

© The author; licensee Universidad Nacional de Colombia.
Revista DYNA, 85(206), pp. 16-23, September, 2018, ISSN 0012-7353

DOI: http://doi.org/10.15446/dyna.v85n206.71626

Dynamic adjustment of a MLFQ flow scheduler to improve cloud
applications performance •

Sergio Armando Gutiérrez ac, Marinho Barcellos b & John Willian Branch a

a,Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, saguti@unal.edu.co, jwbranch@unal.edu.co

b Instituto de Infiormática, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, marinho@inf.ufrgs.br
c Facultad de Ingenierías, Universidad de Medellín, Medellín, Colombia, sagutierrez@udem.edu.co

Received: April 10th, de 2018. Received in revised form: June 7th, 2018. Accepted: June 12th, 2018

Abstract
State-of-the-art solutions for flow scheduling propose the use of Multi Level Feedback Queue (MLFQ) as a mechanism to avoid the
requirement of prior information (i.e. agnosticism) regarding flow sizes. This is an important aspect to achieve the performance goals of
high responsiveness and high throughput that is expected in Cloud Applications (e.g. search engines, social networks, and e-commerce
sites). These goals are tightly associated with the prioritization of short flows (a few KB in size), the majority for these applications rather
than long flows (several MB in size). However, these applications usually cannot provide information in advance about the size of the
flows. In this paper, we analyze the feasibility of providing dynamic adjustment for a MLFQ-based scheduling system in such a way that
it adapts itself to the time and space variations exhibited by Data Center Network (DCN) traffic without requiring prior information about
workload properties.

Keywords: Flow scheduling; data center networks; MLFQ; agnostic flow scheduling

Ajuste dinámico de un programador de flujos MLFQ para mejorar el
desempeño de aplicaciones en la nube

Resumen
Las soluciones presentes actualmente en el área de conmutación de flujos proponen el uso del concepto de Colas Multinivel con
Realimentación (MLFQ por su sigla en inglés) como mecanismo para evitar el requerimiento de información previa (mecanismo agnóstico)
con respecto al tamaño de los flujos de datos. Este es un aspecto importante para el logro de las metas de desempeño de alta capacidad de
respuesta y alto rendimiento, esperadas en las aplicaciones en la nube (Por ejemplo, motores de búsqueda, redes sociales y sitios de
comercio electrónico). Estas metas están estrechamente asociadas a la priorización de los flujos cortos (con tamaños de unos pocos KB),
mayoritarios en estas aplicaciones, sobre los flujos largos (con tamaños de varios MB). Sin embargo, estas aplicaciones usualmente no son
capaces de proporcionar de antemano la información acerca del tamaño de los flujos. En este artículo, analizamos la viabilidad de
proporcionar ajuste dinámico a un esquema de conmutación basado en MLFQ, de tal manera que éste sea capaz de adaptarse a las
variaciones espacio temporales que se observan en el tráfico presente en las redes de centro de datos, sin que se requiera información previa
sobre las propiedades de las cargas de trabajo.

Palabras clave: Conmutación de flujos; redes de centro de datos; MLFQ; conmutación agnóstica de flujos

1. Introduction

Cloud applications running on Data Center Networks

(DCN) have very strict performance requirements which,
when unsatisfied, might affect the revenue obtained by the
applications’ owners [1,2,5-7]. The traffic associated with
these applications consists of a mix of short (those

How to cite: Gutiérrez, S.A., Barcellos, M. and Branch, J.W., Dynamic adjustment of a MLFQ flow scheduler to improve cloud applicationsperformance. DYNA, 85(206), pp.
16-23, September, 2018.

transporting a few kilobytes) and long flows (those
transporting several megabytes or gigabytes). An important
performance goal for these applications is the minimization
of the flow completion time (FCT) of short flows without
inducing starvation in long flows [3,4].

The literature proposes flow scheduling and queue
management as strategies to achieve this goal of minimizing

mailto:sagutierrez@udem.edu.co

Gutiérrez et al / Revista DYNA, 85(206), pp. 16-23, September, 2018.

17

the FCT of short flows. However, this involves three
challenges: First, in many cases, it is not possible to have a-
priori information about the flow sizes to plan the scheduling
[5,6]. Hence, it is impossible to know whether a flow will be
short or long when it starts. Second, even if this information
is available, taking advantage of it might imply prohibitive
modifications in different elements of the infrastructure
(switches and end hosts) and/or the applications themselves
[4]. Third, the scheduling mechanisms need to adapt
themselves to the time and space variations that the traffic
might exhibit [9,19].

