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RESUMEN
En la Península de Paraguaná Venezuela, el desarrollo generalizado  se  acrecentó los 
últimos años, lo cual se percibe como un incremento en la demanda de generación 
eléctrica en las Plantas GENEVAPCA y TURBOGASPUNTOFIJO,  de esta 
investigación se obtienen los  balances exergéticos para conocer hasta qué punto se 
está produciendo el deterioro de las plantas que generan electricidad, y a partir de 
los resultados establecer  las teorías y procedimientos de mejoras en la eficiencia 
energética. La metodología para llevar a cabo esta investigación está enmarcada en 
las siguientes fases: 1-Determinacion de la demanda eléctrica, 2.- Realización de un 
balance en las emisiones contaminantes, 3.- Elaboración de los balances exergéticos 
derivados de los volúmenes establecidos en las plantas, 4.- Establecimiento de la 
estructura de costos adecuada. Los análisis permitieron determinar las disponibilidades 
de energía y calor así como también los costos energéticos y económicos que se 
derivan de las perdidas y destrucciones exergéticas.  

PALABRAS CLAVE
Demanda eléctrica, generación eléctrica, análisis exergético, costos.  

ABSTRACT
In the Paraguaná Peninsula in Venezuela, widespread development grew the past 
few years, which is perceived as an increase in the demand for electricity generation 
at the plant GENEVAPCA and TURBOGASPUNTOFIJO, this research exergeticos 
balances are obtained to know up to what point is producing the deterioration of 
plants that generate electricity, and from the results establish the theories and 
procedures of improvements in energy efficiency. The methodology to carry out this 
research is framed in the following stages: 1-determination of the electric demand, 
2.-a balance of polluting emissions, 3.-preparation of balance sheets exergeticos 
derived from plants, set volumes 4.-establishment of appropriate cost structure. The 
analysis allowed to determine the availability of energy and heat as well as the energy 
and economic costs resulting from losses and destructions exergeticas. 
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1. INTRODUCCIÓN 
Para el estado venezolano   así como el resto del 
mundo es de vital importancia un cambio, pero este 
debe ser sistemático y de contribución de todos, por 
parte del proyecto este se encargara de dar las mejores 
recomendaciones en cuando a los beneficios que trae 
el estudio exergetico, en función de la optimización de 
los procesos que surgen de la generación eléctrica de 
la Península, una zona donde la explosión comercial y 
demográfica se ha visto incrementada en gran medida, 
de manera que el estudio de la disponibilidad y la mejora 
de la utilización de los recursos requeridos para el 
funcionamiento de las plantas responsables de la energía 
eléctrica, es un estudio que permitirá diagnosticar la 
situación en vías de una futura decisión que fomente el 
incremento de la eficiencia energética en el marco de 
una más sustentable y productiva manera de generar 
electricidad para el bienestar de la zona.

Según [Arias, 1999] Los objetivos de investigación son 
metas que se traza el investigador en relación con los 
aspectos que desea indagar y conocer; así el planteamiento 
general es: Evaluar Exergetica y Ambientalmente las 
plantas responsables de la Generación Eléctrica en 
la Península de Paraguaná, para lógralo se tendrá en 
consideración los siguientes objetivos específicos:  
Determinar la demanda eléctrica de la Península de 
Paraguaná  y sus implicaciones económicas, Realizar 
un balance ambiental de las emisiones contaminantes 
provenientes de la generación eléctrica en la Península, 
Elaborar los balances exegéticos derivados de los  
bloques formados por las plantas, Establecer la 
estructura de costos adecuada para el análisis exegético, 
Calcular los costos exergoeconómicos de las plantas  de 
generación eléctrica. 

