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Abstract 
Due to sensor limitations in some applications, induction motors state estimators are widely used in industries. One of the most powerful 
tools available for estimation is the Kalman filter. In this paper, unscented Kalman filter (UKF) and extended Kalman filter (EKF) is used 
to estimate the speed and torque of an induction motor. In the UKF algorithm, three types of unscented transformation (UT): basic, general 
and spherical types are presented and compared. It will be shown that the spherical UKF presents good estimation performance. Speed and 
torque Estimation approach is applied at both steady state conditions and at the time of sudden and rapid change in the motor input voltage. 
It will be shown that, EKF cannot trace the motor speed at the time of a large disturbance. Finally, experimental validation is presented to 
show the effectiveness of UKF for continuous estimation of torque and speed of induction motors. 
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La estimación continúa de la velocidad y torque de un motor de 
inducción usando el filtro de Kalman sin perfume bajo huecos de tensión 

 
Resumen 
Como se veía las limitaciones en los sensores en algunas aplicaciones, los motores asíncronos estimadores de estado ya son ampliamente 
utilizados en las industrias. Una de las herramientas disponibles y más potentes es el filtro de Kalman. En el presente artículo el Filtro de 
Kalman Unscented (UKF en siglas en inglés) y el Filtro de Kalman Extendido(EKF) se usan para estimación de la velocidad y el par motor 
o torque de un motor de inducción. En el algoritmo de UKF, hay 3 tipos de la transformación “unscented” que son presentados y 
comparados: Basica, general y esférica. Se muestra en ese artículo que el UKF esférico presentará una buena estimación. En materia de la 
estimación de la velocidad y el par motor, que son aplicados tanto en condiciones que están en estado estacionario como en los cambios 
repentinos y rápidos en el voltaje de entrada del motor. Y además va a mostrar que el EKF no es capaz de rastrear la velocidad del motor 
en el momento cuando hay una larga perturbación. Por último, la validación experimental es presentada para mostrar la eficacia del UKF 
de forma continua en la estimación del par motor y la velocidad de los motores asíncronos. 
 
Palabras clave: filtro de Kalman sin perfume; Filtro de Kalman extendido; control sin sensor; motor asíncrono; parámetro de estimación 
del motor inducción. 

 
 
 

1.  Introduction 
 
Recently Kalman filter is used abundantly to estimate 

dynamic states and parameters of electrical machines 
specially induction motors. Expensive sensors such as speed, 
torque and flux sensors are substituted by Kalman filter 
estimators. [1]. Due to inherent nonlinearity of induction 
motors, linear (traditional) Kalman filter does not work well 

                                                      
1How to cite: Darvishi, A. and Doroudi, A., Continuous estimation of speed and torque of induction motors using the unscented Kalman filter under voltage sag.. DYNA, 86(208), 
pp. 37-45, January - March, 2019 

for this subject. In recent years, Extended Kalman Filter 
(EKF) and Unscented Kalman Filter (UKF) have been 
proposed for these motors [2]. EKF doesn’t show a good 
efficiency itself, because of using the first order estimation of 
Taylor’s expansion in system with high non-linearity and 
sometimes it can cause divergence problems [3,4]. In order 
to dominate this subject, UKF that are based on unscented 
transformation (UT) and statistical linearity techniques is 
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proposed [5-7]. UKF is based on traditional Kalman filter and 
in general is divided to two stages of prediction and 
estimation. The main advantage of UKF versus EKF is that it 
does not any linearization for calculating the state predictions 
and covariances. In this case, available information does not 
miss in the higher orders of function and the method 
represents a more suitable estimation for real time 
applications. Moreover, UKF doesn’t need Jacobian matrix 
and so the amount of CPU capacity that may be allocated to 
an application will reduce. All previous papers concerning 
UKF for estimating states of induction motor evaluate the 
motor performance in a steady state conditions and when an 
input with slow changes applies to motor. However, in 
distribution networks, there are some abrupt, fast and 
nonlinear phenomena which may be applied to input 
terminals of induction motors. In these cases, the motor states 
such as speed and torque should also be correctly estimated 
continuously in order to improve motor controller’s actions. 
UKF-based algorithms use estimated past data for prediction 
of the future states. Therefore, for fast and abrupt changes, 
there will be the possibility of error.  

In this paper, UKF is used for continuous and online 
estimation of speed and torque of an induction motor. States 
estimation is done for both steady state conditions and when an 
abrupt and extreme change is occurred in motor input terminals. 
The abrupt and nonlinear phenomenon is voltage sag. Three 
kinds of UKF are used for continuous estimation of speed and 
torque of induction motors. For comparison, EKF is also applied 
and its results will be compared with UKF. 

