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Abstract 
Flow behind the casing has normally been identified and quantified using production logging tools. Very few applications of pressure 
transient analysis, which is much cheaper, have been devoted to determining compromised cemented zones. In this work, a methodology 
for a well test interpretation for determining conductivity behind the casing is developed. It provided good results with synthetic examples. 
 
Keywords: radial flow; linear flow; TDS technique; pressure derivative. 

 
 

Aproximación a la conductividad hidráulica de flujo detrás del 
revestimiento entre capas de pruebas de presión 

 
Resumen 
El flujo detrás del revestimiento se ha identificado y cuantificado normalmente utilizando herramientas de registro de producción. Se han 
efectuado muy pocos desarrollos de análisis de presión transitoria, que son mucho más baratas, para la determinación de zonas cementadas 
comprometidas. En este trabajo, se desarrolla una metodología para la interpretación de las pruebas de pozo para la determinación de la 
conductividad detrás del revestimiento y se prueba con buenos resultados con ejemplos sintéticos. 
 
Palabras clave: flujo radial; flujo lineal; técnica TDS; derivada de presión. 

 
 
 

1.  Introduction 
 
Determining cement integrity has long been a challenge 

in the oil industry. Production logging tools have been the 
most useful tools for finding compromised cement zones 
where cross-flow behind the casing takes place. Among these 
methods, [10] presented a thermal neutron log decay tool for 
gamma ray detection so water saturation in cased holes could 
be evaluated. [1] measured the acoustic behavior of flow 
behind pipes in commingled reservoirs with different 
pressures. [2] provided a radial differential temperature 
(RDT) logging tool to measure variations in temperature 
inside the casing wall affected by thermal properties and fluid 
movement. [6] used oxygen activation to determine water-
flow velocity behind the casing.  
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Very few works are found for determining fluid flow 
behind the casing using transient pressure analysis. [5] 
presented some numerical simulation results to monitor flow 
behind the casing using the pressure derivative versus the 
time log-log plot. They did not quantify the amount of flow 
between the layers. [7] presented an excellent analytical 
model to quantify flow behind the casing and measure well-
flowing pressure in each layer. Later, [8] used the model 
introduced by [7] to present some pressure derivative 
behavior and establish the effect of flow capacity contrast on 
the pressure derivative behavior in both layers. He also 
provided two field examples in which interpretation was 
performed by non-linear regression analysis.  

However, an easy-to-use methodology for interpretation 
of pressure tests when flow behind the casing takes place 
does not yet exist. In this work, the model presented by [7] is 
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used, so pressure derivative behaviors were studied under the 
three scenarios considered by [8], so unique features found 
on the pressure derivative plot were used and expressions for 
the estimation of the conductivity behind the casing were 
developed and successfully tested with synthetic examples. It 
has been demonstrated that the TDS technique, [9], is very 
practical and efficient for well-test interpretation. A summary 
of its use has been recently introduced by [3]. They reported 
many cases where the TDS technique, [9], provided accurate 
and practical results. The latest application of TDS Technique 
was devoted to horizontal wells in sensitive-stress reservoirs 
[4], respectively. 

 
2.  Mathematical Model 

 
The mathematical model presented by [8] is given in the 

Laplacian domain as: 
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The dimensionless parameters are defined by: 

 

2 ; 1, 2
( )

j j
D j

w j

t
t j

r
η

= =  (12) 

 

2 ; 1, 2
( )
j j

D j
w j

P
P j

qB r
α ∆

= =  (13) 

 

2

( * ')
( * ) ; 1, 2

( )
j j

D D j
w j

t P
t P j

qB r
α ∆

= =  (14) 

 
 

As observed from the model, the interpretation requires 
simultaneously recording well pressure from the two adjacent 
layers that are isolated along the wellbore, as depicted in Fig. 
1. 
 
