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Abstract 
State-of-the-art solutions for flow scheduling propose the use of Multi Level Feedback Queue (MLFQ) as a mechanism to avoid the 
requirement of prior information (i.e. agnosticism) regarding flow sizes. This is an important aspect to achieve the performance goals of 
high responsiveness and high throughput that is expected in Cloud Applications (e.g. search engines, social networks, and e-commerce 
sites).  These goals are tightly associated with the prioritization of short flows (a few KB in size), the majority for these applications rather 
than long flows (several MB in size). However, these applications usually cannot provide information in advance about the size of the 
flows. In this paper, we analyze the feasibility of providing dynamic adjustment for a MLFQ-based scheduling system in such a way that 
it adapts itself to the time and space variations exhibited by Data Center Network (DCN) traffic without requiring prior information about 
workload properties. 
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Ajuste dinámico de un programador de flujos MLFQ para mejorar el 
desempeño de aplicaciones en la nube 

 
Resumen 
Las soluciones presentes actualmente en el área de conmutación de flujos proponen el uso del concepto de Colas Multinivel con 
Realimentación (MLFQ por su sigla en inglés) como mecanismo para evitar el requerimiento de información previa (mecanismo agnóstico) 
con respecto al tamaño de los flujos de datos. Este es un aspecto importante para el logro de las metas de desempeño de alta capacidad de 
respuesta y alto rendimiento, esperadas en las aplicaciones en la nube (Por ejemplo, motores de búsqueda, redes sociales y sitios de 
comercio electrónico). Estas metas están estrechamente asociadas a la priorización de los flujos cortos (con tamaños de unos pocos KB), 
mayoritarios en estas aplicaciones, sobre los flujos largos (con tamaños de varios MB). Sin embargo, estas aplicaciones usualmente no son 
capaces de proporcionar de antemano la información acerca del tamaño de los flujos. En este artículo, analizamos la viabilidad de 
proporcionar ajuste dinámico a un esquema de conmutación basado en MLFQ, de tal manera que éste sea capaz de adaptarse a las 
variaciones espacio temporales que se observan en el tráfico presente en las redes de centro de datos, sin que se requiera información previa 
sobre las propiedades de las cargas de trabajo. 
 
Palabras clave: Conmutación de flujos; redes de centro de datos; MLFQ; conmutación agnóstica de flujos 

 
 

1.  Introduction 
 
Cloud applications running on Data Center Networks 

(DCN) have very strict performance requirements which, 
when unsatisfied, might affect the revenue obtained by the 
applications’ owners [1,2,5-7]. The traffic associated with 
these applications consists of a mix of short (those 
                                                      
How to cite: Gutiérrez, S.A., Barcellos, M. and Branch, J.W., Dynamic adjustment of a MLFQ flow scheduler to improve cloud applicationsperformance. DYNA, 85(206), pp. 
16-23, September, 2018. 

transporting a few kilobytes) and long flows (those 
transporting several megabytes or gigabytes). An important 
performance goal for these applications is the minimization 
of the flow completion time (FCT) of short flows without 
inducing starvation in long flows [3,4]. 

The literature proposes flow scheduling and queue 
management as strategies to achieve this goal of minimizing 
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the FCT of short flows. However, this involves three 
challenges: First, in many cases, it is not possible to have a-
priori information about the flow sizes to plan the scheduling 
[5,6]. Hence, it is impossible to know whether a flow will be 
short or long when it starts.  Second, even if this information 
is available, taking advantage of it might imply prohibitive 
modifications in different elements of the infrastructure 
(switches and end hosts) and/or the applications themselves 
[4]. Third, the scheduling mechanisms need to adapt 
themselves to the time and space variations that the traffic 
might exhibit [9,19].  

Solutions for flow scheduling reported in the literature [4-
6,9,13,15] fail to address some or all of the previously 
mentioned challenges. In particular, although some 
approaches are agnostic regarding the specific size of flows 
for its scheduling, they still assume that it is possible to know 
properties in advance such as the flow size distribution for 
the workloads present on the network [6,9]. 

