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ABSTRACT
Maintaining soil fertility and optimizing land management strategies on a global scale necessitates a comprehensive 
understanding of soil’s physicochemical properties. This study proposes the deployment of remote sensing techniques 
as a more efficient, accurate, and cost-effective alternative for exploring the properties of chernozem soils and for 
predicting soil organic matter (SOM) in specific regions of Kyiv, Ukraine. The spectral properties of the chernozem 
soils were examined by Landsat 5 TM and 8 OLI satellite imagery. A mosaic of the mean spectral reflectance values 
for the study period (1986-2015) was created on the Google Earth Engine. The construction of the predictive model 
employed reflectance values across six bands, a range of vegetation indices (RNDSI, NDWI, NDBI, BAEI, MSAVI, and 
NDVI), topographic data (slope), and climatic parameters (temperature, precipitation, soil moisture) as regressors. The 
optimal model was subsequently determined using the Forward stepwise method, which is predicated on F-test and 
Akaike criteria. This model yielded notable metrics of Multiple R = 0.651, R2 = 0.424, and Adjusted R2 = 0.397. The most 
significant predictors within the model were determined to be RED, NIR, slope, and soil moisture. Upon validation, 
the model displayed no evidence of heteroscedasticity, multicollinearity, or potential outliers, thereby underscoring 
its reliability and robustness. The proposed model serves as a valuable tool, offering both reliability and precision in 
predicting SOM in specific regions of Ukraine.
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Aplicación de métodos de teledetección para la estimación estadística del material orgánico en suelos

RESUMEN

Mantener la fertilidad del suelo y optimizar estrategias de manejo de tierras a una escala global demanda 
un conocimiento amplio de las propiedades fisicoquímicas del suelo. Este estudio propone la implementación de 
técnicas de teledetección, por su eficiencia, precisión y economía, para la exploración de las propiedades de los suelos 
chernozem (tierra negra) y para la predicción de Material orgánico del suelo (MOS) en algunas regiones específicas 
de Ucrania. Las propiedades espectrales de los suelos chernozem se examinaron con imágenes de los satélites 
Landsat 5TM y 8 OLI. Luego se creó un mosaico de los valores de reflectividad espectral media para el período de 
estudio (1986-2015) con la herramienta Google Earth Engine. Para la construcción del modelo predictivo se tomaron 
valores de reflectividad de seis bandas, un amplio rango de índices de vegetación (RNDSI, NDWI, NDBI, BAEI, 
MSAVI y NDVI), de información topográfica (pendiente), y parámetros climáticos (temperatura, precipitación, 
humedad del suelo) como regresores. Luego se determinó el modelo óptimo a través del método de selección por 
pasos hacia adelante, el cual se basó en los criterios de información F-Test y Akaike. Este modelo presentó métricas 
notables en los valores Multiple R = 0.651, R2 = 0.424, y Adjusted R2 = 0.397. Los predictores más significativos del 
modelo fueron RED, NIR, pendiente y humedad del suelo. Tras la validación, el modelo no presentó evidencias de 
heterocedasticidad, multicolinealidad, u otros posibles valore atípicos, lo que garantiza su fiabilidad y robustez. Este 
modelo propuesto sirve como una herramienta útil que ofrece fiabilidad y precisión en la predicción de composición 
del material orgánico del suelo en regiones específicas de Ucrania.

Palabras clave: brillo espectral; Landsat; regresión 
lineal múltiple; índice de vegetación; material orgánico 
del suelo.
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1. Introduction

The significance of soil organic matter (SOM) research cannot be 
overstated, being at the forefront of solutions to pressing global issues. As 
a substantial carbon repository, SOM is indispensable to strategies aimed at 
mitigating climate change, with research on its dynamics providing invaluable 
insights for enhancing carbon sequestration efforts (Baveye et al., 2020; 
Navarro-Pedreño, Almendro-Candel and Zorpas, 2021). Moreover, SOM 
bolsters soil fertility, a critical factor in augmenting agricultural productivity, 
thereby addressing concerns of food security in the face of an escalating global 
population (Khangura et al., 2023; Parikh and James, 2012; Das et al., 2021; 
Chatohin and Lindin, 2001). Beyond that, SOM serves as a vital energy source 
for soil microorganisms, fostering soil biodiversity (Bach et al., 2020; Wang et al., 
2022; Zhang et al., 2021). Recent advancements in remote sensing technologies 
offer transformative possibilities in the field of SOM research, allowing for 
large-scale, non-invasive, and temporal assessments of soil conditions (Omia 
et al., 2023; David, 2013; Das et al., 2021; Bouzekri et al., 2015). The ability of 
satellites to rapidly cover extensive and often inaccessible geographical regions 
presents an unrivaled advantage over traditional, labor-intensive soil sampling 
methods. Combined with ground-based measurements, satellite data offers 
improved accuracy of SOM estimates, providing a comprehensive analysis of 
soil fertility indicators (Belenok et al., 2021; Huang et al., 2018; Weiss, Jacob 
and Duveillerc, 2020; Chen et al., 2006; Zhang et al., 2021; Yuzugullu et al., 
2020). Satellite imagery, particularly multispectral and hyperspectral images, 
are essential tools in assessing SOM due to their ability to capture reflectance 
and absorption properties of different soil constituents (Luo et al., 2023; Gopp 
et al., 2017; Gopp et al., 2019; Khangura et al., 2023). Organic matter influences 
reflectance in the visible (VIS) and near-infrared (NIR) regions, making these 
spectral bands key in SOM evaluation (Reis et al., 2021; Bouasria et al., 2020; 
Yu et al., 2021; Yuzugullu et al., 2020; Zhang et al., 2021).

