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Abstract 
This article presents the state of the art of the application of optimization tools such as Genetic Algorithms, Simulation, Neural Networks, 
Markov Chains and Bayesian Networks in the physical asset maintenance management. The bibliographic references used were extracted 
from a detailed search that allowed the selection of the empirical studies presented, in the time horizon from 2010 to 2021, through 
databases, research platforms and online libraries. The analysis of the identified case studies is carried out, taking into account the variables 
involved in the study, the optimization tool used, and the result obtained in the analysis of the physical asset maintenance management. 
The benefits of the application of optimization tools are identified and it is confirmed that maintenance costs and intervention times are 
present variables, which contribute to the improvement of reliability and maintenance management. 
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Herramientas de optimización aplicadas a la gestión del 

mantenimiento de activos físicos: estado del arte 
 

Resumen 
Este artículo presenta el estado del arte de la aplicación de herramientas de optimización como los Algoritmos Genéticos, la Simulación, 
las Redes Neuronales, las Cadenas de Markov y las Redes Bayesianas en la Gestión del mantenimiento de los activos físicos. Las referencias 
bibliográficas utilizadas fueron extraídas de una búsqueda detallada que permitió la selección de los estudios empíricos presentados, en el 
horizonte de tiempo de 2010 al 2021, a través de las bases de datos, plataformas de investigación y bibliotecas en línea. Se realiza el análisis 
de los casos de estudio identificados, teniendo en cuenta las variables involucradas en el estudio, la herramienta de optimización utilizada, 
y el resultado obtenido en el análisis de la Gestión del mantenimiento de los activos físicos. Se identifican los beneficios de la aplicación 
de las herramientas de optimización y se constata que los costos de mantenimiento y tiempos de intervención son variables presentes, que 
contribuyen a la mejora de la confiabilidad y la Gestión del mantenimiento. 
 
Palabras clave: confiabilidad; optimización; mantenimiento. 

 

 
 

1. Introduction 
 
The maintenance of physical assets requires an ever-increasing 

set of skills and expertise, as it is directly influenced by technological 
development and progress in Information Technology (IT), making 
the collaboration of multiple experts in formal knowledge modeling 
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indispensable, with the objective of improving decision making [1]. 
During the literature review carried out, a wide use of optimization 
tools in maintenance management was observed. However, there is 
no evidence of a state of the art that considers the use of these tools 
in specific practical study objects, as a guide and contribution for 
maintenance decision makers. 
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An efficient maintenance system implies having activities 
aimed at maintaining the useful life of the equipment in optimal 
operating conditions to avoid the occurrence of unforeseen 
failures. An important part of this involves Operational 
Reliability (OR), defined as the capacity by a system composed 
of equipment, processes, technology and personnel to fulfill the 
functions to which it has been created with certain limits and a 
defined operational context [2]. This Operational Reliability is 
made of four main components: process reliability [3], human 
reliability [4], equipment reliability [5] and maintainability [6].  

Reliability analysis and maintenance management, in 
general terms, are affected by inaccurate data recording, which 
results in poor parameter estimates and erroneous decisions 
regarding replacement intervals and equipment interventions 
[7]. Competitive pressure and an increasingly demanding 
market have generated the search for the application of tools that 
make it possible to improve the estimation of the data required 
for reliability analysis [8], as well as the application of novel 
methodologies for the detection and diagnosis of failures, for 
which researchers have developed diverse approaches including 
the use of mathematical models, artificial intelligence and 
statistical approaches [9]. It becomes necessary, then, the use of 
tools and strategies that allow the improvement of estimates 
concerning the delimitation of intervention times, maintenance 
costs, tasks to be developed [10-12], critical components and 
failure rate [13], reaching the use of various optimization 
methods and tools as a viable alternative for this.  

Therefore, optimization can be considered as the 
maximization or minimization of a function that depends on 
a set of variables and is subject to a set of constraints [14], 
which integrates different disciplines such as applied 
mathematics and computational sciences to solve it out. 
These optimization methods can be classified into two main 
groups: deterministic techniques (where the parameter values 
are certain) and stochastic, also called probabilistic, (which 
means they include a certain uncertainty in their results) [15].  

This paper shows the contribution to successful 
maintenance decision making achieved by combining 
reliability and maintenance analysis of physical assets with 
optimization tools such as: Mathematical Modeling, Genetic 
Algorithms, Simulation, Neural Networks, Markov Chains and 
Bayesian Networks, all these, tools of artificial intelligence.  