This paper is organized as fallows. In part 2, the induction 
motor nonlinear model will be described and in part 3, three 
unscented transformation (UT) are introduced. Part 4, 
described the UKF algorithm and in part 5 simulations based 
on UKF are presented. Part 6 compares UKF results with 
EKF.  In part 7, induction motor parameters are estimated 
with both Filters and Experimental results are discussed in 
part 8. Finally, in part 9 conclusions are drawn. 

 
2.  Nonlinear induction motor model  

 
In this paper, nonlinear dynamic equations of induction 

motor are given in the stator frame. Rotor fluxes, stator 
currents and speed are considered as the state variables. 
Mathematical model of induction motor in dq frame is [8]:  

 

(1) 

𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑

= � 1
𝜎𝜎𝐿𝐿𝑠𝑠
� �−𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑟𝑟𝐿𝐿𝑚𝑚2

𝐿𝐿𝑟𝑟2
� 𝑖𝑖𝑠𝑠𝑑𝑑 +  𝑅𝑅𝑟𝑟𝐿𝐿𝑚𝑚

𝐿𝐿𝑟𝑟2 𝜎𝜎𝐿𝐿𝑠𝑠
𝜓𝜓𝑟𝑟𝑑𝑑 +

         + 𝐿𝐿𝑚𝑚
𝐿𝐿𝑟𝑟 𝜎𝜎𝐿𝐿𝑠𝑠

𝑃𝑃𝜔𝜔𝑟𝑟𝜓𝜓𝑟𝑟𝑟𝑟 + � 1
𝜎𝜎𝐿𝐿𝑠𝑠
� 𝑢𝑢𝑠𝑠𝑑𝑑    

(2) 

𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑

= � 1
𝜎𝜎𝐿𝐿𝑠𝑠
� �−𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑟𝑟𝐿𝐿𝑚𝑚2

𝐿𝐿𝑟𝑟2
� 𝑖𝑖𝑠𝑠𝑟𝑟 + 𝑅𝑅𝑟𝑟𝐿𝐿𝑚𝑚

𝐿𝐿𝑟𝑟2 𝜎𝜎𝐿𝐿𝑠𝑠
𝜓𝜓𝑟𝑟𝑟𝑟 −

         − 𝐿𝐿𝑚𝑚
𝐿𝐿𝑟𝑟 𝜎𝜎𝐿𝐿𝑠𝑠

𝑃𝑃𝜔𝜔𝑟𝑟𝜓𝜓𝑟𝑟𝑑𝑑 + � 1
𝜎𝜎𝐿𝐿𝑠𝑠
� 𝑢𝑢𝑠𝑠𝑟𝑟        

(3) 
𝑑𝑑𝜓𝜓𝑟𝑟𝑑𝑑
𝑑𝑑𝑑𝑑 =

𝐿𝐿𝑚𝑚
𝑇𝑇𝑟𝑟
𝑖𝑖𝑠𝑠𝑑𝑑 −

1
𝑇𝑇𝑟𝑟
𝜓𝜓𝑟𝑟𝑑𝑑 − 𝜔𝜔𝑟𝑟𝜓𝜓𝑟𝑟𝑟𝑟     

(4) 
𝑑𝑑𝜓𝜓𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑 =

𝐿𝐿𝑚𝑚
𝑇𝑇𝑟𝑟
𝑖𝑖𝑠𝑠𝑟𝑟 −

1
𝑇𝑇𝑟𝑟
𝜓𝜓𝑟𝑟𝑟𝑟 − 𝜔𝜔𝑟𝑟𝜓𝜓𝑟𝑟𝑑𝑑 

(5) 𝑗𝑗
𝑑𝑑𝜔𝜔𝑟𝑟
𝑑𝑑𝑑𝑑 = 𝐾𝐾𝑑𝑑�𝜓𝜓𝑟𝑟𝑑𝑑𝑖𝑖𝑠𝑠𝑟𝑟 − 𝜓𝜓𝑟𝑟𝑟𝑟𝑖𝑖𝑠𝑠𝑑𝑑� − 𝑇𝑇𝑙𝑙    

 
where: 
 

(6) 𝐾𝐾𝑑𝑑 =
3𝑃𝑃𝐿𝐿𝑚𝑚
2𝐿𝐿𝑟𝑟

   