 
3.  Transient pressure behavior 

 
Eqs. (6) and (9) provide the well-flowing pressure at 

layers 1 and 2 as sketched in the solution system of Fig. 1. 
When cement is compromised so fluid can flow behind the 
casing from the underlying layer (layer 2) to the producing 
layer (layer 1), a simultaneous effect of a radial flow regime 
on the horizontal plane and a linear flow regime along the 
vertical axes (behind the casing) is expected to develop 
during the middle-time flow period, as depicted in Fig. 2. 
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Figure 1. Schematic of solution system. 
Source: The Authors. 
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Figure 2. System flow regimes. 
Source: The Authors. 

 
 

This combination of the radial and linear flow regime, called 
here radi-linear (RL) flow regime, has a non-zero slope on 
the late-time of the pressure-derivative curve. The inclination 
of the slope is positive when flow leaves the layer and 
negative when the flow enters or feeds the layer. 

It is also important to point out that as flow capacity or 
conductivity along the cement shaft change so does the slope 
of the pressure derivative. In other words, several values of 
pressure-derivative slopes can be observed leading to several 
mathematical flow behaviors. If a single slope was 
developed, the interpretation would be much easier. The 
pressure behavior is also a function of the flow-capacity, kh, 
contrast between the two layers. Therefore, there are three 
possible scenarios of pressure behavior depending upon the 
flow-capacity contrast. For instance, when k2h2 > k1h1 (refer 
to Fig. 3), the radi-linear flow regime sees conductivity 
values up to 200 md-ft (although shown 100 md-ft in the plot) 
in layer 2, and the slope of the pressure derivative is positive. 
For values higher than 200 md-ft, not shown in the plot, the 
pressure derivative becomes flat. Then, for values between 
200 and 4000 md-ft, changes in the slope of the pressure 
derivative are observed on the producing layer (layer 1). 
However, the slope is negative because the layer is being fed 
by fluid. 
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Figure 3. Dimensionless pressure derivative behavior for k2h2 > k1h1. 
Source: The Authors. 
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Figure 4. Dimensionless pressure derivative behavior for k2h2 = k1h1. 
Source: The Authors. 
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Figure 5. Dimensionless pressure derivative behavior for k2h2 < k1h1. 
Source: The Authors. 
 
 

Fig. 4 shows no contrast in flow capacity, k2h2 = k1h1. 
Layer 1 always displays a flat pressure derivative, indicating 
that the pressure derivative measurements of layer 1 cannot 
be interpreted. A positive pressure-derivative slope is 
observed during the middle time period. As conductivity 
increases, the slope of the pressure derivative slowly 
decreases after about 15000 md-ft. Values of conductivity 
greater than that provide a flat pressure derivative, so 
conductivity can no longer be predicted.  

The last scenario considers k2h2 < k1h1, as reported in Fig. 
5. Notice that there are no changes in the slope of the pressure 
derivative in layer 1 for any value of conductivity, and small 
changes are only observed in layer 2 for conductivity values 
less than 200 md-ft. 

 
4.  Pressure derivative analysis interpretation 

 
The interpretation methodology presented here follows 

the philosophy of the TDS Technique, Tiab (1995), to 
develop expressions from characteristic points. In this case, 
the slope of the pressure derivative curve becomes the 
characteristic feature. As mentioned before, the slope of the 
pressure derivative is a function of the layers’ flow capacity 
and the behind-casing conductivity. Then, the equations were 
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grouped according to an approximated-pressure derivative 
slope. Once flow behind the casing is suspected, the pressure 
derivatives from the two recorders are plotted and, depending 
on each scenario, the slope will determine the equation to be 
used. 

 
4.1. Case 1 – k2h2 > k1h1 

 
When FC ≤ 20 at layer 2, the average slope value for this 

group of conductivities is 0.0411. The following empirical 
expression, with a correlation coefficient 0f 0.999927, was 
obtained:  
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After plugging in the dimensionless quantities given by 

Equations (11) and (14), solving for the behind-casing 
conductivity yields: 
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All the developed expressions in this work have a 

correlation coefficient of 0.999927. When 20 < FC ≤ 200 at 
layer 2, the following fit equation was obtained:  
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By the same token, Equation (16), it yields: 
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It is difficult to distinguish between the slopes of 

Equations (16) and (18). However, it is recommended  
A fit equation, with a correlation coefficient of -1, for 200 