 

2. Methodology 
 
The study is focused towards benchmarks to reach 

relevant results and conclusions related to the linkage of 
various optimization tools to reliability studies. The time 
horizon covered for the review of scientific articles covers 
the period between 2010 and 2021. The following keywords 
and their possible combinations were used for the 
bibliographic search: reliability, Reliability Centered 
Maintenance (RCM), genetic algorithms, simulation, neural 
networks, Markov chains, optimization, mathematical 
modeling and Bayesian networks. 

Subsequently, the analysis of the case studies found in the 
literature analysis is carried out, taking into account the 
variables involved in the study, the optimization tool used, 
and the result obtained in the analysis of the reliability of the 
physical assets. 

Table 1.  

Optimization tools applied to reliability studies. 

Optimization tools Related works 

Mathematical Modeling and 
Genetic Algorithms 

[10, 16-27] 

Simulation [3, 4, 28-38] 

Markov Chains [39-50] 
Neural Networks [13, 51-62] 

Bayesian Networks [9, 11, 12, 59, 63, 65-71] 

Source: The authors. 

 
 

3. Consultation and analysis of the literature 
 
For the development of the literature consultation and 

analysis, as mentioned in the previous section, we resorted to 
the consultation in several search engines. Table 1 shows the 
optimization tools applied to the reliability studies of 
physical assets and the reference to the corresponding works.  

Several researches have presented cases where 
mathematical modeling applied to maintenance and 
reliability analysis have been used. The application of integer 
linear programming for the selection of maintenance 
strategies, is a case where the tools of mathematical modeling 
linked to reliability are used, allowing to perform the 
allocation of monetary resources for each maintenance 
strategy, in equipment of the paper production industry, by 
applying Reliability Centered Maintenance [16]; shown in 
this article is a literature review of the use of multi-criteria 
decision methods, applied for the selection of the best 
maintenance strategies based on criteria such as: maintenance 
cost, safety, equipment risk, feasibility and number or level 
of risk priority as the most significant ones.  

The application of mixed integer linear programming, to 
minimize maintenance delay and costs [10], is also used to 
model and optimize a shop-flow scheduling problem 
integrated with multiple maintenance activities in a mixed 
integer programming with input variables involving the costs 
of unavailability and maintenance-related activities, 
optimized by a lower bounded genetic algorithm (LBGA), in 
which the algorithm parameters are first tested through a 
factorial experiment to identify the statistically significant 
parameters. The LBGA self-tunes these parameters to 
improve its performance based on the solution gap from the 
lower bound. The genetic algorithm takes into account the 
number of machines in the shop and the maintenance levels 
applied to each one of them based on the assigned 
maintenance strategy. To generate the lower limit, an 
objective function is created which consists of minimizing 
maintenance and delay costs. The Genetic Algorithm for the 
presented problem is proposed by using an experimental 
design to identify the significant parameters of the algorithm 
and then adjusting those parameters based on the identified 
lower bounds. Genetic Algorithms have been applied to 
different research areas, including several applications in 
machine scheduling; they have also been used to solve the 
integrated production and maintenance scheduling of a single 
machine [10].   

On the other hand, Hameed et al. consider reliability and 
maintenance costs as conflicting objectives. They develop a 
decision support model for risk-based maintenance in a 
liquefied natural gas plant, where they integrate genetic 
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algorithms and simulation to optimize maintenance 
scheduling, considering minimizing costs and maximizing 
reliability [17]. The decision support tool presents a nonlinear 
combinatorial optimization model using genetic algorithm 
for maintenance scheduling. The proposed simulation-based 
approach presented in the study provides feasible schedules 
for inspection, maintenance and replacement activities to 
achieve system reliability performance and cost 
optimization. In general, the methodology used helps to 
develop effective resource utilization planning. The Pareto 
optimal model that is developed provides flexibility for 
engineers and planners to develop maintenance programs 
considering different conflicting objectives.  

Improving existing techniques or developing a new 
optimization procedure remains an interesting research task. 
One way to generate this optimization in mathematical 
modeling is through the use of Genetic Algorithms, as we 
have seen in previous cases. Genetic Algorithms are 
metaheuristics that aim to emulate the process of natural 
selection. They use a population of chromosomes to represent 
possible solutions to a problem, with each chromosome 
consisting of a set of genes that describe the solution. To 
create a new generation of chromosomes, the chromosomes 
of the current generation are randomly combined in 
proportion to their fitness.  