(7) 𝑇𝑇𝑟𝑟 =
𝐿𝐿𝑟𝑟
𝑅𝑅𝑟𝑟

 

(8) 𝜎𝜎 = 1 −
𝐿𝐿𝑚𝑚2

𝐿𝐿𝑠𝑠𝐿𝐿𝑟𝑟
 

 
The electromagnetic torque of induction motor is also 

expresses as follow: 
 

(9) 𝑇𝑇𝑒𝑒 = 𝐾𝐾𝑑𝑑(𝜓𝜓𝑟𝑟𝑑𝑑𝑖𝑖𝑠𝑠𝑟𝑟 − 𝜓𝜓𝑟𝑟𝑟𝑟𝑖𝑖𝑠𝑠𝑑𝑑) 

 
Stator currents are selected as measuring outputs. So, 

measuring equation will define as follow: 

(10) 𝑦𝑦 = [𝑖𝑖𝑠𝑠𝑑𝑑 𝑖𝑖𝑠𝑠𝑟𝑟]𝑇𝑇 

Output matrix expresses as follow: 
 

(11) 𝐻𝐻 = �1 0 0
0 1 0    00    00� 

In order to simulate, continuous time equations should be 
transformed to discrete version. According to basic definition 
of time derivation for x variable, we have [9]: 

(12) �̇�𝑥 =
𝑥𝑥(𝑘𝑘)− 𝑥𝑥(𝑘𝑘 − 1)

∆𝑑𝑑  

3.  Unscented transformation 
 
Output describing of a nonlinear system under a random 

input is so difficult. The most simple and common method 
for solving nonlinear problems, is system linearization. 
Linearization about the operating point is a good estimation 
in several cases, but in highly nonlinear system can cause 
inaccurate results. UT is a nonlinear transformation which 
can estimate output of a nonlinear system under a random 
input [10]. UT is based on the fact that estimation of a normal 
distribution is simpler than nonlinear functions [11]. A 
system with the following characteristics is assumed: 

 
(13)       𝑥𝑥~𝐹𝐹(𝑚𝑚.𝑃𝑃) 

(14)       𝑦𝑦 = 𝑔𝑔(𝑥𝑥) 
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Where, x is a n×1 vector that is specified with probability 
distribution function, F with the mean, m  and the covariance 
matrix, P . y  is also an m×1 vector that depends on variable 
x  by the nonlinear function ( )g x .  

The goal of UT is to obtain a series of vectors which are 
called sigma points. Sigma point series should have similar 
mean and covariance of the distribution function F. Sigma 
points are expanded through nonlinear function ( )g x for 
estimation mean and covariance of y. There are several types 
of UT. The most common types are described below. 

 
3.1.  Basic UT  

 
In basic UT, 2n point will select for sigma points as follow:  
 

(15) 𝑥𝑥(𝑖𝑖) = 𝑥𝑥� + 𝑥𝑥�(𝑖𝑖)                    𝑖𝑖 = 1, … .2𝑛𝑛 

(16) 𝑥𝑥�(𝑑𝑑) = (�𝑛𝑛𝑃𝑃𝑥𝑥)𝑑𝑑𝑇𝑇              𝑖𝑖 = 1, … .𝑛𝑛 

(17) 𝑥𝑥�(𝑛𝑛+𝑑𝑑) = −(�𝑛𝑛𝑃𝑃𝑥𝑥)𝑑𝑑𝑇𝑇      𝑖𝑖 = 1, … .𝑛𝑛 

 
Where, ��𝒏𝒏𝑷𝑷𝒙𝒙�𝒊𝒊 is ith column of �𝒏𝒏𝑷𝑷𝒙𝒙. Square root of a 

matrix is calculated with Cholesky factorization. It is worth 
to mention that computational time of Cholesky factorization 
considerably depends on the number of sigma points.  

Sigma points which contain mean and covariance of x, 
should have real value. By using Cholesky factorization, the 
sigma points are not complex number [11]. In UT, a weight will 
give to each of the sigma based on UT type, weight values can be 
considered the same or different. In basic UT, equal weights of 
𝑤𝑤𝑑𝑑 = 1

2𝑛𝑛
 will be used for computing mean and covariance [12]. 

 
3.2.  General UT  

 
In this type of UT, 2n+1 points will be used for sigma 

points distribution as follows. 