Solutions for flow scheduling reported in the literature [4-
6,9,13,15] fail to address some or all of the previously
mentioned challenges. In particular, although some
approaches are agnostic regarding the specific size of flows
for its scheduling, they still assume that it is possible to know
properties in advance such as the flow size distribution for
the workloads present on the network [6,9].

In this paper, we analyze the situation, especially in the
context of solutions based on a Multi-Level Feedback Queue
(MLFQ) scheduler when the current network traffic does not
fit the scheduling configuration. By using simulation, we
observe how, despite the fact that this approach introduces
agnosticism in the flow scheduling, it is still dependent on
previous knowledge of some general features for the
workload present on the network to achieve the goal of
minimizing FCT for the short flows. To address this
dependency, we propose the implementation of a monitoring
mechanism system focused on detecting traffic properties
that can be used to dynamically adjust the scheduling
configuration in such a way that it can handle the space and
time variations that the traffic associated to cloud
applications usually exhibits [1,7,14,19].

This paper is organized as follows: Section 2 analyzes the
demotion threshold problem that might be present in MLFQ-
based flow scheduling systems. Section 3 describes our
monitoring approach and discusses some assumptions that it
leverages. Section 4 presents the results of a preliminary
evaluation of the effectiveness of our proposal to minimize
the FCT of short flows on a Data Center workload. Section 5
presents the related literature, and Section 6 concludes the
paper.

2. Threshold mismatch in agnostic flow scheduling mechanisms

2.1. MLFQ

MLFQ is a concept that has come from Operating

Systems [10]. It was conceived for multiuser timeshare
systems and it is based on employing a multilevel queue to
manage processes, that is, the instances of the programs
executed on the system. The goal of MLFQ is to approximate
the Shortest Job First (SJF) scheduling heuristic, which
theoretically minimizes both the average and tail process
completion time. MLFQ aims to prioritize short processes
(which are mainly associated with interactive operations and
I/O intensive operations) over long processes (usually
associated to batch operations), without knowing in advance
the exact duration of the former.

Fig. 1 presents the scheme of a MLFQ scheduler in an

operating system. It consists of a set of FIFO queues and a
scheduling policy. The number of queues goes from two up
to a given number according to the implementation (e.g. the
Solaris Operating System uses sixty). Each queue has an
associated value indicating the maximum quantum for a
process to be queued at that given queue (i.e. a given priority
level). Higher priority queues have smaller quantum values
associated and these values increase between successive
queues.

Initially, all the processes enter the highest priority queue.
A process is demoted and queued on the next priority queue
whenever it exceeds the specified quantum to stay at that
queue. Hence, this approach leads to the prioritization of
short over long processes. The former tend to complete
within the first queues whereas the later tend to sink towards
the lowest priority queue.

The scheduling policy in MLFQ is very simple. In order
to determine the next process to dequeue, the set of queues is
checked following a top-down strategy. Initially, the highest
priority queue is checked. If this queue is non-empty, then the
first process in the queue is scheduled and runs until
blocking. This process is then moved to the end of the same
queue (implementing FIFO) or to the end of next queue
(demoted to the next lower priority). However, if the highest
priority queue is empty, then the next queue (lower priority)
is checked just as with the highest one. The scheduling is
repeated for the next process, always starting with the highest
priority queue.

Recently, the literature on flow scheduling proposed to
adapt the notion of MLFQ to schedule data flows. Flow
scheduling approaches based on MLFQ aim at approximating
scheduling heuristics such as Least Attained Service (LAS)
or Shortest Job First (SJF) in order to prioritize short flows
[16]. This approximation is performed by dynamically
assigning priorities to flows without actually knowing their
size in advance. Flows are initially processed at the top
priority queue of a MLFQ, and they are progressively
demoted according to a given criteria such as deadline
meeting, byte count, or associated congestion notifications
[3, 5, 6, 9].

Figure 1. A process scheduling system based on MLFQ
Source: The authors

Gutiérrez et al / Revista DYNA, 85(206), pp. 16-23, September, 2018.

18

2.2. Threshold mismatch in MLFQ

Defining the demotion thresholds for an MLFQ scheduler

is a challenging task. It involves determining the right values
that indicate when the scheduled entity should be moved
from a given priority level to another lower level.