In this paper, we analyze the situation, especially in the 
context of solutions based on a Multi-Level Feedback Queue 
(MLFQ) scheduler when the current network traffic does not 
fit the scheduling configuration. By using simulation, we 
observe how, despite the fact that this approach introduces 
agnosticism in the flow scheduling, it is still dependent on 
previous knowledge of some general features for the 
workload present on the network to achieve the goal of 
minimizing FCT for the short flows. To address this 
dependency, we propose the implementation of a monitoring 
mechanism system focused on detecting traffic properties 
that can be used to dynamically adjust the scheduling 
configuration in such a way that it can handle the space and 
time variations that the traffic associated to cloud 
applications usually exhibits [1,7,14,19].  

This paper is organized as follows: Section 2 analyzes the 
demotion threshold problem that might be present in MLFQ-
based flow scheduling systems. Section 3 describes our 
monitoring approach and discusses some assumptions that it 
leverages. Section 4 presents the results of a preliminary 
evaluation of the effectiveness of our proposal to minimize 
the FCT of short flows on a Data Center workload. Section 5 
presents the related literature, and Section 6 concludes the 
paper. 

 
2. Threshold mismatch in agnostic flow scheduling mechanisms 

 
2.1.  MLFQ 

 
MLFQ is a concept that has come from Operating 

Systems [10]. It was conceived for multiuser timeshare 
systems and it is based on employing a multilevel queue to 
manage processes, that is, the instances of the programs 
executed on the system. The goal of MLFQ is to approximate 
the Shortest Job First (SJF) scheduling heuristic, which 
theoretically minimizes both the average and tail process 
completion time. MLFQ aims to prioritize short processes 
(which are mainly associated with interactive operations and 
I/O intensive operations) over long processes (usually 
associated to batch operations), without knowing in advance 
the exact duration of the former. 

Fig. 1 presents the scheme of a MLFQ scheduler in an 

operating system. It consists of a set of FIFO queues and a 
scheduling policy. The number of queues goes from two up 
to a given number according to the implementation (e.g. the 
Solaris Operating System uses sixty). Each queue has an 
associated value indicating the maximum quantum for a 
process to be queued at that given queue (i.e. a given priority 
level). Higher priority queues have smaller quantum values 
associated and these values increase between successive 
queues. 

Initially, all the processes enter the highest priority queue. 
A process is demoted and queued on the next priority queue 
whenever it exceeds the specified quantum to stay at that 
queue. Hence, this approach leads to the prioritization of 
short over long processes. The former tend to complete 
within the first queues whereas the later tend to sink towards 
the lowest priority queue. 

The scheduling policy in MLFQ is very simple. In order 
to determine the next process to dequeue, the set of queues is 
checked following a top-down strategy. Initially, the highest 
priority queue is checked. If this queue is non-empty, then the 
first process in the queue is scheduled and runs until 
blocking. This process is then moved to the end of the same 
queue (implementing FIFO) or to the end of next queue 
(demoted to the next lower priority). However, if the highest 
priority queue is empty, then the next queue (lower priority) 
is checked just as with the highest one. The scheduling is 
repeated for the next process, always starting with the highest 
priority queue. 

Recently, the literature on flow scheduling proposed to 
adapt the notion of MLFQ to schedule data flows. Flow 
scheduling approaches based on MLFQ aim at approximating 
scheduling heuristics such as Least Attained Service (LAS) 
or Shortest Job First (SJF) in order to prioritize short flows 
[16]. This approximation is performed by dynamically 
assigning priorities to flows without actually knowing their 
size in advance. Flows are initially processed at the top 
priority queue of a MLFQ, and they are progressively 
demoted according to a given criteria such as deadline 
meeting, byte count, or associated congestion notifications 
[3, 5, 6, 9]. 

 

Figure 1. A process scheduling system based on MLFQ 
Source: The authors 
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2.2.  Threshold mismatch in MLFQ 
 
Defining the demotion thresholds for an MLFQ scheduler 

is a challenging task. It involves determining the right values 
that indicate when the scheduled entity should be moved 
from a given priority level to another lower level. 

This definition is associated with a specific performance 
goal. In the case of flow scheduling for cloud applications, 
these thresholds should aim at minimizing the FCT of short 
flows since it influences the responsiveness as perceived by 
the end user. However, although approaches based on MLFQ 
are conceptually agnostic (i.e. they do not require a-priori 
information about the duration of a process or the size of a 
flow for the scheduling), they still require some prior 
information to derive the demotion thresholds. This 
information is associated to specific properties of the traffic 
workloads. If the demotion thresholds do not fit these 
properties, then the threshold mismatch problem arises. 
Specifically, in the context of flow scheduling, the threshold 
mismatch problem might hamper the goal of minimizing the 
FCT, and this might hurt especially short flows.  