(18) 𝑥𝑥(0) = 𝑥𝑥� 

  

(19) 𝑊𝑊0 = 1−
𝑛𝑛
3 

  

(20) 𝑥𝑥𝑖𝑖 = 𝑥𝑥� + ��
𝑛𝑛

1−𝑊𝑊0
𝑃𝑃
𝑥𝑥
�

𝑖𝑖

 

  

(21) 𝑊𝑊𝑖𝑖 =
1−𝑊𝑊0

2𝑛𝑛  

  

(22) 𝑥𝑥𝑖𝑖 = 𝑥𝑥� − ��
𝑛𝑛

1−𝑊𝑊0
𝑃𝑃
𝑥𝑥
�

𝑖𝑖+𝑛𝑛

 

  

(23) 𝑊𝑊𝑖𝑖+𝑛𝑛 =
1−𝑊𝑊0

2𝑛𝑛  

𝑊𝑊0 shows distance from the origin of coordinate axes. If 
𝑊𝑊0 is higher than zero, sigma points will take some distance 
from the origin [4]. 

Basic UT has efficiency close to general UT due to 2n 
sigma points selection and it can be assumed as a special case 
of general UT. 

 
3.3.  Spherical UT  

 
Spherical UT uses n+2 sigma points. This kind of UT 

shows a high numerical stability. Spherical UT uses equal 
weights like basic UT.  

Spherical sigma points are selected with the following 
algorithm:  

1) First, 0th weight is selected as if 0 ≤ 𝑊𝑊0 ≤ 1. 
2) The rest of the weights are selected as: 
 

(24)           𝑊𝑊𝑑𝑑 =
1 −𝑊𝑊0

𝑛𝑛 + 1            𝑖𝑖 = 1, …𝑛𝑛 + 1    

 
The weights can be scaled as follow: 
 

(25) 𝑤𝑤𝑑𝑑 = �
1 +

(𝑊𝑊0 − 1)
α2        𝑓𝑓𝑓𝑓𝑟𝑟    𝑖𝑖 = 0

(𝑊𝑊𝑑𝑑)
α2                        𝑓𝑓𝑓𝑓𝑟𝑟    𝑖𝑖 ≠ 0

 

 
Scaling can reduce the effect of higher order components. 

Finally, 0’th weight of sigma points series can be modified as: 
 

(26) 𝑊𝑊0
(𝑐𝑐) = 𝑤𝑤0 + �1− α2 + β�   

(27) 𝑊𝑊0
(𝑚𝑚) = 𝑤𝑤0   

(28) 𝑊𝑊𝑑𝑑
(𝑐𝑐) = 𝑊𝑊𝑑𝑑

(𝑚𝑚) = 𝑤𝑤0 

 
where α is the called scalar factor of sigma points (0 ≤ α 

≤1) and it represents dispersion of sigma points about mean. 
The second parameter β contains distribution information. 
Assuming Gaussian distribution, value 2 for this parameter is 
optimal [13-16].  

 
3) Single-value vectors are considered as follows: 
 

(29) 𝜎𝜎0
(1) = 0 

  

(30) 𝜎𝜎1
(1) =

−1
�2𝑤𝑤(1)

 

  

(31) 𝜎𝜎2
(1) =

1
�2𝑤𝑤(1)

   

 
4) By an iterative manner, σ vectors are expanded by the 

following procedures for j=2 to n: 
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(32) 
𝜎𝜎𝑑𝑑
𝑗𝑗 =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ �

𝜎𝜎0
𝑗𝑗−1

0 �              𝑓𝑓𝑓𝑓𝑟𝑟  𝑖𝑖 = 0

�
𝜎𝜎𝑑𝑑
𝑗𝑗−1

−1
�𝑗𝑗(𝑗𝑗 + 1)𝑤𝑤1

�      𝑓𝑓𝑓𝑓𝑟𝑟  𝑖𝑖 = 1, … , 𝑗𝑗

�
0𝑗𝑗−1
𝑗𝑗

�𝑗𝑗(𝑗𝑗 + 1)𝑤𝑤1

�     𝑓𝑓𝑓𝑓𝑟𝑟  𝑖𝑖 = 𝑗𝑗 + 1

            

 
 
In the above relations, 0𝑗𝑗  is a column vector that contains 

zeros of jth iteration, j shows state vector dimensions and i 
expresses a series of sampling points.  