< FC ≤ 3000 at layer 1 was obtained: 
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Replacing the dimensionless quantities and solving for 

the conductivity yielded, 
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A fit equation, with a correlation coefficient of 0.9999, 

for 3000 < FC ≤ 5000 at layer 1 also gave: 
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After replacing the dimensionless quantities for layer 1 

given by Equations (12) and (14), the following expression 
was obtained: 
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4.2.  Case 2 – k2h2 = k1h1 

 
Since the pressure derivative at layer 1 does not register 

any change, all the expressions were developed following the 
same procedure used in case 1 only for layer 2 in order to 
obtain conductivity expressions: 

when FC ≤ 200, the correlation coefficient is 0.99994, and 
the obtained fitted expression is: 
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The correlation coefficient is 0.999929 for 200 < FC ≤ 

1000, and the fitted expression is: 
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For 1000 < FC ≤ 4000, the correlation coefficient is 

0.99988 and the fit is: 
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A correlation coefficient of 0.99984 was found for 4000 

< FC ≤ 7000, the fit is given by; 
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For 7000 < FC ≤ 15000, the correlation coefficient is 

0.99975 
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4.3.  Case 3 – k2h2 < k1h1 

 
Because only pressure-derivative changes were presented 

at layer 2, only expressions for this layer were developed: 
For FC ≤ 1, R2 = 0 0.999908, 
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For 1< FC ≤ 10, R2 = 0 0.99998, 
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For 10 < FC ≤ 20,  
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When the pressure-derivative data present noise, it is 

recommended to draw a line throughout the points of interest 
(along the radi-linear flow regime) and to read the value of 
the pressure derivative at the time of 1 hr. An average value 
is then obtained, and the expression is easier to use. For 
instance, Equation (38) will become:  
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Figure 6. Pressure and pressure derivative versus time log-log plot for 
example 5.1, k2h2 > k1h1. 
Source: The Authors 
 
 
5.  Examples 

 
[8] provided two field examples. However, most reservoir 

and fluid information is incomplete, making it impossible to 
provide actual field data. Therefore, only synthetic examples 
are provided. 

 
5.1.  Synthetic example 1 

 
Using the information, a simulated test was performed by 

[7] for a case where the flow capacity of the layer 2 was 
greater than that of layer 1. Data used for the simulation is 
given in the second column of Table 1. Pressure and pressure 
derivative versus time are provided in Fig. 6. Find the 
conductivity behind the casing. 

Solution. The below information was obtained from Fig. 
6.  

tRL2 = 9.12 hr (t*∆P’)RL2 = 0.00631 psi m = 0.041 
Because the closest slope corresponds to Equation (16), 

this expression is used to estimate the conductivity: 
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5.2.  Synthetic example 2 

 
Another synthetic example for equal flow-capacity layers 

was run with data from the third column of Table 1. Pressure 
and pressure derivative data versus time data are plotted in 
Fig. 7. 

Solution. The below information was obtained from Fig. 
7. Equation (24) is used since the closest slope is 0.047. 

tRL = 110 hr    (t*∆P’)RL2 = 0.0000195 psi      m = 0.052 
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Figure 7. Pressure and pressure derivative versus time log-log plot for 
example 5.2, k2h2 = k1h1. 
Source: The Authors. 
 
 
Table 1.  
Reservoir and fluid data for examples. 

PARAMETER Example 1 Example 2 Example 3 
k1, md 440 300 800 
k2, md 2200 300 5 
φ1, % 22 20 5 
φ2, % 18 20 5 

ct1, 1/psi 3x10-6 1x10-5 1x10-6 
ct2, 1/psi 3x10-6 1x10-5 1x10-6 

h1, ft 42 80 80 
h2, ft 100 80 10 
rw1, ft 0.3 0.35 0.35 
rw2, ft 0.3 0.35 0.35 

s1 2 0 2 
s2 -0 0 2 

FC, md-ft 20 0.1 10 
q, bbl/D 900 500 900 

B, rb/STB 1.35 1.15 1.35 
µ, cp 5 1 5 

C, bbl/psi 0.002 0.005 0.01 
Pi, psi 5300 5780 4300 

Abs. error, % 1.76 0.4 3.6 
Source: The Authors. 