The spectral characteristics of bare soil are shaped by several factors, 
most notably the content of organic matter, often referred to as humus or SOM, 
and the level of soil moisture. Specifically, increases in either SOM content 
or soil moisture are associated with reduced spectral brightness coefficients, a 
pattern particularly pronounced in the red band of the spectral range (Zhang et 
al., 2021; Wang et al., 2022; Kravtsova, 2005; Shikhov et al., 2020; Prudnikova 
and Savin, 2021). Dry soils exhibit a common trait: a monotonic escalation in 
spectral brightness coefficients as the wavelength extends from 0.4 to 2 microns. 
As the SOM content rises, the spectral brightness of the soil correspondingly 
diminishes (Rukhovich et al., 2021). Further, the soils structure can influence 
its spectral brightness. Unstructured soils, for example, reflect approximately 
10-15% lighter than well-structured soils, underscoring the intricate interplay of 
soil properties on its spectral characteristics (Kravtsova, 2005; Jing et al., 2020; 
Wang et al., 2022; Yang et al., 2021; Zhang et al., 2021).

The evaluation of SOM using remote sensing techniques utilizes specific 
spectral indices such as the Ratio Normalized Difference Soil Index (RNDSI) 
or the Normalized Difference Vegetation Index (NDVI). These indices help in 
amplifying the SOM signal while simultaneously suppressing the effects of 
other variables (Yang et al., 2021; Deng et al., 2015; Montero et al., 2023). 
While the primary application of NDVI lies in vegetation analysis, it can 
indirectly infer SOM levels as high vegetation areas often correlate with 
increased SOM content. Many techniques underscore the use of the NDVI 
as an identifier for bare soil surfaces (Ding et al., 2016; Tian et al., 2021; Lu, 
Liu and Liu, 2022). Guidelines have been established, which suggest scales of 
NDVI values for reflectance in the RED (0.25) and NIR (0.3) ranges for open 
ground (the average NDVI value is thus is equal to 0.025) (Koroleva et al., 
2017; Kulyanitsa et al., 2017; Luo et al., 2021). According to the study (Gasmi 
et al., 2021) suggested using an NDVI threshold value of 0.22 to separate bare 
soils from other land types. Further, ground cover studies utilize mathematical 
models built upon parameters like fractional vegetation coverage, nitrogen 
reflectance index, yellow leaf index, bare soil index, and slope, achieving 
an accuracy of approximately 90% (Das et al., 2021). Land degradation hot 
spots and soil salinity are studied using spectral characteristics like surface 
albedo, the Salinized Land Degradation Index (SDI), the Soil Surface Moisture 
Index (LSM), Enhanced Vegetation Index (EVI) (Rukhovich et al., 2021; 
Higginbottom and Symeonakis, 2014; Jiang et al., 2008; Yuzugullu et al., 2020; 
Gopp et al., 2019). To minimize the effect of some vegetation spectral indices 
on soil brightness, based on the wavelengths of the RED and NIR ranges bands, 

it is proposed to use indices like the Soil-Adjusted Vegetation Index (SAVI) 
(Huete, 1988) and the Modified Soil Adjusted Vegetation Index (MSAVI) (Qi 
et al., 1994), as well as the NPV-Soil Separation Index (NSSI), developed to 
distinguish non-photosynthetic vegetation soils using two NIR bands (Tian et 
al., 2021). In the study (Chen et al., 2006), authors proposed the utilization four 
vegetation indices - NDVI, the Normalized Difference Water Index (NDWI) 
(Gao, 1996), the Difference Built-up Index (NDBI), the Normalized Difference 
Bareness Index (NDBaI) - for differentiating bare soils from other land use and 
land cover (LULC) types, setting threshold values for each. These indices are 
based on the spectral properties inherent to all LULC categories (Chen et al., 
2006; Li and Chen, 2014).

A multitude of studies have established a correlation between SOM 
content in soils with pixel values of multispectral satellite data, often employing 
multiple linear regression (MLR) or alternative mathematical methodologies 
(Lu, Liu and Liu, 2022; Luo et al., 2021; Ahmed and Iqbal, 2014; Bouasria 
et al., 2020). Some authors (Gasmi et al., 2021; Demattê et al., 2007) have 
successfully used MLR to predict clay content. In a distinct approach (Mirzaee 
et al., 2016) authors applied geostatistical methods, specifically different types 
of the kriging method, to predict SOM content in soils. In the study (Jing et al., 
2020) authors examined the impact of time gaps between field sampling and the 
acquisition of Landsat TM/OLI satellite data on soil nutrient predictions, using 
both MLR and artificial neural network methodologies. According to study 
(Ahmed and Iqbal, 2014; Fiorio and Demattȩ, 2009), authors employed MLR 
to correlate soil surface variables with spectral data. These studies demonstrate 
the diversity of approaches and tools used in exploring the link between SOM 
and spectral data.

The technique of this study consists in the correct separation of the bare 
soil cover from other LULC in order to establish an excellent linear relationship 
between the spectral indices and the actual soil parameters. It is this indicator 
and the calculated vegetation indices that will be the basis for forecasting the 
fertility of agricultural land in the Kyiv region.

The aim of the study is to establish a statistical relationship between SOM 
and the mean spectral reflectance extracted from satellite images. This process 
based on using MLR and further assessing the accuracy and significance of 
this relationship for the chernozems of Kyiv region. The establishment of such 
a relationship will make it possible to forecast the SOM content in the soil for 
further assessment of soil fertility.

2. Materials and Methods

Characteristics of the study area

Located in the Dnipro River basin in the northern part of Ukraine, 
the Kyiv region encompasses an area of 28.1 thousand square kilometers, 
excluding the Kyiv. This region constitutes approximately 4.7% of Ukraine’s 
total land area, with the inclusion of Kyiv bringing the total to 28.9 thousand 
square kilometers. From an administrative perspective, the region is divided 
into 25 districts, along with 13 cities of regional subordination. In addition, it 
includes 30 cities of district subordination, classified as urban-type settlements, 
and 1,182 rural settlements. As of the start of 2021, the population of the Kyiv 
region stood at approximately 1,788,530 thousand individuals (Website of the 
Kyiv Regional State Administration, 2021).