5) After iterative procedure of stage 4, 𝜎𝜎𝑑𝑑𝑛𝑛 contains n-
elements vectors (𝜎𝜎𝑑𝑑𝑛𝑛      𝑖𝑖 = 0, … ,𝑛𝑛 + 1) 

Therefore, Sigma points will compute as follow: 

(33) 𝑋𝑋(𝑖𝑖) = 𝑋𝑋� + �𝑃𝑃𝜎𝜎𝑖𝑖
(𝑛𝑛)          𝑖𝑖 = 0, … . ,𝑛𝑛+ 1 

 
4.  UKF algorithm  

 
For nonlinear systems, Extended Kalman Filter (EKF) 

was first introduced.  EKF efficiency is acceptable if the 
system is approximately linear (semi linear) and otherwise it 
shows inaccurate results. In order to estimate highly 
nonlinear systems, UKF algorithm which is a combination of 
Kalman filter and UT was introduced [9].  

UKF includes three important following steps: 
Step 1: Sigma points computation 
Step 2: Prediction 
Step 3: State correction 
As said before, Sigma points should have similar mean 

and covariance of the main variable distribution to form an 
unscented transformation. Using following nonlinear 
transformation, a cloud of points will create:  

(34) 𝑦𝑦𝑖𝑖 = 𝑔𝑔(𝑥𝑥𝑖𝑖) 

The Mean can be estimated by the weighted mean of the 
transformed points, as follow: 

(35) 𝑦𝑦� =
0

n

i i
i

w y
=
∑  

where, weighted factors wi is defined as: 

(36) 
0

1
n

i
i

w
=

=∑  

Covariance is also computed by: 

(37) ( )( )
0

n
T

y i i i
i

P w y y y y
=

= − −∑  

Below, UKF algorithm is described: 
1) It is assumed that the studied system is a nonlinear 

system of discrete type: 

(38) 𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘, 𝑑𝑑𝑘𝑘) +𝑤𝑤𝑘𝑘   

(39) 𝑦𝑦𝑘𝑘 = ℎ (𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘, 𝑑𝑑𝑘𝑘) + 𝑣𝑣𝑘𝑘  

(40) 𝑤𝑤𝑘𝑘 ~�0,𝑄𝑄𝑘𝑘 � 

(41) 𝑣𝑣𝑘𝑘 ~(0,𝑅𝑅𝑘𝑘 ) 

where, wk is Gaussian white process noise by 0 mean and 
covariance Qk and vk is also Gaussian white measuring noise 
by 0 mean and covariance Rk. xk is state vector n×1, y is 
measuring vector m×1 and h is measuring matrix which its 
dimension is m×n. f (xk, uk) is also a known, nonlinear 
function.  

2) Initial estimation in zero time is obtained as follow.  

(42)        𝑥𝑥�0+ = 𝐸𝐸(𝑥𝑥0) 

(43)        𝑃𝑃0+ = 𝐸𝐸[(𝑥𝑥0 − 𝑥𝑥�0+)(𝑥𝑥0 − 𝑥𝑥�0+)𝑇𝑇] 

3) Following time updated relations are applied point by 
point to promote state estimation and covariance:  

a) For going forward from time step (k-1  ) to k, sigma 
points of 𝑥𝑥𝑘𝑘−1𝑑𝑑  is first selected according to the type of UT. 
Best estimations will be 𝑥𝑥𝑘𝑘−1+ and 𝑃𝑃𝑘𝑘+1+ .  

b) Known nonlinear function f(.) in eq. (38) is used for 
transforming sigma points into 𝑥𝑥�𝑘𝑘𝑑𝑑  vectors. 

(44)         x�k
(i)  = 𝑓𝑓�x�k−1

(i) ,𝑢𝑢𝑘𝑘, 𝑑𝑑𝑘𝑘� 

c) To obtain the states estimation in step time k, based on 
the last data, 𝑥𝑥�𝑘𝑘𝑑𝑑  vectors are computed as follow: 

(45) x�k
− = ( )

2

1

i
kx̂

n

i
i

w
=
∑  

d) Previous step covariance, according to eq. (37) is 
computed. It should be mentioned that Qk-1 has been added to 
the end of relation in order to include process noise.  

