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Abstract 
Determining technical losses in an electrical system is highly complex due to the large amount of information required for its evaluation. 
A solution to this problem is the evaluation of losses using an artificial neural network. In this work, a model for evaluating technical losses 
in subtransmission electrical networks was obtained by using artificial neural networks. This model considers the effective length of the 
circuit, the maximum apparent and active power, the resistance in the conductors and the number of clients connected to the circuit. The 
simulation results established a mean square error of 0.0028 and a correlation coefficient between the variables involved of 0.980. The 
proposed artificial neural network model resulted satisfactory for evaluating technical losses in electrical subtransmission networks. 
 
Keywords: electric losses; modeling; network. 

 
 

Modelación mediante red neuronal para la evaluación de pérdidas en 
redes eléctricas de subtransmisión 

 
Resumen 
La determinación de pérdidas técnicas en un sistema eléctrico es altamente compleja debido a la gran cantidad de información requerida 
para su evaluación. Una solución a este problema es la evaluación de pérdidas utilizando una red neuronal artificial. En este trabajo se 
obtuvo un modelo para evaluar pérdidas técnicas en redes eléctricas de subtransmisión mediante el uso de redes neuronales artificiales. 
Este modelo considera la longitud efectiva del circuito, la potencia máxima aparente y activa, la resistencia en los conductores y el número 
de clientes conectados al circuito. Los resultados de la simulación establecieron un error cuadrático medio de 0,0028 y un coeficiente de 
correlación entre las variables involucradas de 0,980. El modelo de red neuronal artificial propuesto es satisfactorio para evaluar pérdidas 
técnicas en redes de subtransmisión eléctrica. 
 
Palabras clave: modelación; red; pérdidas eléctricas. 

 
 
 

1. Introduction 
 
Electricity losses or operating expenses are a concern for 

electricity companies, since they constitute a segment of the 
production process that determines, among other things, 
quality, from the point of view of efficiency. In the case of 
technical losses, also called technological expenditure by 
some authors, their quantification attracts interest from 
scientists around the world due to the complexity associated 
with the need to process a large amount of information that is 
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sometimes unreliable or inaccessible. 
In transmission and sub-transmission networks, the 

economic effect of losses is extremely significant, while, in 
distribution networks, they hardly compensate for the 
expenses necessary to collect the information required for 
their evaluation [1,2]. 

In Cuba, the rate of losses fluctuates around 15%, of 
which 11% corresponds to technical losses, according to data 
provided by the Electric Union (UNE). 

For the evaluation of technical losses, many researchers 
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rely on calculation tools or computational software such as 
Matlab, DIgSILENT PowerFactory, among others [3-7]. 
These tools are mainly based on mathematical approaches 
such as Newton Raphson's method, Gauss Seidel or 
probabilistic methods for load estimates [8-11]. These 
methods require an accumulation of information 
characteristic of the system or circuit under study, which 
sometimes hinders or interferes with the veracity of the data, 
thus affecting the precision of the results. Specialists of 
electricity companies and some Cuban academics, dedicated 
to the analysis and estimation of technical losses, rely on the 
Radial tool, which has been implemented by a group of 
academics at the University of Las Villas for the studies of 
circuits with radial configuration. Although it is intended to 
change to more up-to-date tools, the Radial tool continues to 
be one of the most used by researchers [12,13]. 

Among the technical solutions that are commonly applied 
to improve loss rates, is the automation or placement of 
intelligent measurement equipment. However, given the 
economic conditions in Cuba, these technologies become 
difficult to reach, so alternatives are used that, although 
financing is sometimes required, may be cheaper. These 
include reconfiguration of circuits, gauge changes in 
conductors, among others [14,15]. 

One of the current techniques used both to predict and 
model a certain behavior of losses in electrical networks is 
the application of Artificial Intelligence (AI) [16-18]. Among 
its wide possibilities is the application of artificial neural 
networks, which are approaches that allow modeling the 
learning process in a way similar to the functioning of the 
human brain, in essence, the ability to learn from new 
experiences [19]. 

Power losses in distribution circuits vary proportionally 
with the resistance of their conductors, and this, in turn, 
depends on the material used in their construction, their 
section, length and other factors such as temperature, non-
uniform current distribution, circuit load, etc. All of this 
makes the evaluation of power losses, using formal methods, 
very complex. A solution to this problem is their prediction 
using a neural network. 