The Kyiv region’s lands are uniquely positioned within a transitional soil-
climatic zone. This zone serves as an interface between Polissya, characterized 
by soddy-podzolic soils, and the Forest-steppe region, known for its transitional 
chernozem soils. This distinctive location contributes to the diversity of soil 
types in the Kyiv region and influences its ecological and agricultural potential 
(State Department of Environmental Protection in Kyiv region, 2021).

According to the Main Directorate of the State Land Agency, the total land 
area within the administrative boundaries of the Kyiv region is 2816.2 thousand 
hectares. The region’s agricultural land spans 1658.9 thousand hectares, 
representing approximately 58.9% of the region’s total land area. Built-up 
areas account for 137.4 thousand hectares, which equates to 4.9% of the total. 
Industrial lands - 22.9 thousand hectares (0.8%), while lands designated for 
transport and communications represent 29.7 thousand hectares (0.9%). Land 
allotted to law enforcement agencies covers 26.3 thousand hectares (0.9%). 
The region designates 56.0 thousand hectares for environmental protection. 
Recreational areas cover a total of 1.8 thousand hectares, with 0.4 thousand 
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hectares intended for general recreation and an additional 1.4 thousand 
hectares set aside specifically for recreational facilities. Finally, 1.2 thousand 
hectares are reserved for historical and cultural purposes (State Department of 
Environmental Protection in Kyiv region, 2020; Main Department of the State 
Land Agency in Kyiv region, 2012).

Figure 1 illustrates the territory of the Kyiv region with an emphasis on 
15 highlighted districts (excluding city councils). For these highlighted districts, 
a statistical relationship will be established between the humus content (SOM) 
in the soil and the Landsat 8 OLI satellite data. The creation Figure 1 employed 
geoinformation technologies, following the methods delineated in the study 
(Belenok et al., 2021; Liashenko et al., 2020) in ArcGIS Pro software.

Figure 1. Study area

The Kyiv region boasts a diverse soil cover, with chernozems, constituting 
approximately 50% of the region’s arable land, being the most prevalent. Other 
soil types found across a significant portion of the region include podzolized 
soils. This diverse mix of soil types underscores the rich and varied terrain 
of the Kyiv region (Figure 2). The degree of plowing of the territory exceeds 
60 % (State Institution “Soils protection Institution of Ukraine”, 2016). In the 
Kyiv region, an estimated 1353.7 thousand hectares of land are degraded, 
representing 48.1% of the region’s total land area and 81.4% of its agricultural 
land. This level of degradation is among the highest in the Forest-Steppe and 
Steppe regions of Ukraine. One of the key contributing factors to these negative 
processes is the excessive pressure exerted on the region’s land resources, which 
includes intensive agricultural activity and widespread plowing of the territory 
(State Service of Ukraine for Geodesy, Cartography and Cadastre, 2020).

Figure 2. Soil of Kyiv region, constructed by the authors based on the data 
described in (Atlas of natural conditions and natural resources of the Ukrainian 

SSR, 1978)

The overall condition of the soils in the Kyiv region is currently deemed 
satisfactory. Nevertheless, in order to maintain and enhance this status, it is 
imperative to implement consistent, reliable, and timely soil cover monitoring 
(State Institution “Soils protection Institution of Ukraine”, 2020).

It is important to note that since February 24, 2022, a full-scale war has 
been unfolding in Ukraine. Consequently, the current statistical data concerning 
land resources may be subject to change depending on the impact of the 
ongoing conflict. Therefore, when interpreting the data, the influence of these 
extraordinary circumstances should be taken into consideration.

3. Materials and data

Conducting ground surveys and obtaining factual data on the percentage of SOM

Agrochemical research is conducted in Ukraine every five years. To date, 
ten complete rounds of such studies have been completed, and the 11th round is 
currently underway with data still being gathered. The State Institution ‘Soils 
Protection Institute of Ukraine’ carries out agrochemical studies on soils and 
produces accompanying reports (State Institution “Soils protection Institution 
of Ukraine”, 2020). In our study, we utilized data on the humus content, also 
known as Soil Organic Matter (SOM), from the 5th to the 10th rounds of 
investigation. It is pertinent to note that the 5th round spanned the years 1986-
1990, the 6th round covered 1991-1995, the 7th round included 1996-2000, the 
8th round ranged from 2001-2005, the 9th round incorporated 2006-2010, and 
the 10th round covered 2011-2015. Thus, the SOM percentage represents the 
average value over five years for each round, broken down by district. During 
the 5th round, 1094.8 thousand hectares of agricultural land were surveyed, 
with an average SOM percentage of 2.7% for the entire Kyiv region. In the 6th 
round, the surveyed area contracted to 770.8 thousand hectares, and the average 
SOM decreased to 2.6%. For the 7th round, the surveyed area expanded to 939.3 
thousand hectares while the average SOM remained at 2.6%. In the 8th round, 
the surveyed area began to shrink again, reaching 843.2 thousand hectares, with 
a SOM of 2.87%. This decrease continued into the 9th round (793.2 thousand 
hectares, SOM – 2.9%) and the 10th round (761.4 thousand hectares, SOM – 
2.98%) (Romanova et al., 2018; Yacuk and Balyk, 2013). As a result, the SOM 
data for each district were extracted from statistical reports provided by the 
State Institution ‘Soils Protection Institute of Ukraine.’ This information can 
also be found in the published article by (Romanova et al., 2018).