(46) ( )( )( ) (
K

2

1

)
1Qˆ ˆ ˆ ˆ

Ti i
k

n

i k k
i

k kP x x x xw− −
−

=

−= − − +∑  

4) As step 3, measuring points should also be time 
updated as follow:  

a) Sigma points 𝑥𝑥𝑘𝑘𝑑𝑑 , which has suitable changes are 
selected, the best estimation for mean and covariance xk, now 
will be 𝑥𝑥𝑘𝑘− and 𝑝𝑝𝑘𝑘−.  

b) Known nonlinear measuring equation h (.)’ is applied 
to transform sigma points into vectors 𝑦𝑦�𝑘𝑘

(𝑑𝑑)as: 

(47)      y�k
(i)  = ℎ�x�𝑘𝑘

(i), 𝑑𝑑𝑘𝑘� 

c) 𝑦𝑦�𝑘𝑘
(𝑑𝑑) , vectors obtained from step b are combined with 

each other for achieving predicted values in time step k, as 
follow: 
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(48) ( )i
k

2

1

ˆ ŷ
n

ik
i

y w
=

= ∑
 

d) Now, the predicted covariance should be computed 
according to eq. (37). Note that Rk has been added to the end 
of relation in order to include measuring noise. 

(49) ( )( )( (
2

0

) )
Kˆ ˆ ˆ ˆ

Ti i
y k k k k

n

i
i

P y yw y y R
=

= − − +∑  

e) Mutual covariance between 𝑦𝑦�𝑘𝑘− and 𝑥𝑥�𝑘𝑘− is given by:  

(50) ( )( )(
2

1

) ( )ˆ ˆ ˆˆ
Ti i

xy

n

k ki k
i

kP x y yw x
=

= − −∑  

Finally, the updated version of parameters can be 
obtained using standard Kalman filter as follow: 

(51)       𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑥𝑥𝑥𝑥𝑃𝑃𝑥𝑥−1 

(52)       x�k+ = x�k− + 𝐾𝐾𝑘𝑘(𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘) 

(53) 𝑃𝑃𝑘𝑘+ = 𝑃𝑃𝑘𝑘− − 𝐾𝐾𝑘𝑘𝑃𝑃𝑦𝑦𝐾𝐾𝑘𝑘𝑇𝑇 

It should be mentioned about estimation algorithm and its 
sampling time that the UKF algorithm is constructed based on the 
measuring point interval. The sampling time must then be selected 
such that it does not cause inaccuracy in the estimation process. 
Therefore, if sampling time increases, a margin [17] should be 
used to increase real time observation and decisions on the studied 
system.  

Another important point is that process and measuring noise 
matrixes are selected by trial and error. Some researchers believed 
that because of unknown system state, process noise is not 
measurable and therefore offline data can be used to compute the 
matrix. Initial value of matrix Px is not so important, because the 
matrix value will be modified in the iterative algorithm [12]. 

 
5.  Simulation results 

 
In this section, performances of UKF are assessed to estimate 

speed and torque of induction motor in two cases:  steady state and 
under occurring of a voltage sag. The specifications of studied 
motor are given in the appendix. What attracts attention in UKF 
algorithm is that when a nonlinear phenomenon such as rapid 
voltage change in the motor terminals occurs, which type of UT is 
more efficient recognition of UT with high accuracy can be 
effective in controlling of industrial process.  

Voltage sag is reduction of voltage magnitude for times 
shorter than 1 minute. Voltage sag occurs in the event of short 
circuit in power networks or startup of large loads [18]. If voltage 
sags remain more than one cycle, they can influence the 
fundamental frequency. It is worth to note that voltage sag is a 
statistical phenomenon and its properties depend on the short 
circuit cause and location.  

Change of speed, motors malfunction and loss of 
synchronism are among important effects of voltage sag. 

These factors may result in shutting down of an industrial 
process. Assuming a symmetrical voltage sag beginning in 
time t=1s, lasts for 5 cycles, and depth of 0.6 per unit (Fig. 
1). After fault clearing, the motor draws high current in like 
manner of motor starting. The purpose is to estimate speed 
and torque of induction motor using UKF in the event of 
voltage sag. Speed and torque can continuously be estimated 
using dynamic equations of induction motor and 
measurement of voltages and currents in every moment. 
Block diagram of UKF algorithm has been shown Fig. 2. 

UKF algorithm is independent of the reference frame of 
selected dynamic equations of induction motor. However, the 
stationary reference frame is selected for easy UKF 
application. Fig. 3 presents real and estimated value of 
electromagnetic torque by using two UT algorithms 
(spherical and general). As observed in the figure, both kinds 
of UT present good estimation of electromagnetic torque. 

Fig. 4 shows the estimation of motor speed under the 
same conditions. As it can be seen, spherical UT has more 
appropriate results than general UT. Electromagnetic torque 
is obtained from combination of the first four equations of 
induction motor. Motor speed is the integration of motor 
torque. With regard to Taylor expansion, one can conclude 
that the degree of speed nonlinearity is higher than torque 
nonlinearity. Spherical UT presents excellent accuracy for 
motor speed as a high nonlinear variable. 