In the case of the mining sector, where the cost of 
maintenance represents between 30 to 60% of the operating 
costs of a mine, it is of vital importance to ensure the 
scheduling of weekly maintenance activities. The 
combination of Mixed Integer Linear Programming and 
Genetic Algorithms allows to generate a weekly maintenance 
program with the objective of minimizing maintenance costs, 
guaranteeing thus equipment reliability [18], taking into 
account the availability of equipment, the availability of 
maintenance personnel and the maintenance activities to be 
performed.  

In railway companies, the case is no different. However, 
their maintenance costs are primarily focused on the repair 
and replacement of tracks, hence the need to optimize the 
activities related to these through the design of a 
mathematical model in conjunction with genetic algorithms 
[19]. The input variables of such model are maintenance 
indicators such as mean time between failures, mean time for 
repair and maintenance activities. The results obtained in this 
study show that planned maintenance and renewal 
management systems can be developed and used successfully 
instead of resorting to corrective maintenance activities. 

 They also play an important role in the modeling of 
operating conditions, such is the case of the application of a 
genetic algorithm to model the operation of a hydroelectric 
power plant, by modeling its reservoir parameters, inflow, 
generation head, power generation, water level and plant 
coefficient. In these optimization models the objective 
functions are formulated maximizing efficiency (current), 
survivability and sustainability capability, taking into 
account economic, social and environmental criteria [20] to 
achieve sustainable decision making. 

Similarly, genetic algorithms can be used to optimize 
offshore wind farm operation and maintenance assets [21]. In 
this study, the reliability characteristics of offshore wind 

turbines and the composition of the maintenance fleet are 
simultaneously considered in the optimization problem, in 
order to minimize the operating costs of the offshore farm 
while maximizing its reliability and availability. Optimized 
road maintenance planning is another application where 
genetic algorithms coupled with multi-objective particle 
swarm optimization (MOPSO) show good solutions that 
allow minimizing the life cycle cost while maximizing the 
pavement conditions [22]. 

Minimizing total costs, while maintaining a defined level 
of availability and reliability remains one of the purposes of 
the application of this tool, a mathematical model of 
nonlinear integer binary programming is proposed in a 
sodium chloride factory, and the Genetic Algorithm is 
adopted to solve the model, capable of obtaining a very good 
solution for maintenance scheduling. Availability, reliability 
and resource, labor and spare parts constraints are required. 
Total maintenance costs take into account the costs of 
unplanned failures, repair/replacement costs, and planned 
downtime costs [23]. Another similar case is given for water 
dispensers on an academic campus, where with the same 
input variables as the previous example, an optimization 
model is formulated by integrating Dijkstra's algorithm, 
simulated annealing and a genetic algorithm to identify the 
shortest maintenance path. The results of the application 
revealed that maintenance strategies aimed at determining the 
optimal dispatch time of maintenance personnel could be 
established based on the minimum unit cost criterion [24]. 

Genetic Algorithms are widely used to solve production and 
maintenance problems, a model to minimize costs for 
production and maintenance planning is proposed, taking into 
account process quality constraints, i.e., normal process 
operation (with the specified percentage of defect) and the 
percentage out of control. In order to obtain the mathematical 
model that minimizes total costs, it is essential to establish the 
production levels, production capacity and maintenance budget. 
As solution methods the genetic algorithm and the tabu search 
algorithm are employed, being a successful heuristic that is 
based on the evaluation of neighboring points and repeatedly 
moves from the current point to the best non-taboo solution until 
a stop condition is met. The problem is modeled as a nonlinear 
program and its various peculiarities are discussed. In addition, 
two metaheuristic methods, (a genetic algorithm and a tabu 
search) as well as a non-integrated solution approach are 
proposed [25]. The design of a reliable communication network 
is a well-known optimization problem to produce a network 
with maximum reliability. The integration of genetic algorithms 
with the Branch and Bound method [26] is another case of 
application of this tool.  

It has been proven that when production planning takes 
maintenance into account, better yields are obtained for the 
system. In addition to maintenance costs, unavailability rates 
and failure probabilities have been used as input for the 
formulation of multi-objective models [27].   