To illustrate this point, assume a simplified MLFQ with 
two priority queues and, therefore, a single demotion 
threshold. Suppose that, for the sake of simplicity, there are 
only two flow sizes: 10KB and 10MB. Assume that for a 
given workload, 90% of its flows are 10KB and the 
remaining 10% are 10MB. In this situation, it would be 
optimal to set the demotion threshold to 10KB since this 
would keep the short flows in the high priority queue until 
their completion. Thus, short flows are prioritized over the 
long flows, which will ultimately be queued into the low 
priority queue. Assume that later, there is a shift in the 
workload. In the new workload, the size of small flows is 
20KB instead of 10KB. With the demotion threshold set to 
10KB, some of the packets of the short flows will be demoted 
to the low priority queue. Hence, the latency for these short 
flows will be larger than it should be. Fig. 2 illustrates this 
situation. 

 

Figure 2. The threshold mismatch problem 
Source: The authors 

3.  Dynamic adjustment of MLFQ scheduler 
 
In this section, we propose an approach to adapt the 

configuration of a MLFQ scheduler, aiming to achieve 
workload-agnostic operation. That is, an approach that avoids 
the requirement of prior information about workload 
properties that are present in the network. 

 
3.1.  Overview 

 
As we previously discussed, state-of-the-art solutions 

addressing agnostic flow scheduling require information 
about the distribution of the flow sizes for the workloads. 
This information is used to derive the demotion thresholds 
for the MLFQ scheduler. This means that, whenever the 
workload shifts, there might be a mismatch between the 
current scheduling configuration and the current workload. 
This mismatch might adversely affect the FCT for the short 
flows. 

We propose observing the traffic entering into the switch 
ports. This observation, performed during a given time slot 
(monitoring window) enables the acquisition of information 
to infer the traffic behavior associated to the workloads 
present in the network. Periodically (say, every 100ms), the 
demotion thresholds are adjusted according to information 
acquired during the current monitoring window (say 500ms). 
The rationale behind this approach is to use the past to try to 
predict the future 

 
3.2.  Assumptions 

 
Our concept of adaption of MLFQ scheduling leverages 

the notion of Programmable Switches. Hence, we assume 
that the MLFQ is implemented with the switch queues 
associated to each port, and the demotion thresholds are 
defined and maintained within the switch. The operations of 
traffic monitoring and threshold adjustment are executed also 
within the switch (i.e. separated execution threads). This is 
essentially different to the approach proposed by related 
work, which considers a packet tagging mechanism based on 
MLFQ, with strict priority scheduling performed at switches 
[6, 9].  

Although the MLFQ scheduling is implemented at 
switches, some degree of cooperation is required from the 
end hosts. Particularly, we assume that end hosts can add a 
header to packets to inform a) the amount of bytes that a flow 
has currently sent and b) the final size of the flow. The 
addition of packet headers has already been used in related 
work [6,13,15]. 

Switches receive and process this information sent from 
end hosts and maintain a sorted list for each port, which 
contains the size of each flow that is completed during the 
monitoring window. Then, periodically, the switch calculates 
a set of predefined percentiles (say 10th, 20th, etc) values from 
that sorted list. These percentiles provide a clue to adjust the 
demotion thresholds of the MLFQ scheduler of the particular 
port. After the adjustment, the list of flow sizes is pruned to 
make the monitoring window slide forward. 

Our observation is that low percentiles can define upper 
bounds for short flows, which should be associated to higher  
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Figure 3. Typical Web Search workload in a production data center  
Source: The Authors with data from [19] 

 
 

priority levels, and higher percentiles can define upper 
bounds for long flows, which should be associated to lower 
priority levels. For example, consider the workload Web 
Search described in Fig. 3. Assume a MLFQ system with two 
queues (therefore, one demotion threshold). For that 
workload, the plotted CDF indicates that 80% of the flows 
are shorter than 10KB. Our intuition is that by calculating low 
percentiles (say 10th or 20th) in the list of completed flow 
sizes, we might have a good idea of setting a demotion 
threshold that approximates the upper bound for the short 
flows in the workload and then prioritize them by separating 
from the long flows. 