Table 1 indicates mean of error for different UTs. As it is seen 
in the table, spherical UKF has less error than general UKF. 
Regarding iterative-based computation of σ, spherical UT is 
expected to need more time for execution than two other UTs. 

 
Figure 1. Voltage of phase ‘a’ during the voltage sag 
Source: The authors 

 

 
Figure 2. Kalman filter block diagram to estimate motor speed and torque 
Source: The authors 
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Figure 3. The real value and estimation of torque during the voltage sag 
(general and spherical UTs are used) 
Source: The authors 

 
 

 
Figure 4. Comparison of real and estimated values of motor speed during the 
voltage sag (general UT and spherical UT) 
Source: The authors 

 
 

Table 1. 
The mean of error of speed and torque for different UTs 

spherical general basic UKF 
𝑻𝑻𝒆𝒆 𝝎𝝎𝒓𝒓 𝑻𝑻𝒆𝒆 𝝎𝝎𝒓𝒓 𝑻𝑻𝒆𝒆 𝝎𝝎𝒓𝒓 The mean 

of error 
0.0051 0.0427 0.0358 0.063 0.036 0.0637 

Source: The authors 
 
 

6.  Estimation with EKF   
 
EKF is comprehensively assessed in [18-20]. Like 

conventional Kalman Filter, EKF has two stages: prediction 
and correction. EKF predicts the state using system model 
and then the state is corrected by applying of measurements. 
EKF is an optimized algorithm based on the linearization of 
equations by means of Jacobian Matrix. EKF algorithm can 
be shown as follow: 

Prediction step: 
 

(54) 𝑥𝑥𝑘𝑘− = 𝑓𝑓(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘−1) 

(55) 𝑃𝑃𝑘𝑘− = 𝐴𝐴𝑘𝑘𝑃𝑃𝑘𝑘−1𝐴𝐴𝑘𝑘𝑇𝑇 + 𝑄𝑄𝑘𝑘−1 

Correction and update step: 

(56) 𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅)−1 

(57) 𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑘𝑘− + 𝐾𝐾𝑘𝑘(𝑦𝑦𝑘𝑘 − h(𝑥𝑥𝑘𝑘−,𝑢𝑢𝑘𝑘−1)) 

(58) 𝑃𝑃𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑃𝑃𝑘𝑘− 

Where Ak and Hk is defined as follows: 

(59) 𝐴𝐴𝑘𝑘 =
𝜕𝜕𝑓𝑓(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘−1)

𝜕𝜕𝑥𝑥
 

(60) 𝐻𝐻𝑘𝑘 =
𝜕𝜕ℎ(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘−1)

𝜕𝜕𝑥𝑥
 

The results of EKF algorithm to estimate motor speed and 
torque during the voltage sag are shown in Fig. 5,6. The UKF 
results are also given for comparison. As can be seen in Fig. 
5,6, EKF has higher estimate error than UKF. This indicates 
that the accuracy of initial values of states and parameters of 
system in EKF is more important than that in UKF. If the 
initial values have far from their real values to some specified 
extent, the estimation algorithm may tend to diverge.  

 
Figure 5. Real and estimated values of torque during the voltage sag 
Source: The authors 

 

 
Figure 6. Real and estimated values of speed during the voltage sag 
Source: The authors 
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Fig. 6 indicates that EKF algorithm is not able to trace the 
speed in the event of a nonlinear phenomenon such as voltage 
sag.  As mentioned, the degree of nonlinearity of speed is one 
degree higher than the torque, so EKF which uses linear 
approximation cannot be able to estimate speed accurately. 

 
7.  Estimation of induction motor’s parameters  

 
The goal of parameters estimation of a dynamic model is 

to provide accurate presentation of the system under 
consideration. Another application of KF is the estimation of 
unknown parameter of a dynamic model. In this section, 
parameters Tl and Re are assumed as unknown parameters 
and they will be estimated by means of EKF and UKF. To 
estimate both parameters, the eq. (61), (62) are added to state 
equations of induction motor. To make situation more real, 
white noise is added to measured values. Fig. 7,8 show 
parameters T1 and Rr which are estimated by EKF whereas 
Fig. 9,10 show estimation of these parameters by means of 
spherical UKF. What we can understand from these figures 
is that the speed of convergence of EKF algorithm is lower 
than UKF. The results suggest that UKF method present 
more accurate estimation and better convergence than EKF 
even in the case of noise conditions.   