Not only multi-objective programming and Genetic 
Algorithms are alternatives to improve reliability and contribute 
to the activities that involve maintenance; In recent times, 
Simulation has also been used as a complementary tool for 
reliability studies, for example, through Monte Carlo Simulation 
it is possible to detect optimal maintenance intervention intervals 
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[4], in addition to determining operating parameters, taking into 
account small samples of failures and multiple failure modes in 
the presence of uncertainty, seeking to map the reliability 
response surface of the system [28]. Other applications have 
allowed maximizing the travel time reliability of a transportation 
network by solving a dynamic congestion pricing problem, 
through simulation-based optimization (SBO) [29], or using 
simulation as a tool to evaluate the support structural reliability 
of offshore wind turbines, the distribution of failures by 
generating their predictions [30] or to achieve maintenance 
manpower planning, seeking to minimize customer waiting time 
[31], and even to model the risks involved with the human factor 
[3]. This is achieved since discrete event simulation, combined 
with multi-objective optimization with system dynamics, allows 
us to identify the maintenance activities to be performed within 
the production system, generating less reactive workload in the 
maintenance organization [32].  

In [33] a study is presented to optimize maintenance 
actions through the analysis of stochastic scenarios based on 
a simulation model, seeking to minimize the total 
maintenance cost. Downtime probabilities and uncertainty in 
the supply of spare parts have been considered in the 
mathematical model. The model could also be used to predict 
failure patterns of a specific system, consequently improving 
the optimization of the stochastic solution.  

Simulation using system dynamics has also been used to 
investigate problems involving multifaceted elements that 
interact and evolve over time, as found in Total Productive 
Maintenance (TPM) [34], or by showing how changing 
interrelationships between fleet management, human 
resources and subcontractor capability areas are likely to 
counteract management policies, thus generating 
performance deterioration [35].  

Nowadays, Simulation is increasingly exploited in a wide 
variety of application domains, although not yet in its entirety 
[36,37]; however, current virtual simulation platforms provide 
several tools that allow the generation of non-immersive 
processes in maintenance, being adopted for analysis, 
presentation, demonstration and verification of the process, with 
corresponding time savings in the performance of maintenance 
activities [38]. This type of study is limited by time, due to the 
complicated human operations and the logical relationships 
involved in the processes, so that Simulation still represents a 
field of opportunity to be optimized. 

Another technique used is the Markov Chains, which allow 
the optimization of maintenance processes, minimizing the total 
expected cost, including inspection and maintenance costs. 
Systems deteriorate at a faster rate as they get older, and 
executing the right maintenance policies is critical. Finite-
horizon Markov decisions are used to define optimal 
maintenance policies, taking into account the time elapsed since 
the last maintenance intervention, the level of the last 
intervention performed, and the age of the physical assets [39]. 
The Markov chain can be seen as a decision support tool for 
managers concerning the organization of equipment 
maintenance [40]. It also takes advantage of the traditional 
probabilistic birth-death approach of Markovian models by 
using a probabilistic approach to analyze the performance of a 
system (power plant); performing reliability and availability 
studies on the plant [41].  

Continuous-time Markov decision processes are used for 
the probabilistic verification of models that allow analyzing 
the reliability of failures in a multistate system, obtaining 
flexible and effective results regarding failure times [42]. An 
example of this is to use the continuous-time Markov chain 
to describe the degradation process of Traction Power Supply 
Equipment (TPSE). In this study, the state of the equipment 
is classified into four levels and the transition probabilities 
between different states are calculated by equating the failure 
times in the statistical period. The risk of TPSE failure after 
maintenance is quantified to optimize both the economic cost 
and reliability of the maintenance strategy [43]. Furthermore, 
in [44], in order to address this problem, a Condition-Based 
Maintenance (CBM) model based on the Partially 
Observable Markov Decision Process (POMDP) that is 
continuous in time is established. Considering the 
maintenance cost and the risk of failure, the optimal 
maintenance method and inspection period are determined 
based on this model. 

In other cases, these chains are used as a predictive model 
for intervention intervals, helping to reduce the deterioration rate 
and the total operating cost, in facilities as important as offshore 
structures, where the consequences of failures can cause a 
negative environmental impact, loss of human lives, 
catastrophic effects and even the collapse of the structure [45]. 
This is achieved by calculating the transition probabilities 
between equipment failure states, and determining, by means of 
an algorithm, the expected number of transitions between these 
states, which yields optimal results in the determination of the 
mean time between failures [46]. In [47], Markov chains are 
used to study the deterioration of roads, mainly by means of the 
Linear Transition Probability (LTP) matrix method and a 
Median Life Expectancy (MLE) algorithm. The model 
developed in this study is ideal for projecting the average life of 
assets, and the LTP matrix presents a feasible approach for 
defining a new maintenance regime when more certain 
deterioration data are available. 