We claim that one advantage of implementing our 
threshold adjustment mechanism within the switch is avoiding 
misuse by a malicious host. For example, with packet marking 
at end hosts, it might happen that a malicious host marks its 
packets with the highest priority value regardless the amount 
of bytes that flows have transmitted. In contrast, in our 
approach, this misuse is avoided since the switch schedules 
packets according to the amount of bytes transmitted by each 
flow. Also, since the threshold adjustment is local to switches, 
it adapts to the time and space variations of the traffic. For 
example, for different switches, the notion of what is a short 
flow and the sizes of these flows varies. However, since short 
flows are the majority in typical data center workloads, the 
calculation of low percentiles at each switch will yield to 
prioritize short flows at each switch. This also contrasts with 
the related work, in which the demotion thresholds are 
configured globally for all the DCN switches. 

 
4.  Experiments and results 

 
4.1.  Simulation model 

 
We evaluated our proposal of threshold adjustment via 

NS-2. This is a discrete time, packet-based network 
simulator, widely used in the literature to perform large scale 
evaluation of different solutions in the field of computer 
networks. Our simulations were executed on a server with an 
Intel(R) Core(TM) i7-4790S CPU with eight cores @ 
3.20Ghz and 8GB of RAM.  In our experiments, we compare 
our proposal of threshold adjustment against the closest 
related work which is PIAS [6], with static threshold 
configuration. 

4.1.1.  Assumptions and input factors 
 
In our experiments, we followed the same guidelines as 

related work. For our transport protocol, we used DCTCP [1] 
configured with the recommended values for the parameters 
K and g (65 and 1/16 respectively) [2]. For the control of the 
Explicit Congestion Notification, we implemented per-port 
marking. For a detailed analysis of this choice, please refer to 
Section IV-A number 2 of [6]. 

For our evaluation, we considered different traffic load 
levels ranging from 50% to 90%. We define the monitoring 
window to be 250ms and we perform the threshold 
adjustment in 200ms intervals. 

 
4.1.2.  Topology 

 
A switch S0 with four connected hosts named from N0 to 

N3 forms our experimental topology. Links connecting hosts 
and switches are all full duplex with a bandwidth of 10Gbps 
and propagation delay of 20.2us. These values correspond to 
typical values present in infrastructure of production data 
centers [6]. There are two queues and a single demotion 
threshold that form the MLFQ system for this configuration. 
Fig. 4 shows the schematic diagram of the experimental 
topology. 

 
4.1.3.  Workload 

 
The workload consisted of 10000 flows, with 80% being 

short (10 KB) and 20% being long flows (1000 KB). Nodes 
N1 and N3 sent long flows towards N0 whereas N2 sent short 
flows towards N0. In these experiments, we defined that the 
percent that was going to be calculated from the list of 
completed flow sizes to update the demotion threshold was 
the 10th percentile. 

 
4.1.4.  Convergence of the Demotion Thresholds 

 
In this section, we analyze the convergence of the 

demotion threshold. For the sake of comparison, we assess 
three different values of demotion threshold: 1KB, 10KB and 
1000KB that are used for static configuration and for initial 
value of the demotion threshold. These particular values 
induce three situations: in the first configuration (1KB), short 
flows are demoted prematurely. That is, when the flow has 
transmitted 1KB, its packets are queued into the low priority 

 

 
Figure 4. Experimental topology 
Source: The authors 
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queue. The second configuration (10KB) is optimal as it 
keeps short flows in the high priority queue until its 
completion and demotes the long flows towards the low 
priority queue. The third configuration (1000KB) causes long 
flows to stay longer at the high priority queue, which hurts 
the FCT of short flows. The first and third configurations 
clearly induce the threshold mismatch problem discussed on 
Section 2.2. 

Fig. 5 shows the convergence of the demotion threshold 
in the explicit threshold mismatch situations. The threshold 
converges to the value of 10KB, regardless of the initial 
value. With the threshold configured to the optimal value for 
this workload, we do not observe changes since the proposed 
approach detects that the threshold is already set to an 
adequate value. 