 
(61)     

𝑑𝑑𝑇𝑇𝑙𝑙
𝑑𝑑𝑑𝑑

= 0 
  

(62)    
𝑑𝑑𝑅𝑅𝑟𝑟
𝑑𝑑𝑑𝑑 = 0 

 
The mean of estimation errors of EKF and UKF algorithm 

are shown in Table 2. 
 

Table 2 
Mean error in estimating parameters Rr and Tl by means of UKF and EKF 
algorithms 

EKF UKF 
The mean of error 𝑻𝑻𝒍𝒍 𝑹𝑹𝒓𝒓 𝑻𝑻𝒍𝒍 𝑹𝑹𝒓𝒓 

0.054 0.0094 0.0022 0.0081 
Source: The authors 

 
 

 
Figure 7. Real values and estimation of parameter T1 by means of EKF 
Source: The authors 

 
Figure 8. Real values and estimation of parameter Rr by means of EKF 
algorithm. 
Source: The authors 

 
 

 
Figure 9. Real values and estimation of parameter Rr by means of spherical UKF 
Source: The authors 

 
 

 
Figure 10. Real values and estimation of parameter T1 by means of spherical UKF 
Source: The authors 

 
 

8.  Experimental result 
 
To evaluate the efficiency and accuracy of UKF 

algorithms to online estimate of speed and torque of 
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induction motors, a 1.1 kW motor is used for experimental 
validation. The Induction motor parameters are given in the 
Appendix. Matrices R and Q, which are given in the 
Appendix obtained by trial and error. Hall-effect sensor is 
used for measuring of currents. To create voltage sag, three 
resistors are placed in motor circuit and after a pre-specified 
time they are shorted (Fig. 11). Fig. 12 shows the created 
voltage sag which is applied to input terminals of the motor. 
As it is seen in the figure, the voltage does not suddenly drop 
due to the inductive nature of the induction motor. 

Figs. 13,14 show experimental results and estimation of 
motor speed and torque using spherical and general UKF, 
respectively. It is clear that good correlation exists between 
experimental and estimation results. 

 

 
Figure 11. Block diagram of an experimental circuit for voltage sag 
Source: The authors 

 
 

 
Figure 12. Experimental results from measuring the a-phase voltage when 
voltage sag 
Source: The authors 

 
 
The mean of estimated error for speed and torque is 

presented in Table 3 for detailed study. 

 
Figure 13. Comparison of Experimental and estimation results – induction 
motor speed 
Source: The authors 

 
 

 
Figure 14 Comparison of Experimental and estimation results – induction 
motor torque 
Source: The authors 

 
 

Table 3 
The mean of error for general and spherical UKF motor speed 

The mean of error 
General UKF Spherical UKF 
𝝎𝝎𝒓𝒓 𝑻𝑻𝒆𝒆 𝝎𝝎𝒓𝒓 𝑻𝑻𝒆𝒆 

0.2735 0.0914 0.0649 0.0143 
Source: The authors 

 
 

9.  Conclusion 
 
This paper shows the superiority of UKF over EKF in 

estimation of states and parameters of induction motors. The 
results show that spherical UKF algorithm can approximate 
available information in nonlinear function of torque and 
speed of induction motor better than EKF. The reason is that 
spherical UKF does not use the Jacobian matrix. Spherical 
UKF shows good estimation performance in steady state and 
when a drastic change in motor input voltage is occurred. 
Furthermore, in estimation of induction motor’s parameter, 
UKF algorithm shows more convergence speed.     

 
Appendix  

 
Specification of simulated motor  
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P = 1.1 kw     
Rs = 5.1Ω 
Rr =6.38Ω 
Ls = 0.4656 H 
Lr = 0.4656 H 
Lm = 0.4434 H 
Tl = 0.7 N.m 
P = 2 
 
Values of measurement noise covariance matrix and 

process 
3 1 0

2 10
0 1

R −  
= ×  

 
 

5

5

6

6

5

9

10

2 10 0 0 0 0 0 0
0 2 10 0 0 0 0 0
0 0 1.5 10 0 0 0 0
0 0 0 1.5 10 0 0 0
0 0 0 0 1 10 0 0
0 0 0 0 0 2 10 0
0 0 0 0 0 0 2 10

Q

−

−

−

−

−

−

−

 ×
 × 
 ×
 

= × 
 × 
 ×
 × 

 

 
Initial value of state variables 
 

[ ]0 0 0 0 0 0 3.2 5.38x =  
 

0

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
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P

 
 
 
 
 

=  
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