Further works addresses pavement maintainability with 
an optimization approach by simultaneously considering 
future pavement conditions and the ability to search for and 
determine optimal pavement maintenance strategies. This is 
achieved through the application of Markov chain and a 
particle swarm optimization algorithm that aims to consider 
the predicted pavement condition and optimize maintenance 
strategies during operation when applied in the maintenance 
management of a road pavement section. The results 
obtained, compared with the linear program, show that the 
integrated approach is effective and reliable in determining 
the maintenance strategy that can be employed to promote 
pavement sustainability [48].  

The stochastic Markov Chain model is more flexible and 
capable of quantifying the uncertainties associated with the 
deterioration process than the deterministic model approach 
commonly used to predict offshore health conditions. Some 
models even allow the inclusion of environmental variables 
for asset planning [49]. For this purpose, maintenance 
activities are represented as a semi-Markov decision process 
and environmental time series are obtained, allowing to find 
the optimal set of decisions and corresponding maintenance 
plans, including replacement costs and revenue losses for 
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facilities where uncertainty of operations is present.  In 
addition, this type of studies has come to demonstrate the 
need for inspections and replacements [50], giving way to 
formulate new maintenance policies that ensure long-term 
availability, identifying the factors with the highest incidence 
that cause the occurrence of a failure. 

In modern approaches, to effectively improve fault 
tolerance, a basic requirement is to perform a reliability 
analysis aimed at identifying crucial components and thus 
predicting behaviors that lead to failure. A very useful tool 
for this purpose has been Neural Networks [51,52], with 
which reliability and availability indexes are increased, and 
the economic impact is reduced through the prevention of 
failure events [53]. The use of a Neural Network is proposed 
for the prediction of parameters in a machining process to 
avoid vibrations in the process, thus obtaining a reliable 
prediction model of the studied parameters [51]; as well as 
for the evaluation of the reliability of wireless sensor 
networks that allow monitoring, supervising, controlling and 
managing a wide range of conditions [52].  

In most cases, economics is included as an input variable, 
represented by the costs involved in maintenance, operations 
and reliability, which together with the failure rate allow the 
construction of a Fuzzy Neural Network. As results of this 
application, maintenance cost and failure rates for a given 
time period are predicted and optimal maintenance decisions 
are provided [13]. The combinations of Artificial Neural 
Networks with Genetic Algorithms allow evaluating the 
seismic reliability of structural networks, avoiding failures in 
structural components, increasing the use of these tools in the 
Civil Engineering domain [54]. Optimal planning for the 
renewal of water distribution networks, a key infrastructure 
for the supply of this vital liquid to communities, benefits 
from the development of a model using a combination of 
Artificial Neural Networks and the Ant Colony Algorithm, 
which minimizes operating costs and maximizes the 
reliability of this network during its life cycle [55]. The 
combination of Neural Networks with Fuzzy Logic is 
proposed to support decision making in circuit breaker 
maintenance management [56].  

Other applications of the use of neural networks and genetic 
algorithms have provided timely prediction of accidents caused 
by repair and maintenance in oil refineries, classifying the main 
factors that affect the occurrence of these in six categories: 
external, internal, executive, behavioral, situational, labor 
characteristics, type of accident, prediction of the type of 
consequence and population density; and which are considered 
as input variables in models with this type of objective [57].  A 
paper is reviewed that proposes to evaluate the reliability of 
multi-state manufacturing systems based on an extended state 
task network, taking into account the operational quality data 
considering the quality of the work in process. The proposed 
manufacturing system also takes into account the relationship 
between the execution of the production task, the state of wear of 
the equipment and the quality of the product obtained [58]. 
Likewise, Neural Networks have had great application in the field 
of human-machine error detection [59] and in structural 
reliability analyses [60], taking into account reliability in the 
operational context of the assets [61]. When dealing with very 
large and complex decision model structures, the focus is on the 

parameters and values under conditions of certainty assumed by 
the decision criteria. In modern manufacturing systems, repair 
and maintenance operations are the cornerstone to keep industrial 
equipment in optimal conditions of use. In [62] the use of 
Convolutional Neural Networks (CNN) is proposed for the 
automatic generation of maintenance and repair instructions, 
using digital augmented reality (AR) technology. 