2. MÉTODOS

I Estado actual de la generación eléctrica 
En la Península de Paraguaná coexisten tres plantas 
interconectadas, para el análisis se eligió   dos de 
ellas por sus características de ciclos abiertos y de 
turbogeneración: GENEVAPCA que es una compañía 
anónima y Planta Turbo-Gas Punto Fijo, la primera cuya 
generación es distribuida a varios entes dentro de los 
cuales se encuentra la otra planta nombrada aportándole 
un 40% de su energía, el resto de la demanda es 
alcanzada con la generación de la planta Turbo-gas. 
En la Tabla 1 se encuentra las demandas eléctricas 
de la península, evidenciándose el déficit energético, 
traducido en altos costos tanto por parte del estado 
como de los consumidores, ya que no tienen garantía 
de servicio eléctrico para las necesidades más usuales, 
esto por otra parte desmejora los avances que se tienen 
en el ámbito turístico y científico de la zona. Se sabe 
según la investigación de campo realizada que entre 

ambas plantas se genera 222 MW, lo que se traduce que según 
la proyección descrita existe un déficit de 130 MW, considerando 
que esta proyección se hizo en función de obras que están en alto 
grado de construcción y que pronto estarán en funcionamiento.

DEMANDA ENERGETICA
DIARIA (kWh) ANUAL(MWh)

1036 130,536
1598,4 70,3296
1391,2 139,12
266,4 11,988

Total  Anual proyección 351,9736

Tabla 1. Demanda Eléctrica
Fuente: Propia, con los datos aportados por el departamento  
de despacho de la empresa CORPOELEC. Aplicando el 
Procedimiento de Jutlar 2002.

II Análisis exergetico 
El análisis exergetico va hacer aplicado de manera general a un 
ciclo Brayton simple y abierto como son las especificaciones 
de las plantas a las cuales se les hizo el estudio estos diagramas 
de procesos o ciclos termodinámicos además de los parámetros 
operativos se encuentran en la figura 1 y tabla 1 que se encuentran 
a continuación:

Figura 1. Diagrama y punto de flujos turbocompresor de ambas 
plantas GENEVAPCA, Turbo-Gas Punto Fijo.
Fuentes: Elaboración Propia. Observación se mejoró la nitidez de 
la figura.

El análisis exergetico tiene un procedimiento de cálculo que se 
describe a continuación: 

•	 Se selecciona los volúmenes de control que serán entonces el 
compresor, la cámara de combustión y la turbina a gas de cada 
una de los turbocompresores que conforman las plantas

•	 Se determinan las propiedades exergeticas  en cada flujo 
establecidos en los diagramas de procesos según los estados 
de referencia dados por [Ahrendts, 1998; Guallar & Valero, 
1992; Szargut & Morris, 1987; Wall, 1998].

•	 Se realizan los balances exergeticos  en los volúmenes de 
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Fuente: Propia, con los datos aportados por el departamento de despacho de la empresa CORPOELEC. 

Aplicando el Procedimiento de Jutlar 2002.

II. Análisis exergetico 

El análisis exergetico va hacer aplicado de manera general a un ciclo Brayton simple y abierto como son las 

especificaciones de las plantas a las cuales se les hizo el estudio estos diagramas de procesos o ciclos 

termodinámicos además de los parámetros operativos se encuentran en la figura 1 y tabla 1 que se encuentran 

a continuación:

Figura 1Diagrama y punto de flujos turbocompresor de ambas plantas GENEVAPCA, Turbo-Gas Punto 

Fijo

Tabla 1. Parámetros operativos de los turbogeneradores.

Unidad 7
Flujo Temperatura (°K) Presión (Psi)

1 298.15 14.5
2 607 110
3 1566 110
4 769.1 14.5
5 298 300

Otros parámetros
Carga Máxima : 20 MW

Unidad 9
Flujo Temperatura (°K) Presión (Psi)

1 298.15 14.5
2 600 106
3 1511 106
4 751 14.5
5 298 290

Otros parámetros
Carga Máxima : 18 MW

Unidad 10
Flujo Temperatura (°K) Presión (Psi)

1 298.15 14.5
2 603 107
3 1527 107
4 755 14.5
5 298 294

Otros parámetros
Carga Máxima : 18 MW

Unidad 12
Flujo Temperatura (°K) Presión (Psi)

1 298.15 14.5
2 602 107
3 1539 107
4 762 14.5
5 298 296

Otros parámetros
Carga Máxima : 19 MW

Unidad 13
Flujo Temperatura (°K) Presión (Psi)

1 298.15 14.5
2 605 108
3 1542 108
4 760 14.5
5 298 292

Otros parámetros
Carga Máxima : 18 MW

El análisis exergetico tiene un procedimiento de cálculo que se describe a continuación: 

Tabla 2. Parámetros operativos de los turbogeneradores.
Fuentes: Elaboración Propia
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control correspondientes para obtener las exergias 
destruidas, las eficiencias exergeticas y la relación 
K según [Ahrendts, 1977].