The State Institution ‘Soils Protection Institute of Ukraine’ collects soil 
samples from March to May. Following this, laboratory tests are conducted 
and the SOM data is calculated as an average value spanning five years. 
Consequently, we selected satellite images for the months of March through 
May from 1986 to 2015. It is important to note that many of the images from May 
display vegetation. This article proposes a method for estimating the predicted 
SOM indicator based on spectral characteristics. To ensure the reliability of the 
study, we decided to focus on a single soil type, specifically chernozems, which 
predominate in the southern part of the region, as depicted in Figure 2. The 15 
selected districts from the Kyiv region, along with their corresponding humus 
content (SOM) in the soils and the soil types, were identified by the authors and 
are presented in Figure 3.

Drawing from empirical data (Romanova et al., 2018), a significant 
increase in SOM over time was reported, with marked alterations especially 
observable in the southern part of the region. Despite the ongoing intensification 
of agricultural land use in the region, it is evident that the SOM data can be 
enhanced through the application of various organic fertilizers. Specifically, 
within the Kyiv region, the incorporation of by-products and residual vegetable 
matter from agricultural crops is identified as the primary mechanism 
for replenishing SOM. Romanova’s research provides further validation, 
confirming the annual increase in organic contributions. The second factor 
contributing to the rise in SOM within the region is the strategic removal, 
initiated in 2001, of highly eroded and unproductive lands with low SOM 
content from active cultivation. The area of the investigated lands decreased by 
30.5 % (from 1986 to 2015). SOM content in soils of Kyiv region according to 
(Romanova et al., 2018) by survey rounds (1986-2015) in 15 selected districts 
shown in Table A1 (Appendix A).
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Satellite data

Landsat data

In this study, we utilized data from the Landsat 5 TM (“USGS Landsat 5 
Level 2, Collection 2, Tier 1” collection in GEE) and Landsat 8 OLI (“USGS 
Landsat 8 Level 2, Collection 2, Tier 1” collection in GEE) satellites, both 
of which are publicly accessible as remote sensing materials. As the ground-
based measurements for the SOM data were collected between 1986 and 2015, 
we ensured that the satellite data also spanned this time interval. Among the 
Landsat satellite system, three missions, specifically Landsat 5, 7, and 8, were 
operational during this period. However, it is worth noting that data acquired 
after May 31, 2003, from these missions may contain data gaps (Landsat 
Missions, 2021).

For the 5th through 9th rounds (1986-2010), we exclusively used data from 
Landsat 5 TM. The 10th round, which spanned the interval from 2011 to 2015, 
was covered by data from both Landsat 5 TM (which operated until 2012) and 
Landsat 8 OLI (which has been operational since 2013). When data from the 
Landsat 5 TM were loaded for what were considered the most favorable periods 
- March and May of 2011 and 2012, the resulting images were found to be of 
poor quality. This could possibly be due to the deterioration of the detectors as 
the Landsat 5 TM satellite mission approached its end. As a result, the decision 
was made to use data from the Landsat 8 OLI satellite. The Landsat 8 OLI data 
offers a spatial resolution of 30 meters in the visible, near-infrared (NIR), and 
shortwave infrared (SWIR 1 and SWIR 2) ranges, and it has a 16-day temporal 
resolution (Landsat Missions, 2021).

The number of images that were used for conducting the research in each 
of the rounds are displayed in Table 1.

Table 1. The number of Landsat images used.
No round of 
investigation

Investigation 
time Satellite Bands Number of 

images
5th 1986-1990 Landsat 5 TM 1-5, 7 160
6th 1991-1995 Landsat 5 TM 1-5, 7 117
7th 1996-2000 Landsat 5 TM 1-5, 7 126
8th 2001-2005 Landsat 5 TM 1-5, 7 72
9th 2006-2010 Landsat 5 TM 1-5, 7 109
10th 2011-2015 Landsat 8 OLI 2-7 102

Satellite elevation and climate data

Elevation and climate data from GEE were utilized to construct a 
regression model in this study. The ‘NASA SRTM Digital Elevation 30 m’ 
collection served as the source for terrain slope data, expressed in degrees. 
Additionally, the ‘TerraClimate: Monthly Climate and Climatic Water Balance 
for Global Terrestrial Surfaces, University of Idaho’ collection provided data on 
precipitation accumulation, measured in millimeters, as well as soil moisture, 
also measured in millimeters, which was derived using a one-dimensional 

soil water balance model. Temperature data (ºC) were also sourced from this 
collection.

Satellite Data Preprocessing in GEE

Landsat 5 TM and Landsat 8 OLI data can be freely downloaded from 
GEE (Google Earth Engine, 2021). Hence, the study employs the GEE cloud 
computing platform, offering powerful tools for processing remote sensing 
data and conducting geoinformation analysis. Using GEE mitigates challenges 
associated with loading, storing, and processing satellite data at different 
times. This issues commonly encountered when dealing with large volumes 
of spatial data (Mateo-García et al., 2018; Shetty Ai., Umesh and Shetty A., 
2021). To access GEE over the internet, a Google account is required for coding 
operations. The data catalog houses a vast repository of publicly available 
geospatial datasets. These incorporate observations from a variety of satellite 
and aerial imaging systems spanning both optical and non-optical wavelength 
ranges. The catalog also includes environmental variables, weather and climate 
data, land cover, topographic information, and socio-economic data. All this 
data is preprocessed and made available in a ready-to-use format (Gorelick 
et al., 2017). The GEE platform comprises two principal components that 
function in tandem - the Google Earth Engine Explorer, which is used for 
viewing datasets, and the Google Earth Engine Playground. The Google Earth 
Engine Playground application employs a JavaScript API to download and 
analyze extensive satellite images, as well as to execute complex geostatistical 
and geospatial operations (Shetty Ai., Umesh and Shetty A., 2021).