This definition is associated with a specific performance
goal. In the case of flow scheduling for cloud applications,
these thresholds should aim at minimizing the FCT of short
flows since it influences the responsiveness as perceived by
the end user. However, although approaches based on MLFQ
are conceptually agnostic (i.e. they do not require a-priori
information about the duration of a process or the size of a
flow for the scheduling), they still require some prior
information to derive the demotion thresholds. This
information is associated to specific properties of the traffic
workloads. If the demotion thresholds do not fit these
properties, then the threshold mismatch problem arises.
Specifically, in the context of flow scheduling, the threshold
mismatch problem might hamper the goal of minimizing the
FCT, and this might hurt especially short flows.

To illustrate this point, assume a simplified MLFQ with
two priority queues and, therefore, a single demotion
threshold. Suppose that, for the sake of simplicity, there are
only two flow sizes: 10KB and 10MB. Assume that for a
given workload, 90% of its flows are 10KB and the
remaining 10% are 10MB. In this situation, it would be
optimal to set the demotion threshold to 10KB since this
would keep the short flows in the high priority queue until
their completion. Thus, short flows are prioritized over the
long flows, which will ultimately be queued into the low
priority queue. Assume that later, there is a shift in the
workload. In the new workload, the size of small flows is
20KB instead of 10KB. With the demotion threshold set to
10KB, some of the packets of the short flows will be demoted
to the low priority queue. Hence, the latency for these short
flows will be larger than it should be. Fig. 2 illustrates this
situation.

Figure 2. The threshold mismatch problem
Source: The authors

3. Dynamic adjustment of MLFQ scheduler

In this section, we propose an approach to adapt the

configuration of a MLFQ scheduler, aiming to achieve
workload-agnostic operation. That is, an approach that avoids
the requirement of prior information about workload
properties that are present in the network.

3.1. Overview

As we previously discussed, state-of-the-art solutions

addressing agnostic flow scheduling require information
about the distribution of the flow sizes for the workloads.
This information is used to derive the demotion thresholds
for the MLFQ scheduler. This means that, whenever the
workload shifts, there might be a mismatch between the
current scheduling configuration and the current workload.
This mismatch might adversely affect the FCT for the short
flows.

We propose observing the traffic entering into the switch
ports. This observation, performed during a given time slot
(monitoring window) enables the acquisition of information
to infer the traffic behavior associated to the workloads
present in the network. Periodically (say, every 100ms), the
demotion thresholds are adjusted according to information
acquired during the current monitoring window (say 500ms).
The rationale behind this approach is to use the past to try to
predict the future

3.2. Assumptions

Our concept of adaption of MLFQ scheduling leverages

the notion of Programmable Switches. Hence, we assume
that the MLFQ is implemented with the switch queues
associated to each port, and the demotion thresholds are
defined and maintained within the switch. The operations of
traffic monitoring and threshold adjustment are executed also
within the switch (i.e. separated execution threads). This is
essentially different to the approach proposed by related
work, which considers a packet tagging mechanism based on
MLFQ, with strict priority scheduling performed at switches
[6, 9].

Although the MLFQ scheduling is implemented at
switches, some degree of cooperation is required from the
end hosts. Particularly, we assume that end hosts can add a
header to packets to inform a) the amount of bytes that a flow
has currently sent and b) the final size of the flow. The
addition of packet headers has already been used in related
work [6,13,15].

Switches receive and process this information sent from
end hosts and maintain a sorted list for each port, which
contains the size of each flow that is completed during the
monitoring window. Then, periodically, the switch calculates
a set of predefined percentiles (say 10th, 20th, etc) values from
that sorted list. These percentiles provide a clue to adjust the
demotion thresholds of the MLFQ scheduler of the particular
port. After the adjustment, the list of flow sizes is pruned to
make the monitoring window slide forward.

Our observation is that low percentiles can define upper
bounds for short flows, which should be associated to higher

Gutiérrez et al / Revista DYNA, 85(206), pp. 16-23, September, 2018.

19

Figure 3. Typical Web Search workload in a production data center
Source: The Authors with data from [19]

priority levels, and higher percentiles can define upper
bounds for long flows, which should be associated to lower
priority levels. For example, consider the workload Web
Search described in Fig. 3. Assume a MLFQ system with two
queues (therefore, one demotion threshold). For that
workload, the plotted CDF indicates that 80% of the flows
are shorter than 10KB. Our intuition is that by calculating low
percentiles (say 10th or 20th) in the list of completed flow
sizes, we might have a good idea of setting a demotion
threshold that approximates the upper bound for the short
flows in the workload and then prioritize them by separating
from the long flows.