•	 Se realizan los cálculos de los costos exergeticos 
para obtener los resultados del diagnóstico. 
[Brodyanski, et al., 1994]

•	 Se realizaron los cálculos de eficiencias energéticas 
y exergeticas del sistema-volumen de control según 
el investigador y los procedimientos descritos por 
[Al-Ahmad, & Darwish, 1991]. 

A continuación se realizan el desarrollo de estos procedimientos:
Para la determinación de exergías de flujos se tomaron como 
base los procedimientos descritos por [Bejan, et al., 1996], con 
el cálculo de las entalpías de los flujos se obtendrá  el cálculo de 
la potencia de neta de cada turbogenerador, el cálculo del flujo de 
aire, además de la exergía física de cada flujo analizado.

Para entalpías de formación de los flujos en condiciones de 
temperatura y presión diferente a las de referencia se utilizó la 
siguiente ecuación:

3 2 1 310
2 3
b dh H ay y cy y                                                                               (1)

Donde:
Los valores H+, a, b, c  y d; fueron extraídos de la tabla 2, siendo, y = (Temperatura) x 10-3

		       Tabla 3. Valores H+,S+, a, b, c  y d para aplicar (e.1).
		       Fuente: [Bejan et al., 1996] p.520

Luego de obtener la entalpia de formación por cada elemento que constituye el flujo de aire que atraviesa el volumen de control 
1 se calculó la entalpia total mediante.

2h1 = [0.7748.(h1N2)] + [0.2059.(h1O2)] + [0.0003.(h1CO )] + (0.019.h1Vapor)

Caso especial se encuentra en los flujos 3 y 4 donde existen gases de combustión.

Basados en el poder calorífico inferior (LHV) y la entalpía de formación del diésel ligero, se calculó la relación molar de aire/
combustible (λ).

2 2 2

2 2

(0.7748. 32 ) (0.2059. 32 ) (0.0003. 32 ) (0.019. 32 )=
(0.02. ) [[ 2 3 )] ( 3 ) 2( 3 )]

C h N C h O C h CO C h Vapor
hf LHV Ch O Ch O Ch Vapor

       
    

Donde:
CΔh32, representa el diferencial de entalpias de formación de los flujos 2 y 3 de cada elemento que conforman los gases, en Kj/
Kg, Y Ch3 es la entalpía de formación de cada elemento que conforma el flujo 3 en Kj/Kg.

Obteniendo el λ se calculó la entalpía de formación de los gases de combustión mediante.

2 2 2[[0.7748 3 )] (0.2059 2 ).( 3 ) [0.0003 ). 3 )] (0.019 2 ).(h3Vapor)]3
(1 )

h N h O h COh   


     


						                     

De igual manera se determinan las entropías de formación para el cálculo de las entropías de flujo. Con las entalpias y entropías 
de formación se realizan los cálculos de las exergias físicas y químicas correspondientes en los flujos del diagrama arrojando los 
siguientes resultados organizados en las tablas 4, 5, 6, 7, 8 .
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Luego de obtener la entalpia de formación por cada elemento que constituye el flujo de aire que atraviesa 

el volumen de control 1 se calculó la entalpia total mediante 

(E.2)

Caso especial se encuentra en los flujos 3 y 4 donde existen gases de combustión.

Basados en el poder calorífico inferior (LHV) y la entalpía de formación del diésel ligero, se calculó la 

relación molar de aire/combustible (λ)

(E.3)

Donde CΔh32, representa el diferencial de entalpias de formación de los flujos 2 y 3 de cada elemento que 

conforman los gases, en Kj/Kg, 

Y Ch3 es la entalpía de formación de cada elemento que conforma el flujo 3 en Kj/Kg.