In GEE Landsat 5 TM and Landsat 8 OLI data were downloaded from 
Collection 2 Level-2 already with surface reflectance values. That is, they are 
atmospheric corrected. Landsat 5 TM and Landsat 8 OLI surface reflectance 
data (Level 2 Science Product - L2SP) were generated using the Land Surface 
Reflectance Code algorithm. This algorithm converts pixel values to Top of 
Atmosphere (TOA) Reflectance and Brightness Temperature values using 
calibration parameters from metadata. Then the TOA Reflectance values are 
subjected to atmospheric correction using additional data (Landsat 8 Collection 
2 (C2) Level 2 Science Product (L2SP) (Guide, 2020; Vermote et al., 2016)

The subsequent step in processing Landsat data in GEE involves masking 
clouds and their shadows. Pixels obscured by cloud cover and cloud shadows 
do not provide useful information about the Earth’s surface. Therefore, their 
inclusion in data processing would lead to deliberately inaccurate results. GEE 
masks cloud pixels according to the C function of the mask (CFmask) algorithm 
using data from the QA_PIXEL (Pixel Quality Assessment) band. The CFmask 
algorithm can be found, for example, in the study (Joshi, Wynne and Thomas, 
2019; Zekoll et al., 2021).

Finally, employing a date filter, mosaic Landsat images were created for 
the months of March through May for rounds 5th through 10th, encapsulating 15 
months across five years for each round. These mosaic Landsat images consist 
of images with atmospheric corrected pixel values (surface reflectance) that 
have been averaged over all scenes of this satellite covering the 15 districts of 
the Kyiv region for the designated time interval, with clouds and their shadows 
masked.

Figure 3. Humus content (SOM) in selected 15 districts of Kyiv region (10th round)
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4. Methods

Snow masking

Images from March and May were considered for this study because 
during this time, the snow in the area would have already melted and the 
primary growing season for most plants would not have begun yet. Extensive 
vegetation on the soils can lead to reflections that distort the soil’s spectral curve. 
To account for any areas where snow might still be present, a trait common 
in March and April for this latitude, the Normalized Difference Snow Index 
(NDSI) was utilized. We employed the NDSI, as described in (Riggs, Hall, and 
Salomonson, 1994) to mask areas that might still be covered with snow. This 
specific threshold was established after examining the satellite data for the study 
area. The calculation of the NDSI was conducted using the following formula:

	
1,
1

Green SWIRNDSI
Green SWIR

–
=

+
                                       (1)

where Green and SWIR 1 are the pixel values in Landsat’s bands (2 and 5 
for Landsat 5 TM and 3 and 6 for Landsat 8 OLI, respectively.

The threshold NDSI < 0 was utilized for snow masking, with positive 
NDSI values indicating areas covered with snow. The mean spectral reflectance 
(MSR) value was obtained for pixels unaffected by snow, clouds, and cloud 
shadows. Subsequently, the resulting mosaic was cropped to the precise area 
of the polygonal feature representing the Kyiv region. Finally, the processed 
mosaic was uploaded to the GEE platform from the Humanitarian Data 
Exchange (The Humanitarian Data Exchange, 2021).

Determination of bare soils from remote sensing data

According to (Romanova et al., 2018) soil samples were collected from 
bare soils in the Kyiv region for further determination of SOM. Consequently, 
the subsequent step involved developing a method to isolate bare soils using 
the mosaic of Landsat satellite data. Figure 2 indicates that chernozem soils, 
which are the focus of this article’s spectral analysis, are predominantly located 
in the south and southeast of the Kyiv region. Therefore, for the upcoming 

investigation, the corresponding 15 districts of the Kyiv region, as depicted in 
Figure 1 and Figure 3 were specifically chosen. The polygon data for these 
districts were also obtained from the Humanitarian Data Exchange (The 
Humanitarian Data Exchange, 2021).

The conventional approach for identifying different types of land use, 
known as LULC (Land Use/Land Cover), involves satellite data classification. 
Both supervised and unsupervised classification methods are commonly 
employed, as described in the scientific literature (Mekuriaw, Cherinet and 
Tsegaye, 2021; Olthof and Fraser, 2014). Nevertheless, the classification 
method is rather cumbersome and can be effectively used to distinguish all 
types of LULCs typical for a given territory. In our study, we need to select only 
bare soils, and we are not interested in selecting other LULC types. Therefore, 
it is advisable to use a technique based on the reflective spectral properties of 
bare soils, making it possible to decipher this particular type of LULC. These 
data for the first seven bands of Landsat 8 OLI in GEE are shown in Figure 4.

The spectral reflectance properties of soils in the study area were 
examined by analyzing spectral profiles and using different combinations of 
bands from the Landsat 8 OLI satellite. (Figure 5).

By analyzing Figure 5a and Figure 5b, it is possible to determine the color 
representation of bare soils in composite R-G-B = 4-3-2 and decipher them. It 
is important to consider the soil property described in (Shikhov et al., 2020), as 
mentioned earlier, which states that soils of different genetic affiliations exhibit 
a monotonic increase in reflection coefficients as wavelength increases in the 
range from 0.4 to 2 μm. In our study, this corresponds to the B1-B6 band of 
Landsat 8 OLI. By comparing the spectral profiles of different bare soils (Figure 
5a) and overlaying a thematic map of soils in the Kyiv region (Figure 2) onto 
Figure 5a it can be concluded that the last two spectral profiles in the “Profiles” 
list do not correspond to chernozem soils. Therefore, for further analysis, they 
should be masked.

Based on the findings from previous studies regarding the spectral 
reflectance properties of chernozems and the obtained spectral profiles, the 
authors chose to utilize specific threshold values for vegetation indices to isolate 
bare soils chernozems, as presented in Table 2. Additionally, the Built-Up Area 
Extraction Index (BAEI) was employed to separate bare soils from built-up areas.

a. b.