 
2. Materials and methods 

 
Load flow studies are highly complex due to the volume of 
calculation required to carry them out; even the simplest case 
can be practically insoluble. Among the most used variables 
by traditional calculation methods is the power of each load. 
This can present serious difficulties, since it is not always 
possible to know it, mainly in the primary distribution, since 
it would not be economical or practical to place instruments 
permanently in each bank of transformers. To solve this 
problem, the proposed calculation model uses the magnitude 
of the total load delivered to it, which is known in the 
Network Management System (SIGERE). On the other hand, 
SIGERE is created in Sancti Spíritus, with the purpose of 
improving control of the country's transmission and 
distribution networks. It constitutes an evolution of the 
Distribution Management System (SIGEDI) whose initial 
scope was from the 33 kV bars and the Distribution 
Dispatches. Several authors carry out research based on the 

measurements contained in this platform, demonstrating that 
they can be a reliable source of data [20-22]. 

 
Table 1. 
Information of the circuits under consideration.  

Number Desc Ldec 
(km)  

Smax 
(kVA) 

Pmax 
(kW) 

Calibra
te 

Losses 
(kW) 

Nipe-Cueto 4035 72,4 7300 7200 ACSR1
50 141,4 

Nipe - 
Baguano 4040 94,1 10800 10500 ACSR1

50 456 

Hg220 - 
Biajac 4360 31,1 10200 9470 ACSR1

50 228 

Nicaro - 
Pinares 4460 76 7300 6880 ACSR1

50 125 

Nicaro - 
Levisa 4465 5,7 1500 1390 ACSR1

50 2,3 

Nicaro - 
Cabonico 4470 71,6 7700 7330 ACSR1

50 121 

Hg220- 
KTP 26Jul 6030 15 3800 3740 ACSR1

50 7,6 

Hg220 - U. 
Noris 6035 46,1 13800 12320 ACSR1

50 1004 

Hg220-
Cristi.Mace

o 
6040 50,7 17900 17430 ACSR1

50 1254 

Hg220 - C. 
Mir 6045 57,7 15400 15100 ACSR1

50 1038 

Hg220 - 20 
Rosas 6050 61,9 10100 9640 ACSR1

50 176 

Nipe - 
Mayarí 6170 61,5 8700 8330 ACSR1

50 194 

Nipe - 
Juliana 6175 0,02 300 300 ACSR1

50 0 

Nicaro - 
Fabrica 6390 4,6 1700 1240 ACSR1

50 2,4 

Nicaro - 
Cajimaya 6415 44,9 600 610 ACSR1

50 0,9 

Nipe - 
Tacajó 6580 76,9 7900 7280 ACSR1

50/70 547 

La Caridad - 
Freyre 6860 31,2 9100 8560 ACSR1

50 211,7 

La Caridad -
P. Eoli 6870 23,3 5000 4660 ACSR1

50 57 

La Caridad - 
Iberia 6880 62,3 5400 3930 ACSR1

50 73 

Hg - 
Velasco 9771 81,2 14300 13370 ACSR1

50 412 

Banes - 
Nicaragua 

H212
0 25,6 4400 4300 ACSR1

50 46 

Banes - 
Banes 

H212
5 9,7 5600 5300 ACSR1

50 53 

Banes - 
Antilla 

H213
0 102,9 5800 5500 ACSR1

50 41,9 

La Canela-
Guardal 1 O065 25 4900 4580 ACSR1

50 58 

La Canela-
Pesq 1 O070 16,7 3300 3090 ACSR1

50 10 

La Canela-
Guardal 2 O075 11,8 5600 5300 ACSR1

50 61 

La Canela-
Pesq 2 O080 6,4 6400 6100 ACSR1

50 40 

Moa220-
V.Checas O560 5,5 4900 4600 ACSR1

50 23,3 

Moa220-
Puer-Pgor O565 24,8 5400 5100 ACSR1

50 33 

Moa220-
Sagua O570 76,9 11000 10500 ACSR1

50 699 

Moa220-
Moa Nueva O585 10,7 5400 5400 ACSR1

50 34,6 

Moa220-
Pot.Bombe O590 24,5 4400 4300 ACSR1

50 43,4 

Source: own elaboration. 
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Based on the information contained in the Network 
Management System, the main electrical variables involved 
in the field of technical losses are studied. 

For this study, 32 subtransmission networks of the 
Holguín province are considered, whose characteristics are 
shown in Table 1. 

The headings in Table 1 show, in the first column, the 
name of the circuit, while the second column shows the 
disconnect to which they are connected. Then, the third 
column to the last, correspond to the length of the circuit, the 
maximum apparent power, the maximum active power, the 
conductor size, the number of customers and the power 
losses, respectively, of each circuit. These values are 
representative for the year 2019. 