Obteniendo el λ se calculó la entalpía de formación de los gases de combustión mediante:

(E.4)

De igual manera se determinan las entropías de formación para el cálculo de las entropías de flujo. Con las 

entalpias y entropías de formación se realizan los cálculos de las exergias físicas y químicas 

correspondientes en los flujos del diagrama arrojando los siguientes resultados organizados en las tablas 3, 

4,5, 6, 7 

Tabla 3. Exergías totales unidad 7

Tabla 4. Exergías totales unidad 9

Tabla 5. Exergías totales unidad 10

Tabla 6. Exergías totales unidad 12

Tabla 7. Exergías totales unidad 13

Luego de realizar los cálculos exergeticos correspondientes, se aplica los balances en los volúmenes de 

control que corresponden, dando los siguientes resultados de costos termoeconomicos y exergoeconomicos 

organizados en las tablas 8,9,10, 11 y 12

Tabla 8 Costos termoeconomicos de la unidad 7
EQUIPO Destrucción 

exergética
Kw

Pérdidas 
Kw

Costo  
termoeconómico  

unitario

Costo 
monetario de  

Costo 
monetario 

Tabla 4. Exergías totales unidad 7
Fuente: Elaboración  Propia

Tabla 5. Exergías totales unidad 9
Fuente: Elaboración  Propia

Tabla 4. Exergías totales unidad 9

Tabla 5. Exergías totales unidad 10

Tabla 6. Exergías totales unidad 12

Tabla 7. Exergías totales unidad 13

Luego de realizar los cálculos exergeticos correspondientes, se aplica los balances en los volúmenes de 

control que corresponden, dando los siguientes resultados de costos termoeconomicos y exergoeconomicos 

organizados en las tablas 8,9,10, 11 y 12

Tabla 8 Costos termoeconomicos de la unidad 7
EQUIPO Destrucción 

exergética
Kw

Pérdidas 
Kw

Costo  
termoeconómico  

unitario

Costo 
monetario de  

Costo 
monetario 

Tabla 6. Exergías totales unidad 10
Fuente: Elaboración  Propia

Tabla 4. Exergías totales unidad 9

Tabla 5. Exergías totales unidad 10

Tabla 6. Exergías totales unidad 12

Tabla 7. Exergías totales unidad 13

Luego de realizar los cálculos exergeticos correspondientes, se aplica los balances en los volúmenes de 

control que corresponden, dando los siguientes resultados de costos termoeconomicos y exergoeconomicos 

organizados en las tablas 8,9,10, 11 y 12

Tabla 8 Costos termoeconomicos de la unidad 7
EQUIPO Destrucción 

exergética
Kw

Pérdidas 
Kw

Costo  
termoeconómico  

unitario

Costo 
monetario de  

Costo 
monetario 

Tabla 7. Exergías totales unidad 12
Fuente: Elaboración  Propia

Tabla 4. Exergías totales unidad 9

Tabla 5. Exergías totales unidad 10

Tabla 6. Exergías totales unidad 12

Tabla 7. Exergías totales unidad 13

Luego de realizar los cálculos exergeticos correspondientes, se aplica los balances en los volúmenes de 

control que corresponden, dando los siguientes resultados de costos termoeconomicos y exergoeconomicos 

organizados en las tablas 8,9,10, 11 y 12

Tabla 8 Costos termoeconomicos de la unidad 7
EQUIPO Destrucción 

exergética
Kw

Pérdidas 
Kw

Costo  
termoeconómico  

unitario

Costo 
monetario de  

Costo 
monetario 

Tabla 8. Exergías totales unidad 13
Fuente: Elaboración  Propia
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BsF/Kw exergía 
destruida