Figure 4. Landsat 8 OLI satellite data mosaic plotted in GEE for the month’s March-May for round 10th (2011-2015): a - for the territory of the Kyiv region (False Color 
Composite R-G-B = 5-4-3), b - for the territory of the selected 15 districts of the Kyiv region (Composite R-G-B = 7-6-5)
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Table 2. Threshold values of vegetation indices for bare soils detection.

Vegetation indices
Threshold values

From To
NDVI 0.1 0.35
NDBI 0 0.45
NDWI -0.5 0

MSAVI2 0 0.3
BAEI < 1.3
NDSI < 0

The vegetation indices were calculated using the formulas provided below.
NDVI differentiates green vegetation from other surfaces, and elevated 

NDVI values indicate a high presence of leaf biomass, dense canopy coverage, 
or a large leaf area (Jasinski, 1990; Tucker, 1979; Wilson and Sader, 2002):

	 .NIR RedNDVI
NIR Red

–
=

+
                                             (2)

NDBI (Normalized Difference Built-Up Index) is utilized to emphasize 
built-up areas while mitigating variations in surface illumination and 
atmospheric effects (Zha, Gao and Ni, 2003):

	 6 5

6 5

.Band BandNDBI –
+

                                      (3)

Normalized Difference Water Index (NDWI was introduced as a novel 
index for remote sensing applications, specifically for detecting vegetation liquid 
water and assessing the spectral reflectance properties of soils (Gao, 1996):

	 0.86 1.24

0.86 1.24

1,
1

NIR SWIRNDWI
NIR SWIR

                               (4)

where ρ is surface reflectance value at the wavelength specified in μm;
MSAVI2 (Modified Soil Adjusted Vegetation Index) expands the dynamic 

range of the vegetation signal, thereby reducing the impact of soil background 
and enhancing the sensitivity of vegetation. This sensitivity is determined by 
the ratio of the vegetation signal to the soil noise (Qi et al., 1994):

	 ( ) ( )2

2

2 1 2 1 8
2

MSAVI                               (5)

Built-Up Area Extraction Index (BAEI) is calculated by the equation 
(Bouzekri et al., 2015):

	
+ 0.3

1
RedBAEI

Green SWIR
=

+
.                                         (6)

Vegetation indices were computed based on the average spectral 
reflectance of Landsat 5 TM and Landsat 8 OLI, following the formulas -. 
Using the predetermined threshold values of vegetation indices (Table 2) and 
the polygons representing the territories of city councils acquired from (The 
Humanitarian Data Exchange, 2021), a binary raster mask was generated. In 
this mask, a value of 1 indicates bare soils chernozems, while 0 represents 
other types of LULC. The generated mask was then applied to the previously 
obtained MSR values. As a result, images of bare soils were obtained, where the 
pixels retain the MSR values.

5. Results

To establish the statistical relationship between the MSR value obtained 
from Landsat and SOM, it was decided to employ a multiple linear regression 
(MLR) model. Since each of the 15 selected districts in the Kyiv region is 
characterized by a single the SOM value, this value should correspond to a single 
mean spectral reflectance value from Landsat for each band. Consequently, 
within GEE, zonal statistics were utilized to calculate the average MSR values 
for the seven selected Landsat bands, the average values of vegetation indices 
for each area, as well as additional data on relief and climate factors such as 
slope, precipitation, soil moisture, and temperature.

Indeed, MLR enables the assessment of the individual impact of each 
factor and their collective influence on the target variable, in this case, the SOM 
data. MLR allows for the determination of the degree of influence that each 
factor exerts on the productive trait and provides insights into the combined 
effect of these factors on SOM. By analyzing the MLR model coefficients 
and statistical significance, we can understand the relative importance and 
contribution of each factor in explaining the variations in SOM. In the MLR 
model, SOM was considered as the dependent variable. As predictors or 
regressors in the MLR analysis, we utilized spectral bands with wavelengths 
common to Landsat 5 TM and Landsat 8 OLI, which are associated with the 
spectral reflectance properties of soils. Additionally, vegetation indices capable 
of detecting bare soils were employed as predictors. Furthermore, topographic 
data, specifically slope, and climatic data including temperature, precipitation, 
and soil moisture, were also included as predictors in the model (Table 3).

Table 3. Predictors of MLR model
Predictors, xi x1 x2 x3 x4 x5 x6 x7

Values, MSR Blue Green Red NIR SWIR 1 SWIR 2 NDVI
Predictors, xi x8 x9 x10 x11 x12 x13

Value, MSR NDBI MSAVI2 Slope Temperature Precipitation Soil moisture

a. b.

Figure 5. The determination of the LULC type is indicated by points (a), and the corresponding spectral profiles (b) are provided. A fragment of the Landsat 8 OLI image 
for the study area is presented as a composite with the bands R-G-B represented by 4-3-2.
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The MSR  value in Table 3 indicates the MSR obtained from Landsat  
5 TM and Landsat 8 OLI for each of the six selected bands, band combinations, 
and vegetation indices. These MSR values were calculated within the 15 
districts of interest. In each of the six rounds of ground surveys (5th-10th 
rounds), there is one averaged value of SOM. Considering that ground surveys 
were conducted in 15 districts of the Kyiv region, each MLR regressor model 
consists of 90 values (6 rounds × 15 districts = 90 values). These input data for 
the MLR calculations are presented in Table A2 in Appendix A. Afterwards, 

Table 4. Correlation matrix model variables

SOM * * * * * * *

-0.37 Blue * * * * * * *

-0.51 0.90 Green * * * * * * *

-0.56 0.84 0.96 Red * * * * * * *

-0.40 -0.20 0.13 0.26 NIR * * * * * *

-0.28 0.67 0.68 0.62 -0.01 SWIR 1 * * * * * *

-0.18 0.61 0.59 0.50 -0.11 0.97 SWIR 2 * * *

0.08 -0.80 -0.60 -0.52 0.69 -0.46 -0.46 NDVI * * * *

0.08 0.61 0.38 0.24 -0.72 0.70 0.76 -0.81 NDBI * *

-0.10 -0.65 -0.38 -0.27 0.86 -0.34 -0.38 0.96 -0.84 MSAVI2 * *

-0.41 0.15 0.32 0.42 0.33 0.04 -0.01 -0.03 -0.21 0.10 Slope

-0.04 -0.18 -0.05 -0.03 0.29 0.26 0.19 0.29 -0.03 0.31 -0.11 Temp. * *

0.11 0.20 0.05 0.02 -0.42 0.00 -0.01 -0.39 0.30 -0.43 0.07 -0.43 Precip.