One tool within the Artificial Intelligence family is Bayesian 
Networks (BN). These models have different applications for 
diagnosis, classification and decision making, providing relevant 
information on how the variables under study are related [63]. 
They contribute to the improvement of modeling, quantification 
and analysis of human reliability by taking into account 
performance factors including complexity, stress, experience, 
training, work procedures, ergonomics and equipment-related 
factors as the most significant [59]. The P-F interval, potential 
failure - functional failure, is implemented as a dynamic Bayesian 
network allowing to improve the reliability of physical assets 
[63]. The P-F interval will define how often the condition tasks 
should be performed on the asset. If we want to detect the 
potential failure before it becomes a functional failure, the 
interval between checks should be less than the P-F interval [64]. 
The deterioration of manufacturing equipment and assets in 
general is also affected by the maintenance activities carried out, 
the observation and follow-up of failures, the operating 
conditions and, ultimately, the operational context in which they 
are located. 

Several works point to Bayesian Networks as a tool that 
allows the integration of qualitative knowledge when there is 
insufficient data [65] and when there is a high complexity of the 
system, allowing the assignment of conditional probabilities of 
occurrence for each state of the network [66]; However, when 
considering this qualitative knowledge, based on experts, it 
provides a data deviation, the extent of which will depend on the 
experience of those involved in the study and the knowledge of 
the system [67]. An example of this type of case is the application 
of the methodology known as Fault Detection and Diagnosis 
(FDD), based on the knowledge and experience of the process, 
generating an 80% success rate in the identification and diagnosis 
of faults [9]. In addition, these models allow the identification of 
critical components prior to their failure, not initially considered 
in maintenance planning. 

Other works present models that seek to dispel 
operational uncertainties regarding accidents caused by the 
man-machine relationship, including human and 
organizational factors and performance indicators [68], or 
present a quantitative approach seeking to establish causal 
interdependencies and reasoning in risk conditions in 
processes, caused by human and organizational failures, 
which result in accidents [69]. The activities related to 
maintenance are a vital point, especially in the last decades, 
facing two important barriers, one, the high costs that poor 
management brings with it, and the other, the prolonged 
downtime. Faced with this problem of insufficient and 
excessive estimates for the maintenance time interval, 
Bayesian Networks offer an option for adjusting these time 
intervals and their associated probabilities [11, 70], model 
multiple maintenance interventions within the life cycle of 
the physical asset [71], and are also a resilient tool with a high 
capacity for adaptation [11]. 
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4. Results and discussion 
 
Eighteen percent of the articles presented in this research 

correspond to works related to Mathematical Modeling and 
Genetic Algorithms, Simulation accounts for 18% of the 
literature consulted, Markov Chains participate with 17%, 
Neural Networks with 18%, and finally Bayesian Networks 
with 17%. Likewise, the application areas where this research 
was developed include studies linked to the productive sector 
where the reliability of networks, systems, components and 
physical assets is vital, such as electric power production 
plants, liquefied gas plants, oil refineries, mines, electronic 
networks and components, communication networks, water 
distribution networks and structural engineering. 

Through the analysis of the references presented in this 
research, it is possible to identify the input variables, the 
advantages and disadvantages of each tool, as well as the 

benefits achieved with their application (Table 2). The 
application of optimization tools to physical asset 
maintenance management, leads to: 
 A better predictive capacity in terms of maintenance 

times, types of interventions to be performed on physical 
assets, and maintenance policies to be applied. 

 The reduction of the economic impact of maintenance 
interventions, including unavailability costs, to the 
minimum. 

 The confirmation of the fact that the maintenance 
intervention interval, as well as times and costs associated, 
are the main variables used in the works consulted. 

 The optimization of reliability and availability of 
physical assets. Quality in productions is guaranteed, as 
well as early detection of potential failures, allocation of 
accurate and effective maintenance policies, reduction of 
processing time and data analysis in the processes. 

 
 

Table 2.  

Input variables, advantages, disadvantages, and benefits of applying each tool. 