We claim that one advantage of implementing our
threshold adjustment mechanism within the switch is avoiding
misuse by a malicious host. For example, with packet marking
at end hosts, it might happen that a malicious host marks its
packets with the highest priority value regardless the amount
of bytes that flows have transmitted. In contrast, in our
approach, this misuse is avoided since the switch schedules
packets according to the amount of bytes transmitted by each
flow. Also, since the threshold adjustment is local to switches,
it adapts to the time and space variations of the traffic. For
example, for different switches, the notion of what is a short
flow and the sizes of these flows varies. However, since short
flows are the majority in typical data center workloads, the
calculation of low percentiles at each switch will yield to
prioritize short flows at each switch. This also contrasts with
the related work, in which the demotion thresholds are
configured globally for all the DCN switches.

4. Experiments and results

4.1. Simulation model

We evaluated our proposal of threshold adjustment via

NS-2. This is a discrete time, packet-based network
simulator, widely used in the literature to perform large scale
evaluation of different solutions in the field of computer
networks. Our simulations were executed on a server with an
Intel(R) Core(TM) i7-4790S CPU with eight cores @
3.20Ghz and 8GB of RAM. In our experiments, we compare
our proposal of threshold adjustment against the closest
related work which is PIAS [6], with static threshold
configuration.

4.1.1. Assumptions and input factors

In our experiments, we followed the same guidelines as

related work. For our transport protocol, we used DCTCP [1]
configured with the recommended values for the parameters
K and g (65 and 1/16 respectively) [2]. For the control of the
Explicit Congestion Notification, we implemented per-port
marking. For a detailed analysis of this choice, please refer to
Section IV-A number 2 of [6].

For our evaluation, we considered different traffic load
levels ranging from 50% to 90%. We define the monitoring
window to be 250ms and we perform the threshold
adjustment in 200ms intervals.

4.1.2. Topology

A switch S0 with four connected hosts named from N0 to

N3 forms our experimental topology. Links connecting hosts
and switches are all full duplex with a bandwidth of 10Gbps
and propagation delay of 20.2us. These values correspond to
typical values present in infrastructure of production data
centers [6]. There are two queues and a single demotion
threshold that form the MLFQ system for this configuration.
Fig. 4 shows the schematic diagram of the experimental
topology.

4.1.3. Workload

The workload consisted of 10000 flows, with 80% being

short (10 KB) and 20% being long flows (1000 KB). Nodes
N1 and N3 sent long flows towards N0 whereas N2 sent short
flows towards N0. In these experiments, we defined that the
percent that was going to be calculated from the list of
completed flow sizes to update the demotion threshold was
the 10th percentile.

4.1.4. Convergence of the Demotion Thresholds

In this section, we analyze the convergence of the

demotion threshold. For the sake of comparison, we assess
three different values of demotion threshold: 1KB, 10KB and
1000KB that are used for static configuration and for initial
value of the demotion threshold. These particular values
induce three situations: in the first configuration (1KB), short
flows are demoted prematurely. That is, when the flow has
transmitted 1KB, its packets are queued into the low priority

Figure 4. Experimental topology
Source: The authors

Gutiérrez et al / Revista DYNA, 85(206), pp. 16-23, September, 2018.

20

queue. The second configuration (10KB) is optimal as it
keeps short flows in the high priority queue until its
completion and demotes the long flows towards the low
priority queue. The third configuration (1000KB) causes long
flows to stay longer at the high priority queue, which hurts
the FCT of short flows. The first and third configurations
clearly induce the threshold mismatch problem discussed on
Section 2.2.

Fig. 5 shows the convergence of the demotion threshold
in the explicit threshold mismatch situations. The threshold
converges to the value of 10KB, regardless of the initial
value. With the threshold configured to the optimal value for
this workload, we do not observe changes since the proposed
approach detects that the threshold is already set to an
adequate value.

These initial experiments show that the adjustment
approach operates adequately in terms of convergence of the
demotion threshold. In the next section, we assess the
effectiveness of the adjustment mechanism in terms of
minimization of the average and tail FCT when compared to
the static setting of the demotion threshold.

Thr=1KB

Thr=10KB

Thr=1000KB

Figure 5. Convergence of the demotion threshold in the proposed approach
with explicit threshold mismatch
Source: The Authors

4.1.5. Minimization of the FCT

In this section, we present the results after assessing the

FCT minimization. In this set of experiments, we compare
the average and tail FCT for short and long flows, both in a
static threshold configuration and with dynamic adjustment.
These experiments consider different levels of link
occupation ranging from 50% to 90%.