These initial experiments show that the adjustment 
approach operates adequately in terms of convergence of the 
demotion threshold. In the next section, we assess the 
effectiveness of the adjustment mechanism in terms of 
minimization of the average and tail FCT when compared to 
the static setting of the demotion threshold. 

 

 
Thr=1KB 

 

 
Thr=10KB 

 

 
Thr=1000KB 

Figure 5. Convergence of the demotion threshold in the proposed approach 
with explicit threshold mismatch 
Source: The Authors 

4.1.5.  Minimization of the FCT 
 
In this section, we present the results after assessing the 

FCT minimization. In this set of experiments, we compare 
the average and tail FCT for short and long flows, both in a 
static threshold configuration and with dynamic adjustment. 
These experiments consider different levels of link 
occupation ranging from 50% to 90%.  

 
Short Flows 

Fig. 6 presents the average FCT of the short flows for the 
configurations inducing threshold mismatch. It can be 
observed that the dynamic adjustment improves the metrics 
in these cases, especially at high traffic loads (higher than 
70%). When the demotion threshold is set to 1KB, an average 
FCT reduction achieved is between 4.9% and 33.5%. When 
the threshold is set to 1000KB, the reduction is between 3.7% 
and 86%. 

Fig. 7 presents the result for the tail (99th percentile) FCT. 
In this case, the dynamic adjustment also improves the 
performance by reducing the FCT in the situation of 
threshold mismatch, especially at high traffic loads. This 
improvement goes from 33.9% to 59.5% when the threshold 
is set to 1KB whereas it is between 51.3% and 93.9% when 
the threshold is set to 1000KB. 

When the threshold is set to the optimal value for this 
workload (i.e. 10KB), the dynamic adjustment achieves 
results close to those obtained with the static setting. That is, 
the dynamic adjustment does not perform further adjustment 
as it detects that the threshold is already set to an appropriate 
value for the workload. Due to this, the plot presenting this 
situation has been omitted. 

 
 
 

Thr=1KB 
 

 
Thr=1000KB 

Figure 6. Average FCT of the short flows 
Source: The Authors 
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Thr=1KB 

 

Thr=1000KB 
Figure 7. Tail FCT of the short flows 
Source: The Authors 

 
 

Long Flows 
Fig. 8 presents the average and tail FCT for the long flows 

when the demotion threshold is set to 1000KB. The 
improvement in the metrics is more noticeable at high loads. 
For the average FCT, the improvement is between 27.1% and 
46.7%. For the tail FCT, the improvement is between 24% 
and 45.8%. 

Average 

 
Tail 

Figure 8. Average and Tail FCT of long flows with threshold set to 1000KB 
Source: The authors 

With respect to the other cases, the dynamic adjustment 
does not induce increments for either the average or the tail 
FCT. As observed in the previous result, the demotion 
thresholds converges to the size of the short flows. Therefore, 
it separates the short and the long flows avoiding them 
becoming mixed. Due to this separation, the long flows are 
not affected by the prioritization of the short flows.  

 
5.  Related work 

 
We present a survey of literature addressing the problem 

of Information-Agnostic Flow Scheduling in a Data Center 
Networks context. Information-agnostic is the set of transport 
mechanisms that try to achieve the performance goals for 
cloud applications without detailed information for the flow 
scheduling.  For a more extended review of the field’s state-
of-the-art, the interested reader can refer to [16,18].  

HULL [3] and QJUMP [11] are approaches that aim to 
avoid the queuing delays that might affect especially short 
flows, but they do not actually require the size of the flow in 
advance. HULL leverages the concept of Phantom Queues 
that consists in simulating a queue associated with the egress 
port in switches. This simulation is implemented through a 
counter that is updated whenever a packet exits a link at high 
rate. Congestion signaling (e.g. ECN marking of DCTCP [1]) 
is associated to the counter instead of the physical switch 
queue, which can be configured to represent a speed slower 
than the actual physical link. Thus, some “bandwidth 
headroom” can be reserved to process high priority traffic. 
On the other hand, QJUMP focuses on reducing the network 
interference that throughput-oriented applications might 
cause by causing high queuing delays. QJUMP claims that 
applications dominated by short flows exhibit low latency 
variance and that low throughputs require higher priorities 
whereas applications with high latency variance and high 
throughput require lower priorities. In order to reduce this 
network interference, end hosts perform rate limitation in a 
non-intrusive way; this enables the applications to specify 
their required priorities. These approaches are agnostic in the 
sense that they do not require to know in advance the size of 
the flows in order to schedule them. However, they do not 
aim at improving the scheduling but reducing the occupation 
of switch buffers. That is to say, improving the FCT of short 
flows is not a primary goal of these works. In addition, in the 
case of QJUMP, it requires an additional API which implies 
modifications in the applications in order to use it. 