-0.23 0.12 0.03 0.08 0.18 0.23 0.13 0.10 0.03 0.14 0.08 0.24 0.07 Soil 
mois.

r= -1 -0.80 -0.60 -0.40 -0.20 0 0.20 0.40 0.60 0.80 1

Figure 6. Scatterplot matrix for correlation between model variables

a Pearson’s correlation analysis was conducted to examine the relationships 
between the variables used in the MLR model. The Pearson’s correlation 
coefficient (Pearson’s r) was employed to evaluate the strength and direction 
of the linear association between the variables (Mendenhall and Sincich, 2013). 
The results of the Pearson correlation analysis between MSR  and SOM values 
are presented in Table 4. Marked * correlations are significant at p < 0.05. For 
clarity, the data from Table 4 are shown on Figure 6.
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The analysis of Table 4 reveals a notable and statistically significant 
negative relationship between SOM and  MSR   in the Green and Red bands  
(r ≈ -05 ÷-0.6  ). There is also a slightly weaker negative relationship between 
SOM and MSR  in the Blue and NIR bands

(r ≈ -04). Additionally, an inverse relationship is observed between SOM 
and MSR   in the SWIR 1 band (r ≈ -0.28). Regarding the climatic data and 
topography, the analysis indicates a significant negative relationship between 
SOM and Slope, as well as between SOM and Soil moisture. However, the 
correlations between SOM and the other MSR   variables are relatively weak 
and not statistically significant at p < 0.05.

At the initial stage, a total of 13 predictors for the MLR model were 
selected. Subsequently, employing the method of least squares, the MLR 
coefficients and other regression parameters were calculated. In our analysis, 
it was employed two methods to determine the most significant variables: the 
Forward stepwise method and the Backward stepwise method. The Forward 
stepwise method involves iteratively adding or removing independent variables 
from the model at each regression step based on the results of the F test. 
Variables are added to the model if they contribute significantly to improving 
the regression model’s fit. This process continues until a better regression 
model is achieved. On the other hand, the Backward stepwise method removes 
independent variables from the regression equation one at a time, again based 
on the F test results. Variables are eliminated from the model if their inclusion 
does not significantly improve the fit of the regression model. This process 
continues until a better regression model is obtained. The essence of the F test in 
testing the significance of MLR is to compare two variances: model-explained 

(MSR) and unexplained (MSE) (Mendenhall and Sincich, 2013). If MSR ≈ 
MSE, then the regression is insignificant (the constructed model does not allow 
explaining the behavior of the predicted value depending on the the predictors’ 
values). If , then the regression is significant. Two hypotheses are considered: 
H0

(1) – regression is not significant, H1
(1) – regression is significant, which is 

what it is used for F test:

	
MSRF
MSE

=                                                       (7)

Next, the significance is checked F (value is calculated F0 ) through the 
F-distribution (Fisher-Snedecor distribution) for the obtained values F, DFR, 
DFE.  If, F0 > α where α = 0.05 is significance level, then the hypothesis H0

(1), is 
accepted, otherwise, the hypothesis H1

(1) is accepted.
For a detailed step-by-step procedure of the Forward stepwise and 

Backward stepwise methods, please refer to Appendix B. As a result of 
these methods, we obtained two models, and their respective parameters are 
presented in Table 5.

In order to determine the best model among the two obtained, we utilized 
the Akaike Information Criterion (AIC) as proposed by (Akaike, 1973). The 
AIC serves as a heuristic measure that aims to balance the reduction in the 
number of model parameters and the quality of model fit. According to this 
criterion, the model with the smaller AIC value should be selected, irrespective 
of its absolute value.

Table 5. The resulting regression models obtained through the Forward stepwise and Backward stepwise methods
Model of Forward stepwise method (Model I)
Multiple R = 0.651, R2 = 0.424, Adjusted R2 = 0.397,
F(4,85) = 15.667, p-value = 1.2E-9 < α = 0.05, Std. Error of estimate, σy = 0.25655

Std. regression 
coefficient,

β*
Std.Err. of β*

Accurate 
estimates of model 

parameters,
β

Std.Err. of β t Stat p-value

Intercept 6.345 0.455 13.956 1.055E-23

Red -0.437 0.092 -22.055 4.630 -4.763 7.760E-6

NIR -0.210 0.089 -4.883 2.072 -2.357 0.021

Soil 
moisture -0.151 0.084 -0.004 0.002 -1.802 0.075

Slope -0.143 0.094 -0.072 0.047 -1.523 0.131

Model of Backward stepwise method (Model II)
Multiple R = 0.631, R2 = 0.398, Adjusted R2 = 0.384,
F(2,87) = 28.763, p = 2.6Ε-10 < α = 0.05, Std. Error of estimate, σy = 0.25932

Intercept 1.946 0.241 8.080 3.40E-12

NDVI 2.286 0.305 17.517 2.337 7.496 5.166E-11

MSAVI2 -2.296 0.305 -32.701 4.345 -7.527 4.482E-11
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The obtained values for the AIC criterion are as follows:

AICI =  -240.023

AICI =  -239.994

Based on the selection process, Model I derived from the Forward 
stepwise method was chosen for predicting SOM. To assess the normality of 
the values of the model regressors and the residuals, we conducted the Shapiro-
Francia test and the Kolmogorov-Smirnov test. The Shapiro-Francia test, which 
is an extension of the Shapiro-Wilk test suitable for samples larger than 50, was 
used for this purpose. These tests help us determine if the values of the model 

regressors and the residuals follow a normal distribution (Shapiro and Francia, 
1972). The results of the regressor test are shown in the following Figure 7. 