Short Flows

Fig. 6 presents the average FCT of the short flows for the
configurations inducing threshold mismatch. It can be
observed that the dynamic adjustment improves the metrics
in these cases, especially at high traffic loads (higher than
70%). When the demotion threshold is set to 1KB, an average
FCT reduction achieved is between 4.9% and 33.5%. When
the threshold is set to 1000KB, the reduction is between 3.7%
and 86%.

Fig. 7 presents the result for the tail (99th percentile) FCT.
In this case, the dynamic adjustment also improves the
performance by reducing the FCT in the situation of
threshold mismatch, especially at high traffic loads. This
improvement goes from 33.9% to 59.5% when the threshold
is set to 1KB whereas it is between 51.3% and 93.9% when
the threshold is set to 1000KB.

When the threshold is set to the optimal value for this
workload (i.e. 10KB), the dynamic adjustment achieves
results close to those obtained with the static setting. That is,
the dynamic adjustment does not perform further adjustment
as it detects that the threshold is already set to an appropriate
value for the workload. Due to this, the plot presenting this
situation has been omitted.

Thr=1KB

Thr=1000KB

Figure 6. Average FCT of the short flows
Source: The Authors

Gutiérrez et al / Revista DYNA, 85(206), pp. 16-23, September, 2018.

21

Thr=1KB

Thr=1000KB
Figure 7. Tail FCT of the short flows
Source: The Authors

Long Flows
Fig. 8 presents the average and tail FCT for the long flows

when the demotion threshold is set to 1000KB. The
improvement in the metrics is more noticeable at high loads.
For the average FCT, the improvement is between 27.1% and
46.7%. For the tail FCT, the improvement is between 24%
and 45.8%.

Average

Tail

Figure 8. Average and Tail FCT of long flows with threshold set to 1000KB
Source: The authors

With respect to the other cases, the dynamic adjustment
does not induce increments for either the average or the tail
FCT. As observed in the previous result, the demotion
thresholds converges to the size of the short flows. Therefore,
it separates the short and the long flows avoiding them
becoming mixed. Due to this separation, the long flows are
not affected by the prioritization of the short flows.

5. Related work

We present a survey of literature addressing the problem

of Information-Agnostic Flow Scheduling in a Data Center
Networks context. Information-agnostic is the set of transport
mechanisms that try to achieve the performance goals for
cloud applications without detailed information for the flow
scheduling. For a more extended review of the field’s state-
of-the-art, the interested reader can refer to [16,18].

HULL [3] and QJUMP [11] are approaches that aim to
avoid the queuing delays that might affect especially short
flows, but they do not actually require the size of the flow in
advance. HULL leverages the concept of Phantom Queues
that consists in simulating a queue associated with the egress
port in switches. This simulation is implemented through a
counter that is updated whenever a packet exits a link at high
rate. Congestion signaling (e.g. ECN marking of DCTCP [1])
is associated to the counter instead of the physical switch
queue, which can be configured to represent a speed slower
than the actual physical link. Thus, some “bandwidth
headroom” can be reserved to process high priority traffic.
On the other hand, QJUMP focuses on reducing the network
interference that throughput-oriented applications might
cause by causing high queuing delays. QJUMP claims that
applications dominated by short flows exhibit low latency
variance and that low throughputs require higher priorities
whereas applications with high latency variance and high
throughput require lower priorities. In order to reduce this
network interference, end hosts perform rate limitation in a
non-intrusive way; this enables the applications to specify
their required priorities. These approaches are agnostic in the
sense that they do not require to know in advance the size of
the flows in order to schedule them. However, they do not
aim at improving the scheduling but reducing the occupation
of switch buffers. That is to say, improving the FCT of short
flows is not a primary goal of these works. In addition, in the
case of QJUMP, it requires an additional API which implies
modifications in the applications in order to use it.

Moreover, PIAS [6] and KARUNA [9] are agnostic
flow scheduling approaches that aim to minimize the FCT
of short flows by controlling the packet scheduling. They
leverage MLFQ to achieve this goal. In PIAS, end host
track the amount of bytes sent by each flow. According to
this information, end hosts mark packets to match priority
levels that are configured at data center switches. This
packet tagging is performed following a MLFQ-like
approach. That is, packets initially are marked so that they
enter into the highest priority queue at switches. When the
flow has sent more than a given amount of bytes (i.e. the
demotion threshold), packets are marked with the
following lower priority level. Hence, the more bytes a
flow sends, the lower the priority value used to mark its

Gutiérrez et al / Revista DYNA, 85(206), pp. 16-23, September, 2018.

