝒏
 

𝒏

𝒊=𝟏

  (2) 

 

                 𝝈 = √
∑ (𝑿𝒊 − 𝝁)𝟐𝒏

𝒊=𝟏

𝒏
                  (𝟑) 

The average development time of the algorithms in the 

CFL group was much lower than the alternate group. The 

dispersion of the CFL sample was low while the alternate 

group was high, the fundamental reason was reflected, in 

particular, in a sorting algorithm: the problem of Hanoi  
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Table 1 

Simplicity test 

  Group 

Topic Alternate CFL 

Exchanges 22 20 

Traversal 30 23 

Queries 40 27 

Sorts 80 30 

µ 43 25 

σ 22.29 3.80 

 
Table 2 

Robustness test 

  Group 

Topic Alternate CFL 

Exchanges 5 5 

Traversal 3 5 

Queries 2 5 

Sorts 1 5 

µ 2.75 5 

σ 1.47 0 

 

Towers [20], this problem was easily solved by the CFL 

group, but the alternate group was limited in DFD to solve 

iteratively, this greatly increased the solution time. 

The next test sought to establish the robustness, at this 

point became the possibility of using a programming 

language if desired. The test consisted of breaking 

algorithms with invalid entries in a total time of one hour. 

The table shows the number of algorithms tested 

(successfully) by category. 

CFL provide great ease of use thanks to its direct and 

transparent management of assertion concept.  

For the alternate group, which took the option of 

changing to Java, it became a time consuming task because 

the algorithms had to be migrated, as they couldn’t use the 

assert concept and reduce the task just to do comparisons. In 

this test, the difference between the CFL group and the 

alternate group was emphasized. 

The third test was conducted to test completeness 

conditions, for this, each group was requested to explain the 

model or code that solved each problem, using some metric 

about the algorithms. The time for this activity was one 

hour. Table 3 presents the number of documented 

algorithms. 

All algorithms for both groups were documented, but the 

documentation of alternate group was made apart, this 

decision was taken because two different tools were used, 

so, two separate documents should be created, otherwise, it 

would be necessary to make the documentation by using a 

third tool. Also, this documentation was not enriched with 

metric criteria. On the other hand the CFL group 

documentation was integrated into the program, based on 

the proposed metric for the language. 

The above tests give a favorable starting point to CFL, 

however, for future work we propose to perform more 

extensive testing. 

Table 3 

Completeness test 

  Group 

Topic Alternate CFL 

Exchanges 5 5 

Traversal 5 5 

Queries 5 5 

Sorts 5 5 

µ 5 5 

σ 0 0 

 

11.  Conclusions  

 

Alpha testing performed on CFL, shows how the 

language facilitates the resolution of computational 

problems, due to the abstraction degree that it provides, 

hiding the complexity associated with knowledge of 

semantics and syntax of a computer language. 

The schemes used by CFL, as a graphic representation, 

eliminates the complexity introduced by the relationships of 

a conventional graphical model, instead, it uses assembly 

going to the mental model of sequence and nesting 

assembly sequence model and nesting. 

CFL emphasizes problem solving by using a scientific 

vocabulary, in which the predominant characteristics are the 

inquiry (observation), the definition of variables, the 

definition of tests and experiments, and elaborations; 

computational features characteristic of programming 

languages, are in the background. 
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