Moreover, PIAS [6] and KARUNA [9] are agnostic 
flow scheduling approaches that aim to minimize the FCT 
of short flows by controlling the packet scheduling. They 
leverage MLFQ to achieve this goal. In PIAS, end host 
track the amount of bytes sent by each flow. According to 
this information, end hosts mark packets to match priority 
levels that are configured at data center switches. This 
packet tagging is performed following a MLFQ-like 
approach. That is, packets initially are marked so that they 
enter into the highest priority queue at switches. When the 
flow has sent more than a given amount of bytes (i.e. the 
demotion threshold), packets are marked with the 
following lower priority level. Hence, the more bytes a 
flow sends, the lower the priority value used to mark its 
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packets. This means that demotion thresholds are defined 
and configured at end hosts whereas switches simply 
perform priority scheduling. KARUNA [9] can be 
considered an extension of PIAS, which extends to 
consider deadline constrained flows. KARUNA divides 
flows into three categories: deadline-constrained, non 
deadline-constrained with known sizes, and non deadline-
constrained with unknown sizes. Deadline-constrained 
flows are tagged to enter into the highest priority queue 
within datacenter switches. Non deadline-constrained 
flows with known size are tagged to enter into a specific 
queue. Non-deadline constrained flows with unknown size 
are sieved through the MLFQ scheduler in a similar way 
to the approach used in PIAS. 

A challenging task associated to MLFQ-based 
scheduling is the derivation of a set of demotion thresholds 
that minimizes the average and tail FCT. PIAS and 
KARUNA calculate these thresholds based on traffic 
information consisting in the CDF of the flow sizes of the 
workload that will be present in the network. After the 
derivation of the thresholds, they are distributed and 
deployed at end hosts. Then, they use these thresholds to 
perform the packet tagging procedure [6, 9]. 

We consider that this approach includes some 
limitations. Since traffic in DCN presents time and space 
variations, a set of thresholds that minimizes the FCT of a 
given workload might not be adequate for a different one 
[19]. Also, the mentioned state-of-the-art approaches do 
not update their demotion thresholds dynamically. As 
previously explained, they need to be derived by 
considering the properties of the new workload, and they 
need to be manually deployed at end hosts. 

 
6.  Conclusions and future work 

 
In this paper, we have proposed an approach to adjust 

the demotion thresholds of a MLFQ-based flow 
scheduling approach. We consider that this approach is an 
important first step in order to achieve a truly workload-
agnostic flow scheduling solution. In this sense, our 
proposal aims at overcoming some of the limitations 
present in the state-of-the-art such as the requirement of 
information about the CDF of the workload that will be 
present in the network. 

We performed a preliminary evaluation of our 
approach in a small experimental topology as a proof-of-
concept of the approach’s operation. We verified its 
adaption capability and confirmed that it provides a 
minimization of the FCT of short flows at high traffic 
loads. We also observed that the use of percentiles of the 
completed flow sizes provide a useful hint for the 
adjustment of the demotion thresholds.  

For future work, we propose to design a smarter 
mechanism for the definition of the reference percentiles. 
An important improvement that could be introduced in our 
proposal is the capacity to determine from the observation 
of the traffic which would be adequate values to define the 
percentiles, in order to increase the accuracy of the 
scheduler. 

Finally, an important task to consider for future work 

would be the integration of this threshold adjustment in a 
real software switch. Although recent literature presents 
the concept of programmable switches [8, 21], these 
devices still have open questions regarding elements such 
as the structure of their queuing systems. Thus, we 
consider that well-known software switches [17] with a 
more robust internal architecture design can provide a 
more mature starting point in order to develop this 
threshold adjustment. 
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