BsF

de  las 
pérdidas

COMPRESOR
1.002.168

0 0.025 25.054,2 0

CAMARA DE 
COMBUSTION 38.186.544

0 0.025 954.663,6 0

TURBINA
3.732.648

6.501.072 0.025 93.316,2 162.256,2

TOTAL 42.123.048 6.501.072 0.025 1.073.034 162.256,2

Tabla 9 Costos termoeconomicos de la unidad 9

Tabla 10 Costos termoeconomicos de la unidad 10

Tabla 11 Costos termoeconomicos de la unidad 12

EQUIPO Destrucción 
exergética

Kw

Pérdidas 
Kw

Costo  
termoeconómico  

unitario
BsF/Kw

Costo 
monetario de  

exergía 
destruida

BsF

Costo 
monetario 

de  las 
pérdidas

COMPRESOR
941.160

0 0.028 26.352,48 0

CAMARA DE 
COMBUSTION 37.382.280

0 0.028 1.046.703,84 0

TURBINA
3.537.720

5.881.320 0.028 99.056,56 164.676,96

TOTAL 40.498.896 5.881.320 0.028 1.172.112,88 164.676,96

EQUIPO Destrucción 
exergética Kw

Pérdidas 
Kw

Costo  
termoeconómico  

unitario
BsF/Kw

Costo 
monetario de  

exergía 
destruida

BsF

Costo 
monetario 

de  las 
pérdidas

COMPRESOR
948.600

0 0.029 27.509,4 0

CAMARA DE 
COMBUSTION 37.230.504

0 0.029 1.079.684,6 0

TURBINA
3.514.656

5.899.920 0.029 101.925,02 171.097,68

TOTAL 40.317.360 5.899.920 0.029 1.209.119,02 171.097,68

BsF/Kw exergía 
destruida

BsF

de  las 
pérdidas

COMPRESOR
1.002.168

0 0.025 25.054,2 0

CAMARA DE 
COMBUSTION 38.186.544

0 0.025 954.663,6 0

TURBINA
3.732.648

6.501.072 0.025 93.316,2 162.256,2

TOTAL 42.123.048 6.501.072 0.025 1.073.034 162.256,2

Tabla 9 Costos termoeconomicos de la unidad 9

Tabla 10 Costos termoeconomicos de la unidad 10

Tabla 11 Costos termoeconomicos de la unidad 12

EQUIPO Destrucción 
exergética

Kw

Pérdidas 
Kw

Costo  
termoeconómico  

unitario
BsF/Kw

Costo 
monetario de  

exergía 
destruida

BsF

Costo 
monetario 

de  las 
pérdidas

COMPRESOR
941.160

0 0.028 26.352,48 0

CAMARA DE 
COMBUSTION 37.382.280

0 0.028 1.046.703,84 0

TURBINA
3.537.720

5.881.320 0.028 99.056,56 164.676,96

TOTAL 40.498.896 5.881.320 0.028 1.172.112,88 164.676,96

EQUIPO Destrucción 
exergética Kw

Pérdidas 
Kw

Costo  
termoeconómico  

unitario
BsF/Kw

Costo 
monetario de  

exergía 
destruida

BsF

Costo 
monetario 

de  las 
pérdidas

COMPRESOR
948.600

0 0.029 27.509,4 0

CAMARA DE 
COMBUSTION 37.230.504

0 0.029 1.079.684,6 0

TURBINA
3.514.656

5.899.920 0.029 101.925,02 171.097,68

TOTAL 40.317.360 5.899.920 0.029 1.209.119,02 171.097,68

BsF/Kw exergía 
destruida

BsF

de  las 
pérdidas

COMPRESOR
1.002.168

0 0.025 25.054,2 0

CAMARA DE 
COMBUSTION 38.186.544

0 0.025 954.663,6 0

TURBINA
3.732.648

6.501.072 0.025 93.316,2 162.256,2

TOTAL 42.123.048 6.501.072 0.025 1.073.034 162.256,2

Tabla 9 Costos termoeconomicos de la unidad 9

Tabla 10 Costos termoeconomicos de la unidad 10

Tabla 11 Costos termoeconomicos de la unidad 12

EQUIPO Destrucción 
exergética

Kw

Pérdidas 
Kw

Costo  
termoeconómico  

unitario
BsF/Kw

Costo 
monetario de  

exergía 
destruida

BsF

Costo 
monetario 

de  las 
pérdidas

COMPRESOR
941.160

0 0.028 26.352,48 0

CAMARA DE 
COMBUSTION 37.382.280

0 0.028 1.046.703,84 0

TURBINA
3.537.720

5.881.320 0.028 99.056,56 164.676,96

TOTAL 40.498.896 5.881.320 0.028 1.172.112,88 164.676,96

EQUIPO Destrucción 
exergética Kw

Pérdidas 
Kw

Costo  
termoeconómico  

unitario
BsF/Kw

Costo 
monetario de  

exergía 
destruida

BsF

Costo 
monetario 