22

packets. This means that demotion thresholds are defined
and configured at end hosts whereas switches simply
perform priority scheduling. KARUNA [9] can be
considered an extension of PIAS, which extends to
consider deadline constrained flows. KARUNA divides
flows into three categories: deadline-constrained, non
deadline-constrained with known sizes, and non deadline-
constrained with unknown sizes. Deadline-constrained
flows are tagged to enter into the highest priority queue
within datacenter switches. Non deadline-constrained
flows with known size are tagged to enter into a specific
queue. Non-deadline constrained flows with unknown size
are sieved through the MLFQ scheduler in a similar way
to the approach used in PIAS.

A challenging task associated to MLFQ-based
scheduling is the derivation of a set of demotion thresholds
that minimizes the average and tail FCT. PIAS and
KARUNA calculate these thresholds based on traffic
information consisting in the CDF of the flow sizes of the
workload that will be present in the network. After the
derivation of the thresholds, they are distributed and
deployed at end hosts. Then, they use these thresholds to
perform the packet tagging procedure [6, 9].

We consider that this approach includes some
limitations. Since traffic in DCN presents time and space
variations, a set of thresholds that minimizes the FCT of a
given workload might not be adequate for a different one
[19]. Also, the mentioned state-of-the-art approaches do
not update their demotion thresholds dynamically. As
previously explained, they need to be derived by
considering the properties of the new workload, and they
need to be manually deployed at end hosts.

6. Conclusions and future work

In this paper, we have proposed an approach to adjust

the demotion thresholds of a MLFQ-based flow
scheduling approach. We consider that this approach is an
important first step in order to achieve a truly workload-
agnostic flow scheduling solution. In this sense, our
proposal aims at overcoming some of the limitations
present in the state-of-the-art such as the requirement of
information about the CDF of the workload that will be
present in the network.

We performed a preliminary evaluation of our
approach in a small experimental topology as a proof-of-
concept of the approach’s operation. We verified its
adaption capability and confirmed that it provides a
minimization of the FCT of short flows at high traffic
loads. We also observed that the use of percentiles of the
completed flow sizes provide a useful hint for the
adjustment of the demotion thresholds.

For future work, we propose to design a smarter
mechanism for the definition of the reference percentiles.
An important improvement that could be introduced in our
proposal is the capacity to determine from the observation
of the traffic which would be adequate values to define the
percentiles, in order to increase the accuracy of the
scheduler.

Finally, an important task to consider for future work

would be the integration of this threshold adjustment in a
real software switch. Although recent literature presents
the concept of programmable switches [8, 21], these
devices still have open questions regarding elements such
as the structure of their queuing systems. Thus, we
consider that well-known software switches [17] with a
more robust internal architecture design can provide a
more mature starting point in order to develop this
threshold adjustment.

Acknowledgments

This work was supported by: the Universidad Nacional

de Colombia (UNAL) through the "Outstanding Postgraduate
Student" scholarship from 2012 to 2016; Colciencias,
through the "567 - National Doctorate Studies" scholarship
from 2013 to 2017; the Universidad de Medellín (UDEM);
and the Universidade Federal do Rio Grande do Sul
(UFRGS), Porto Alegre, Brazil.

References

[1] Alizadeh, M., Greenberg, A., Maltz, D.A., Padhye, J., Patel, P.,

Prabhakar, B., Sengupta, S. and Sridharan, M., Data Center TCP
(DCTCP). Proceedings of the ACM SIGCOMM 2010 Conference,
New York, NY, USA, 2010, pp. 63-74. DOI:
10.1145/1851275.1851192

[2] Alizadeh, M., Javanmard, A. and Prabhakar, B., Analysis of DCTCP:
stability, convergence, and fairness. Proceedings of the ACM
SIGMETRICS Joint International Conference on Measurement and
Modeling of Computer Systems, New York, NY, USA, 2011, pp. 73-
84. DOI: 10.1145/1993744.1993753

[3] Alizadeh, M., Kabbani, A., Edsall, T., Prabhakar, B., Vahdat, A. and
Yasuda, M., Less is more: trading a little bandwidth for ultra-low
latency in the data center. Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation, Berkeley, CA,
USA, 2012, pp.19-19.