The power losses, as an output variable, were taken from 
the information provided by the Provincial Electric 
Company. 

 
2.1 Establishment of the artificial neural network 

 
The determination of the type of neural network, the 

number of layers and the number of neurons in each layer that 
best characterizes the model, is carried out through a trial and 
error process in which the number of neurons, the linear 
regression of the variables involved and the maximum 
allowable error are analyzed 

MATLAB makes easier for the user to develop 
applications using a graphical interface (GUI), through the 
nntool tool. The performance of the artificial neural models 
is evaluated using the mean square error and the correlation 
coefficient between the real values and those obtained by the 
neural network, with the idea of providing the network with 
an adequate number of neurons in the hidden layer, to learn 
the characteristics of the possible relationships between the 
sample data. Through the trial-and-error process and the 
literature consulted, the feed-forward backpropagation 
structure with the best results is identified [23-26]. 

The proposed network is made up of two layers: a hidden layer 
and an output layer. The output layer only has one unit, which 
indicates the value of the losses associated with each input vector 
presented to the network. The hidden layer has a variable number 
of neurons until the one that best fits the modeling is established. 
The transfer functions of the hidden layer and the output layer are 
logarithmic sigmoid (logsig) and linear (pureline), respectively. 

The learning method used in this work is Levenberg-
Marquart. 

 
3. Results 

 
The constant growth in demand requires a continuous 

increase in generation and the construction of new lines that 
cause substantial changes in the configuration of the existing 
network. These new plants and lines are installed according 
to the results obtained from load flows for future needs and 
conditions. In this way, it is possible to see the importance of 
network analysis from this point of view. 

This section presents the results of applying the artificial 
neural network model to the 32 subtransmission networks 
belonging to the Holguín province and demonstrating its 
effectiveness in evaluating technical losses in the system. 

Table 2. 
Results of the tests carried out.  

Essay 
Hidden Layer 1 Output Layer  Correlation 

coefficient 
Transfer 
Function 

Number 
Neuron Funcion Number 

Neuron All 

NNA1 logsig 5 pureline 1 0.941 
NNA2 logsig 8 pureline 1 0.941 
NNA3 logsig 10 pureline 1 0.943 
NNA4 logsig 12 pureline 1 0.934 
NNA5 logsig 15 pureline 1 0.958 
NNA6 logsig 17 pureline 1 0.98 
NNA7 logsig 20 pureline 1 0.965 

Source: own elaboration. 
 
 

 
Figure 1. Mean square error of the tests performed.  
Source: own elaboration. 

 
 
The data in Table 1 were established for the training of 

the neural network. 
In addition, a simulation is carried out with the data of the 

respective circuits for the year 2020. In this way, the technical 
losses for this year are evaluated. 

 
3.1 Neural network configuration and testing 

 
For the configuration of the neural network, a series of tests 

were carried out in order to obtain the one with the best results. 
Table 2 shows 10 of the tests carried out to obtain the 

network that best fits the system. The transfer functions and 
number of neurons of each layer are described, as well as the 
correlation coefficients obtained between the input variables 
and the output of the network. 

From Table 2 it can be deduced that the NNA6 test 
presents the best results in terms of correlation coefficient. 

The mean squared errors of the tests are shown in Fig. 1. 
From Fig. 1 it can be deduced that in the NNA1 test a 

mean square error is obtained significantly lower than the rest 
of the tests carried out. Note, furthermore, that the error of 
the NNA6 experiment, although greater than the error of 
NNA1, could be considered an acceptable value. 

Fig. 2 describes the behavior of the root mean square 
errors of the NNA1 and NNA6 tests. 

From Fig. 2 it is inferred that the error of the NNA6 network 
presents a more stable behavior, so based on this and the correlation 
coefficient obtained, it is decided to choose the NNA network as 
the one that best adjusts to the data involved in the study. 

The behavior of the mean square error as a function of the 
epochs is shown in Fig. 3. Note that the validation obtained 
its best result in epoch two. 
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Figure 2. Behavior of the errors in the NNA1 and NNA2 tests for each 
circuit.  
Source: own elaboration. 

 
 

 
Figure 3.  Behavior of the mean square error as a function of the epochs. 
Source: own elaboration. 

 
 
For learning the network, it chooses a set of data that is 

provided at each stage of learning. Fig. 4 shows the 
correlation coefficients obtained between the input and 
output variables, at each stage of network learning, belonging 
to the NNA6 experiment. 