 
 

5.3.  Synthetic example 3 
 
This simulated example was run with data from the fourth 

column of Table 1 for a case when the flow capacity of layer 
1 is greater than the flow capacity of layer 2. Pressure and 
pressure derivative data versus time data are reported in Fig. 
8. 

Solution. The following information was read from Fig. 
8.  

 (t*∆P’)RL2 = 2.27 psi m = 0.038  
Notice that the found slope leads to using Equation (36) 

but at a time of 1 hr, so that: 
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Figure 8. Pressure and pressure derivative versus time log-log plot for 
example 5.3, k2h2 < k1h1. 
Source: The Authors. 
 
 
6.  Comments on the results 
 

As observed, a classification of three cases was 
performed depending upon the contrast in flow capacity: a) 
layer 1 has higher flow capacity than layer 2, b) layer 1 has 
lower flow capacity than layer 1, and c) both layers have 
same flow capacity. Therefore, one example is presented for 
each case. Although, [8] presents several examples of actual 
field data concerning flow behind the casing, they do not 
supply additional information of fluid, well and reservoir 
parameters, then, it was not possible to test the formulated 
methodology with a real field example. In all the synthetic 
examples the value of estimated hydraulic conductivity of the 
cement behind the casing provided very well results 
compared to the initially assumed values for the simulations: 
20, 0.1 and 10 md-ft for examples 1, 2 and 3, respectively.  In 
the worked examples, the obtained conductivity values match 
well with those used as input data. The absolute deviation 
errors were 1.76, 0.4 and 3.6%, as reported in Table 1, which 
are very well acceptable values in well test analysis. 
 
7.  Conclusions 
 
1. Expressions for determining the conductivity behind the 

casing were developed and successfully tested with 
simulated examples that gave good results in estimating 
the conductivity. These expressions are ranged with the 
value of the slope of the pressure derivative curve during 
the middle time period. 

2. The combination of the horizontal radial flow regime and 
the vertical linear flow regime behind the casing provides 
a singular effect on the pressure derivative reflected by a 
non-zero slope during the middle time period. This 
combinate effect was called here the radi-linear flow 
regime, and it takes a positive value when the flow leaves 
the layer and a negative value when the flow feeds the 
layer.  

3. The contrast in flow capacity between the layers and the 
change in conductivity along the compromised zone 
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behind the casing causes the pressure derivative slope to 
change its slope during the middle time period.  

4. Care must be taken while estimating the slope, which is 
very sensitive, and for noisy data it is recommended to 
draw a line over the radi-linear flow and read the pressure 
derivative value at 1 hr. 

 
Nomenclature 

B Volume factor, rb/STB 
C Wellbore storage coefficient, bbl/psi 
ct Total system compressibility, psi-1 

FC Hydraulic conductivity of channel behind  
casing, md-ft 

k Reservoir horizontal permeability, md 
h Reservoir thickness, ft 
kh Reservoir flow capacity, md-ft 
K0 Bessel function 
K1 Bessel function 
l Laplace operator 
m Slope 
P Pressure, psi 
PD Dimensionless pressure  
Pi Initial reservoir pressure, psi 
Pwf Wellbore flowing pressure, psi 
q Liquid flow rate, BPD 
rw Wellbore radius, ft. 
rwe Effective wellbore radius, ft. 
s Skin factor 
t Time, hr 
tD Dimensionless time  

tD*PD’ Dimensionless pressure derivative 
(t*∆P’) Pressure derivative, psi 

 
Greeks Symbols 
α Layer flow parameter, md-ft2/cp 
φ Porosity, fraction 
η Layer hydraulic diffusivity, md-psi/cp 
µ Viscosity, cp 

 
Suffices 

1 Referred to layer 1 
2 Referred to layer 2 
D Dimensionless 
i Initial 

RL Radi-linear Flow  
RL1 Radi-linear Flow at layer 1 
RL2 Radi-linear Flow at layer 2 

RL1_1 Radi-linear Flow at layer 1 at a time of 1 hr 
RL2_1 Radi-linear Flow at layer 2 at a time of 1 hr 

wf Well flowing 
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