de  las 
pérdidas

COMPRESOR
948.600

0 0.029 27.509,4 0

CAMARA DE 
COMBUSTION 37.230.504

0 0.029 1.079.684,6 0

TURBINA
3.514.656

5.899.920 0.029 101.925,02 171.097,68

TOTAL 40.317.360 5.899.920 0.029 1.209.119,02 171.097,68

Tabla 9. Costos termoeconomicos de la unidad 7
Fuente: Elaboración  Propia

Tabla 10. Costos termoeconomicos de la unidad 9
Fuente: Elaboración  Propia

Tabla 11. Costos termoeconomicos de la unidad 10Tabla 
Fuente: Elaboración  Propia

Luego de realizar los cálculos exergeticos que derivaron a unidades de energías dentro de los volúmenes de control, se aplica los 
procedimientos para obtener los costos termoeconomicos y exergoeconomicos según los establecido por [Benítez, 2000; Reistad, 
1980; Tsatsaronis, et al., 1993; Aglieri , et al., 1991], si bien es cierto que coinciden las metodologías la vía para su realización 
se conjugo en un manera única dado por la combinación de teorías como las de [Alconchel , et al., 1989; Frangopoulos, 1994;
Reistad, et al., 1970; Valero & Lozano, 1994; Von Spakovsky, 1994; Martínez & Casals, 2002]
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Tabla 12 Costos termoeconomicos de la unidad 13

Resultados y Discusiones 

En los siguientes apartados se encuentran los análisis de cada una de los turbocompresores correspondientes 

a las plantas

En la unidad 7: La mayor fuente de irreversibilidad se localiza en la cámara de combustión obteniendo el 

costo monetario más elevado de 954.663,6 BsF, seguido de 93.316,2 BsF en la turbina  y 25.054,2 BsF en 

el compresor. Teniendo un costo monetario total por irreversibilidades internas del turbogenerador de 

1.073.034 BsF. En la unidad se presentan perdidas solamente en la turbina arrojando un costo monetario de 

162.256,2 BsF

EQUIPO Destrucción 
exergética

Kw

Pérdidas
Kw

Costo  
termoeconómico  

unitario
BsF/Kw

Costo 
monetario de  

exergía 
destruida

BsF

Costo 
monetario de  
las pérdidas

COMPRESOR
971.664

0 0.027 26.234,93 0

CAMARA DE 
COMBUSTION 38.082.384

0 0.027 1.028.224,4 0

TURBINA
3.607.656

6.220.584 0.027 97.406,71 167.955,76

TOTAL 41.239.920 6.220.584 0.027 1.151.866 167.955,76

EQUIPO Destrucción 
exergética

Kw

Perdidas
Kw

Costo  
termoeconómico  

unitario
BsF/Kw

Costo 
monetario de  

exergía 
destruida

BsF

Costo 
monetario de  
las perdidas

COMPRESOR 982.824 0 0.025 24.570,6 0

CAMARA DE 
COMBUSTION 39.629.904

0 0.025 990.747,6 0

TURBINA
3.628.488

6.165.528 0.025 90.712,2 154.138,2

TOTAL 42.851.424 6.165.528 0.025 1.106.030,4 154.138,2

Tabla 12 Costos termoeconomicos de la unidad 13

Resultados y Discusiones 

En los siguientes apartados se encuentran los análisis de cada una de los turbocompresores correspondientes 

a las plantas

En la unidad 7: La mayor fuente de irreversibilidad se localiza en la cámara de combustión obteniendo el 

costo monetario más elevado de 954.663,6 BsF, seguido de 93.316,2 BsF en la turbina  y 25.054,2 BsF en 

el compresor. Teniendo un costo monetario total por irreversibilidades internas del turbogenerador de 

1.073.034 BsF. En la unidad se presentan perdidas solamente en la turbina arrojando un costo monetario de 

162.256,2 BsF
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Kw
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Kw