[4] Alizadeh, M., Yang, S., Sharif, M., Katti, S., McKeown, N., Prabhakar,
B. and Shenker, S., pFabric: minimal near-optimal datacenter
transport. Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM, New York, NY, USA, 2013, pp. 435-446. DOI:
10.1145/2486001.2486031

[5] Bai, W., Chen, L., Chen, K., Han, D., Tian, C. and Wang, H.,
Information-agnostic flow scheduling for commodity data centers.
Proceedings of the 12th USENIX Conference on Networked Systems
Design and Implementation, Berkeley, CA, USA, 2015, pp. 455-468.

[6] Bai, W., Chen, L., Chen, K., Han, D., Tian, C. and Wang, H., PIAS:
practical information-agnostic flow scheduling for commodity data
centers. IEEE/ACM Transactions on Networking. 25(4), pp. 1954-
1967, 2017. DOI: 10.1109/TNET.2017.2669216

[7] Benson, T., Akella, A. and Maltz, D.A., Network traffic characteristics
of data centers in the wild. Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, New York, NY, USA, 2010, pp.
267-280. DOI: 10.1145/1879141.1879175

[8] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford,
J., Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G. and Walker,
D., P4: programming protocol-independent packet processors.
SIGCOMM Comput. Commun. Rev. 44(3), pp. 87-95, 2014. DOI:
10.1145/2656877.2656890

[9] Chen, L., Chen, K., Bai, W. and Alizadeh, M., Scheduling mix-flows
in commodity datacenters with Karuna. Proceedings of the 2016 ACM
SIGCOMM Conference, New York, NY, USA, 2016, pp. 174-187.
DOI: 10.1145/2934872.2934888

[10] Corbato, F.J., Marjorie Merwin-Daggett and Daley, R.C., An
experimental time-sharing system. Classic Operating Systems. P.B.
Hansen, ed. Springer New York. 2001, pp. 117-137.

Gutiérrez et al / Revista DYNA, 85(206), pp. 16-23, September, 2018.

23

[11] Grosvenor, M.P., Schwarzkopf, M., Gog, I., Watson, R.N., Moore,
A.W., Hand, S. and Crowcroft, J., Queues don’t matter when you can
JUMP Them! Proc. NSDI, 2015.

[12] Hoganson, K. and Brown, J., Intelligent mitigation in multilevel
feedback queues. Proceedings of the SouthEast Conference, New
York, NY, USA, 2017, pp. 158-163. DOI: 10.1145/3077286.3077319

[13] Hong, C.-Y., Caesar, M. and Godfrey, P.B., Finishing flows quickly
with preemptive scheduling. Proceedings of the ACM SIGCOMM
2012 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, New York, NY, USA, 2012,
pp. 127-138. DOI: 10.1145/2342356.2342389

[14] Joy, S. and Nayak, A., Improving flow completion time for short flows
in datacenter networks. 2015 IFIP/IEEE International Symposium on
Integrated Network Management (IM), 2015, pp. 700-705. DOI:
10.1109/INM.2015.7140358

[15] Munir, A., Baig, G., Irteza, S.M., Qazi, I.A., Liu, A.X. and Dogar, F.R.,
Friends, not foes: synthesizing existing transport strategies for data
center networks. Proceedings of the 2014 ACM Conference on
SIGCOMM, New York, NY, USA, 2014, pp. 491-502. DOI:
10.1145/2740070.2626305

[16] Noormohammadpour, M. and Raghavendra, C.S., Datacenter traffic
control: understanding techniques and trade-offs. IEEE
Communications Surveys Tutorials. 99, pp. 1-1, 2017. DOI:
10.1109/COMST.2017.2782753

[17] Pfaff, B., Pettit, J., Koponen, T., Jackson, E.J., Zhou, A., Rajahalme,
J., Gross, J., Wang, A., Stringer, J., Shelar, P. et al., The design and
implementation of Open vSwitch. NSDI, 2015, pp. 117-130

[18] Rojas-Cessa, R., Kaymak, Y. and Dong, Z., Schemes for fast
transmission of flows in data center networks. IEEE Communications
Surveys Tutorials. 17(3), pp. 1391-1422, 2015. DOI:
10.1109/COMST.2015.2427199

[19] Roy, A., Zeng, H., Bagga, J., Porter, G. and Snoeren, A.C., Inside the
social Network’s (datacenter) Network. Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, New
York, NY, USA, 2015, pp. 123-137.