Tool Input variables in the model 
Advantages of its 

application 

Disadvantages of its 

application 
Benefit of application 

Mathematical 

modeling 

- Unavailability costs. 

- Labor costs. 

- Mintenance indicators. 

- Operating standards. 

- They can be developed for 
more than one objective. 

- They depend on historical 
data in order to be developed. 

- Optimize labor costs. 

- Optimize investment in spare 

parts. 

- Minimize the delay in 
maintenance intervention. 

Genetic 

algorithms 

- Unavailability costs. 

- Labor costs. 

- Maintenance indicators. 

- System functionality 
indicators. 

- They are directly based on a 

previously established 

algorithms, they only 
improve the estimation 

previously performed. 

- Their functionality will 

depend on the mathematical 
model to be optimized. 

- Optimize the global costs of 
maintenance management. 

- Improve reliability. 

Markov chains 

- Time elapsed since the last 

intervention. 

- Type of intervention 

performed. 

- Age of physical assets. 

- Reliability indicators. 

- The stochastic model of 

Markov chains is more 

flexible and capable of 
quantifying the uncertainty 

associated with the process of 

equipment deterioration. 

- The provision of reliability 

records due to the need for 
knowledge of failure 

probabilities. 

- Optimization of pre-failure 
intervention times. 

- Establishment of 
maintenance policies. 

Simulation  

- System operating 

parameters. 

- Downtime probabilities. 

- Maintenance indicators. 

- Maintenance activities to be 
developed. 

- Non-immersive process, 
where it is not required to 

make physical changes to the 

system, only modeling 
according to the available 

data. 

- There are multiple digital 
platforms for its execution. 

- It requires high data 
sufficiency in order to obtain 

relevant results. 

- Optimization of intervention 

intervals. 

- Extention of the economic 

lifetime of assets. 

- Optimization of maintenance 

activities. 

Neural networks  

- Maintenance costs. 

- Maintenance operations. 

- Mean time between failures. 

- Reliability indicator.  

- It allows us to monitor, 

control and manage a wide 

range of system conditions. 

- Although there is continuity 

between network levels, the 
causality of the events under 

study is not saved. 

- Optimization of intervention 

times. 

- Increased reliability. 

- Definition of key 
components of the system. 

Bayesian 

networks 

- Maintenance operations. 

- Established maintenance 

plan. 

- System maintenance costs (if 

any). 

- Maintenance indicators (if 

any). 

- Enables end-to-end causality 
to be saved at every level of 

the network, which 

contributes to maintain 
control over every network 

event. 

- It allows monitoring, control 

and management of a wide 

range of system conditions. 

- It does not require historical 

data for its application. 

- If approached qualitatively, 
the results will depend on the 

knowledge and experience of 

those involved in the study. 

- Identify appropriate 

intervention times according 
to the conditions of the 

equipment. 

- Determine the maintenance 
activity to be performed 

according to the scenario. 

- Define key components of 

the system. 

- Classify the failures and 
activities to be performed. 

- Diagnose the state of the 
maintenance system. 

Source: The Authors. 
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5. Conclusions 
 

1. The review carried out allows us to realize the benefits that the 
application of the optimization tools presented to the 
maintenance management studies brings with it; In addition, 
it enables to identify the strongest aspects of each tool 
according to the objective pursued, as well as the input 
variables that are most frequently used in this type of models.  

2. Multi-objective Mathematical Modeling, together with 
the application of Genetic Algorithms, allows us to 
obtain positive results in terms of reducing operating and 
maintenance costs.  

3. Genetic Algorithms allow modeling of operating 
conditions, minimization of total maintenance costs and 
timely fault detection at pre-established levels of 
reliability and availability. 

4. Markov Chains prove to be optimal decision models 
with respect to the estimation of intervention times. 

5. Simulation is important in the determination of 
maintenance intervention intervals, and in failure 
distribution studies for their prediction and contribution 
to extend the economic useful life of physical assets; 
however, it requires sufficient data to be used. 

6. Neural Networks establish relationships graphically, 
allowing to improve pre-failure intervention times of 
physical assets and to improve reliability. 

7. Bayesian Networks have the advantage of modeling 
quantitative-qualitative events and are ideal for 
establishing causality in reliability studies. 

8. According to what has been presented throughout this 
research, it is shown that the integration of optimization 
tools to maintenance management allow obtaining 
satisfactory results, especially in terms of maintenance 
cost reduction and reliability improvement. 
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