Costo  
termoeconómico  

unitario
BsF/Kw

Costo 
monetario de  

exergía 
destruida

BsF

Costo 
monetario de  
las pérdidas

COMPRESOR
971.664

0 0.027 26.234,93 0

CAMARA DE 
COMBUSTION 38.082.384

0 0.027 1.028.224,4 0

TURBINA
3.607.656

6.220.584 0.027 97.406,71 167.955,76

TOTAL 41.239.920 6.220.584 0.027 1.151.866 167.955,76

EQUIPO Destrucción 
exergética

Kw

Perdidas
Kw

Costo  
termoeconómico  

unitario
BsF/Kw

Costo 
monetario de  

exergía 
destruida

BsF

Costo 
monetario de  
las perdidas

COMPRESOR 982.824 0 0.025 24.570,6 0

CAMARA DE 
COMBUSTION 39.629.904

0 0.025 990.747,6 0

TURBINA
3.628.488

6.165.528 0.025 90.712,2 154.138,2

TOTAL 42.851.424 6.165.528 0.025 1.106.030,4 154.138,2

Tabla 12. Costos termoeconomicos de la unidad 12
Fuente: Elaboración  Propia

Tabla 13. Costos termoeconomicos de la unidad 13
Fuente: Elaboración  Propia

.3. RESULTADOS Y DISCUSIONES 
En los siguientes apartados se encuentran los análisis de cada 
una de los turbocompresores correspondientes a las planta  En 
la unidad 7: La mayor fuente de irreversibilidad se localiza en 
la cámara de combustión obteniendo el costo monetario más 
elevado de 954.663,6 BsF, seguido de 93.316,2 BsF en la turbina  
y 25.054,2 BsF en el compresor. Teniendo un costo monetario total 
por irreversibilidades internas del turbogenerador de 1.073.034 
BsF. En la unidad se presentan perdidas solamente en la turbina 
arrojando un costo monetario de 162.256,2 BsF.

En la unidad 9: La mayor fuente de irreversibilidad se localiza 
en la cámara de combustión obteniendo el costo monetario más 
elevado de 1.046.703,84 BsF, seguido de 99.056,56 BsF en 
la turbina y 26.352,48 BsF en el compresor. Teniendo un costo 
monetario total por irreversibilidades internas del turbogenerador 

de 1.172.112,88BsF.En la unidad se presentan perdidas 
solamente en la turbina arrojando un costo monetario de 
164.676,96 BsF.

En la unidad 10: La mayor fuente de irreversibilidad 
se localiza en la cámara de combustión obteniendo 
el costo monetario más elevado de 1.079.684,6 BsF, 
seguido de 101.925,02 BsF en la turbina y 27.509,4 
BsF en el compresor. Teniendo un costo monetario total 
por irreversibilidades internas del turbogenerador de 
1.209.119,02 BsF. En la unidad se presentan perdidas 
solamente en la turbina arrojando un costo monetario de 
171.097,68 BsF.

En la unidad 12: La mayor fuente de irreversibilidad 
se localiza en la cámara de combustión obteniendo el 
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combustión y que los esfuerzos futuros para el aprovechamiento 
de la exergía tienen que enfocarse directamente sobre este equipo 
y así conseguir la máxima utilidad del combustible, teniendo en 
cuenta que la irreversibilidad interna de este equipo siempre estará 
presente por condiciones de diseño de operación del mismo, es 
decir, los costos de destrucción de exergía obtenidos  no tienen 
influencia directa en los costos de operación mensual de la planta 
ya que  la empresa no toma estos costos como pérdidas, pero dejan 
ver la cantidad de dinero en exergía destruida.

En las plantas, se obtuvo en promedio un rendimiento exergético 
de 53% y un costo exergético unitario total de 1,83 indicando 
que se requieren 1,83 unidades de exergía de fuel para producir 1 
unidad de exergía de productos, es decir el producto es 1,83 veces 
más caro que el combustible empleado.  

El costo por pérdida de exergía en la planta es aproximadamente 
820.094,8 BsF. mensual, reflejando el alto valor monetario que 
tienen los flujos 4 (gases de escape de la turbina) que no son 
aprovechados.