[20] Sivaraman, A., Cheung, A., Budiu, M., Kim, C., Alizadeh, M.,
Balakrishnan, H., Varghese, G., McKeown, N. and Licking, S., Packet
transactions: high-level programming for line-rate switches.
Proceedings of the 2016 ACM SIGCOMM Conference, New York,
NY, USA, 2016, pp. 15-28. DOI: 10.1145/2785956.2787472

[21] Sivaraman, A., Kim, C., Krishnamoorthy, R., Dixit, A. and Budiu, M.,
DC.P4: programming the forwarding plane of a data-center switch.
Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research, New York, NY, USA, 2015, pp. 2:1-
2:8. DOI: 10.1145/2774993.2775007

[22] Sivaraman, A., Subramanian, S., Alizadeh, M., Chole, S., Chuang, S.-
T., Agrawal, A., Balakrishnan, H., Edsall, T., Katti, S. and McKeown,
N., Programmable packet scheduling at line rate. Proceedings of the
2016 ACM SIGCOMM Conference, New York, NY, USA, 2016, pp.
44-57. DOI: 10.1145/2934872.2934899

S.A. Gutiérrez, received the BSc. Eng in Computer Science degree in 2008 from
Universidad de San Buenaventura, the MSc., Eng in Computer Science in 2011
from Universidad Nacional de Colombia, sede Medellín, and he is currently
candidate to the degree of PhD in Computer Science from Universidad Nacional
de Colombia. From 2000 to 2012, he worked as System Administrator and later as
Senior Engineer, managing, operating, supporting and developing
telecommunication solutions at different scales and criticality levels. He is
currently full time lecturer at Universidad de Medellin, and previously he has been
also part time lecturer at Universidad de San Buenaventura and Universidad
Nacional de Colombia. His research interests include computer networks, security
in computer networks, data center networks, software defined networks,
programmable devices and application of pattern recognition and machine learning
to computer networks.
ORCID: 0000-0003-2880-4601

M. Barcellos, is a CNPq 1D level researcher, senior member of the
Association for Computing Machinery (ACM) and the Brazilian Computer
Society (SBC). He received BSc. and MSc. degrees in Computer Science
from Federal University of Rio Grande do Sul, Brazil (1989 and 1993,
respectively) and PhD degree in Computer Science from University of

Newcastle Upon Tyne (1998). Between 1999 and 2008, worked as a
professor at UNISINOS university, spending 2003-2004 at BT Research
Labs working for University of Manchester on high-performance multicast
transport. Since 2008 Prof. Barcellos has been with the Federal University
of Rio Grande do Sul (UFRGS), where he is an associate professor. He has
authored many papers in leading vehicles related to computer networks and
security, also serving as PC member, PC chair and General Chair. Prof.
Barcellos was the elected chair of the Special Interest Group on Computer
Security of the Brazilian Computer Society (CESeg/SBC) 2011-2012. He is
the appointed Director of Diversity and Outreach in ACM SIGCOMM for
the term 2017-2021. His current research interests are Internet
measurements, programmable data planes, and security aspects of those
networks.
ORCID: 0000-0002-1505-6408

J.W. Branch, received the BSc. in Mining Engineering, his MSc. degree in
System Engineering and his PhD. in Engineering from Universidad Nacional
de Colombia, Campus Medellín, in 1995, 1997 and 2007 respectively.
Currently, He is full professor in the Department of Computer Science at
Universidad Nacional de Colombia, Campus Medellín. His main research
interests encompass computer vision, image processing and their
applications to the industry field and applications of pattern recognition in
the field of Computer Networks.
ORCID: 0000-0002-0378-028X

Área Curricular de Ingeniería
de Sistemas e Informática

Oferta de Posgrados

Especialización en Sistemas
Especialización en Mercados de Energía

Maestría en Ingeniería - Ingeniería de Sistemas
Doctorado en Ingeniería- Sistemas e Informática

Mayor información:

E-mail: acsei_med@unal.edu.co

Teléfono: (57-4) 425 5365

	1. Introduction
	2. Threshold mismatch in agnostic flow scheduling mechanisms
	2.1. MLFQ
	2.2. Threshold mismatch in MLFQ

	3. Dynamic adjustment of MLFQ scheduler
	3.1. Overview
	3.2. Assumptions

	4. Experiments and results
	4.1. Simulation model
	4.1.1. Assumptions and input factors
	4.1.2. Topology
	4.1.3. Workload
	4.1.4. Convergence of the Demotion Thresholds
	4.1.5. Minimization of the FCT

	Short Flows
	Long Flows
	5. Related work
	6. Conclusions and future work
	Acknowledgments
	References