 

 
Figure 4.  Correlation coefficient between input and output variables at each 
stage of network learning for the NNA6 experiment.  
Source: own elaboration. 

 
Figure 5.  Structure of the NNA3 neural network.  
Source: own elaboration. 

 
 

Table 3. 
Variables used in the simulation for year 2020.  

Number Desc Ldec 
(km)  

Smax 
(kVA) 

Pmax 
(kW) Calibrate 

Nipe-Cueto 4035 72.4 13468.2 12580 ACSR150 
Nipe - Baguano 4040 94.1 11950 11400 ACSR150 
Hg220 - Biajac 4360 31.1 12020 10930 ACSR150 
Nicaro - Pinares 4460 76 10480 10 ACSR150 
Nicaro - Levisa 4465 5.7 8070 7520 ACSR150 
Nicaro - 
Cabonico 4470 71.6 13630 12810 ACSR150 

Hg220- KTP 
26Jul 6030 15 11940 11280 ACSR150 

Hg220 - U. 
Noris 6035 46.1 12360 11790 ACSR150 

Hg220-
Cristi.Maceo 6040 50.7 10840 9980 ACSR150 

Hg220 - C. Mir 6045 57.7 20260 18810 ACSR150 
Hg220 - 20 
Rosas 6050 61.9 10440 9690 ACSR150 

Nipe - Mayarí 6170 61.5 11690 11080 ACSR150 
Nipe - Juliana 6175 0.02 600 600 ACSR150 
Nicaro - Fabrica 6390 4.6 1690 1240 ACSR150 
Nicaro - 
Cajimaya 6415 44.9 1300 1200 ACSR150 

Nipe - Tacajó 6580 76.9 13210 12400 ACSR150/70 
La Caridad - 
Freyre 6860 31.2 12900 12330 ACSR150 

La Caridad -P. 
Eoli 6870 23.3 8470 7980 ACSR150 

La Caridad - 
Iberia 6880 62.3 14870 13730 ACSR150 

Hg - Velasco 9771 81.2 18010 17090 ACSR150 
Banes - 
Nicaragua H2120 25.6 10060 9900 ACSR150 

Banes - Banes H2125 9.7 9670 9180 ACSR150 
Banes - Antilla H2130 102.9 9550 6750 ACSR150 
La Canela-
Guardal 1 O065 25 7350 7100 ACSR150 

La Canela-Pesq 
1 O070 16.7 8000 7400 ACSR150 

La Canela-
Guardal 2 O075 11.8 5090 4800 ACSR150 

La Canela-Pesq 
2 O080 6.4 7450 7060 ACSR150 

Moa220-
V.Checas O560 5.5 12200 10600 ACSR150 

Moa220-Puer-
Pgor O565 24.8 9020 8160 ACSR150 

Moa220-Sagua O570 76.9 10980 10500 ACSR150 
Moa220-Moa 
Nueva O585 10.7 5400 5400 ACSR150 

Moa220-
Pot.Bombe O590 24.5 5070 4320 ACSR150 

Source: own elaboration. 
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Figure 6.  Power loss results for each circuit.  
Source: own elaboration. 

 
 
Finally, it is established that the network adjusts to the 

information provided with a correlation coefficient of 0.980 and 
a mean square error of 0.0028, approximately. The established 
structure of the neural network is described in Fig. 5. 

In this way, the network is formed with 17 neurons in the 
hidden layer with 4 inputs; while the output layer presents a 
single neuron in its corresponding output. 

 
3.2 Simulation or testing of the neural network 

 
After the training of the selected network based on the 

minimum error and the best correlation coefficient between 
the variables involved in the model, the circuits are tested 
according to the representative information for 2020. The 
values corresponding to this year or variables input into the 
simulation are shown in Table 3. 

Loss results for each circuit are presented in Fig. 6, where 
the circuits are identified by their corresponding disconnects. 

 
4. Conclusions 

 
From the results obtained, experimentally, the 

potentiality of the proposed model in determining the losses 
in subtransmission networks is corroborated with a mean 
square error of 0.0028 and a correlation coefficient between 
the variables involved of 0.980. 

The neural network that better adjusts to the variables 
implicated in this investigation is conformed by an occult 
layer with 17 neurons and show transference sigmoide 
logarithmic and a layer of linear exit. 

The proposed artificial neural network model is 
satisfactory for evaluating technical losses in 
subtransmission electrical networks, and its use is fully 
identified with the availability of data under the conditions of 
the Cuban electrical system. 

Author contribution: All the authors have accepted 
responsibility for the entire content of this submitted 
manuscript and approved submission. 
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