REFERENCIAS
Aglieri Rinella, D.; Cardona, E.; Culotta, S. “Steam Generator 

Exergy Optimization.”, CH4 Energia Metano, Italy Vol. 8 
No.4, 1991.

Ahrendts, J. (1998) “Reference States”, Energy, 5, N 8 - 9, p 667 
– 677. 

Ahrendts, J. “Die Exergie chemisch reaktionsfähiger Systeme” , 
VDI - Forschungsheft, Vol. 43, No.579, pp. 1-39, 1977

Al-Ahmad, M. Sh.; Darwish, M.A “Second Law Analysis of 
Mult-Effect and Multi-Stage flash desalination plants”, 
Desalination v 81 n 1 - 3 Jul, p 449. 1991

Alconchel, J. A.; Valero, A.; Abadia, J. “Exergy Simulation of Real 
Operating Steam Power Plants”, Proc. of the Thermodynamic 
Analysis and Improvement of Energy Systems Conference 
TAIES’89. Beijing 5 - 8 Jun 1989. Pergamon Books Inc.; NY, 
USA

Arias, Fidias (1999). “El proyecto de la investigación, guía para su 
elaboración”. Tercera Edición. Caracas: Episteme. 

Bejan, A.; Tsatsaronis G. & Moran Michael. “Thermal design and 
optimization”. Jhon Wiley & Sons, New York, USA (1996).

Benítez Fundora, A. (2000). “Método termoecónomico aplicado 
a nuevas soluciones energéticas para la industria azucarera”. 
Trabajo de grado de maestría, Universidad de Matanzas 
“Camilo Cienfuegos”. Matanzas.

Brodyanski, V.M. Sorin, V.M. & P.; Le Goff. ( 1994) “The 
Efficiency of Industrial Processes” Elsevier Pub., New York, 
512 pp.

Frangopoulos, Christos A. “Application of the Thermoeconomic 
Functional Approach to the CGAM Problem”, Energy, Vol. 
19, No. 3, 1994, pp. 323 – 342.

Guallar, J & A. Valero. “Exergía y Ambiente de Referencia”, 
Comunicación Interna, Área de Máquinas y Motores 
Térmicos, Dpto. de Ingeniería Mecánica, E.T.S.I.I., 
Universidad de Zaragoza. 8 pp.1992.

costo monetario más elevado de 1.028.224,42 BsF, 
seguido de 97.406,71 BsF en la turbina y 26.234,93 
BsF en el compresor. Teniendo un costo monetario 
total por irreversibilidades internas del turbogenerador 
de 1.151.866 BsF. En la unidad se presentan perdidas 
solamente en la turbina arrojando un costo monetario de 
167.955,76 BsF.

En la unidad 13: La mayor fuente de irreversibilidad 
se localiza en la cámara de combustión obteniendo 
el costo monetario más elevado de 990.747,6 BsF, 
seguido de 90.712,2 BsF en la turbina y 24.570,6 BsF 
en el compresor. Teniendo un costo monetario total 
por irreversibilidades internas del turbogenerador de 
1.106.030,4 BsF. En la unidad se presentan perdidas 
solamente en la turbina arrojando un costo monetario de 
154.138,2 BsF.

Estos costos exergoeconómicos reflejan el valor 
monetario que tiene la exergía destruida de cada equipo, 
por otra parte las pérdidas expresan el costo monetario 
perdido por la no utilización de los gases de escape de 
la turbina, característica principal de un ciclo Brayton 
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no son tomados en cuenta en el análisis económico para  
la empresa ya que estos costos, mayormente aportados 
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no repercuten en la gasto directo de operación de las 
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dinero en exergía destruida. 

4. CONCLUSIONES
La exergía, y más concretamente las exergías perdidas 
y destruidas que tienen lugar en los procesos reales, 
es la única medida que cuantifica, según una base 
termodinámica correcta, las ineficiencias de los distintos 
equipos que componen una instalación. Por otra parte, 
el rendimiento exergético es el parámetro idóneo para 
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cuando los elementos confrontados tengan características 
y utilidades diferentes. Según los señalamientos 
anteriores se concluye que:

Con la aplicación de este análisis se identificó que la mayor 
fuente de irreversibilidad se localizaba en la cámara de 
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