The values of all four regressors in Model I are normally distributed at a 
significance level of α = 0.001, as a. ∀ p - value: p ≥  a. As a limitation of our 
model at this stage, it should be noted that the NIR and Slope regressors will not 
be normally distributed if we consider a significance level of α = 0.01 During 
the assessment of the residuals’ normality using the Shapiro-Francia test and the 
Kolmogorov-Smirnov test, the results depicted in Figure 8 were obtained. It can 
be observed that the residuals are normally distributed at a significance level 
of α = 0.001 (p = 0.951 > 0.001). The effect size KS - D, which measures the 
difference between the sample distribution and the normal distribution, is very 
small, specifically 0.04269. This suggests that the deviation from normality is 
negligible.

a - Red
b - NIR

c - Soil moisture d - Slope

Figure 7. Normality check histograms of regressors values



308 Vadym Belenok, Liliia Hebryn-Baidy, Natalyya Bіelousova, Halyna Zavarika, Sergíy Kryachok, Dmytro Liashenko, Tetiana Malik

Figure 8. Normality check histograms of residuals

Figure 9. Predicted vs. Observed Values

Figure 10. Predicted vs. Residual Scores

To test our model on heteroscedasticity (the hypothesis H0 – 
homoscedasticity, error variances are equal) we used The Breusch-Pagan 
test (Breusch and Pagan, 1979). The test result showed that there was no 
heteroscedasticity:

Xcalc
2  = 1.226, Xtable

2 (p = 0.95; df = 9.488, Xcalc
2 <  Xtable

2

To test our model for multicollinearity, we used the Variance Inflation 
Factor (VIF) (Mendenhall and Sincich, 2013). At first glance, there is a suspicion 
of multicollinearity in the model, since according to the Table 5 p-value of 
t Stat for Soil moisture and Slope greater than α = 0.05 (0.075 and 0.131, 
respectively). But the VIF calculation showed that there is no multicollinearity:

VIF Red = 1.24, VIF NIR = 1.18, VIF Slope = 1.30, VIF Soil moisture = 1.03

According to (Mendenhall and Sincich, 2013) a severe multicollinearity 
problem exists if the largest of VIF is greater than 10.

To identify potential outliers, we calculated Cook’s distance. All obtained 
values of Cook’s distance are approximately equal and are in the range from 
0 to 0.16, which indicates the absence of potential outliers (Mendenhall and 
Sincich, 2013).

Finally, we have constructed graphs that illustrate the relationship between 
the Predicted vs. Observed Values (Figure 9) and Predicted vs. Residual Scores 
(Figure 10). Confidence bands were constructed at a probability level of 0.95.

In Figure 9 and Figure 10 the confidence bands line (red dashed curve) 
shows the confidence level (0.95), which is the probability that the “true” fitted 
line (in the population) falls between the bands.

Discussion

The findings from the constructed MLR model for predicting SOM in 
the chernozem soils of the Forest-Steppe zone of Ukraine provide significant 
insights into the region’s soil fertility. The application of a combination of 
reflectance values in six bands of Landsat 5 TM and Landsat 8 OLI satellites, 
vegetation indices (NDSI, NDWI, NDBI, BAEI, MSAVI, and NDVI), 
topographic data (slope), and climatic data (temperature, precipitation, soil 
moisture) as regressors has contributed to the development of an effective 
predictive model. The Forward stepwise method (Mendenhall and Sincich, 
2013) was instrumental in achieving the optimal model, as it allowed for the 
selection of the most impactful regressors based on F test and Akaike criteria 
(Akaike, 1973). The model yielded a Multiple R = 0.651 and an R2 = 0.424 
and the most significant predictors of an effective predictive model are RED, 
NIR, slope and soil moisture. These metrics suggest that the model can explain 
approximately 42.4% of the variation in the SOM in the soils of the examined 
regions. The adjusted R2 of 0.397 further supports this and confirms that the 
model maintains a decent level of predictive power even when adjusting for 
the number of predictors in the model. Fairly similar results were obtained in 
the study (Yu et al., 2021) where the accuracy of the model was improved by 
adding the same environmental factors and spectral combination. However, 
the estimation effect of back propagation neural network (BPNN) model 
(with R2 being 0.947) was better than that MLR model (with R2 being 0.410). 
Similar to the findings of this study (Forkuor et al., 2017; Wang and Ge, 2012) 
also recorded elevation, slope, RED and NIR as the most important variable 
influencing soil indicators. According to the study (Luo et al., 2023) adding 
the multiyear average temperature effectively improves the SOM mapping 
performance. The authors used Sentinel images (10 m) and the random forest 
algorithm, which obviously affects the accuracy of the model. Some studies 
(Lu, Liu and Liu, 2022) suggest that the environmental variables (mainly clay 
index) have the greatest influence on the prediction accuracy of SOM. Using 
time series 7 MOD09A1 images (Zhang et al., 2021) noted that the pixel dates of 
the training samples and precipitation data were the main factors controlling the 
model performance. The simultaneous combination of dead fuel index (DFI), 
NDVI and environmental factors improves the SOM mapping performance 
(Yang et al., 2021) especially in infertile soils. Undoubtedly, the accuracy of 
SOM mapping performance will be affected by the spatial resolution of the 
images. In our study, the period 1986-2015 was selected, which is decisive for 
why we used the Landsat system.

Given that the RED and NIR bands emerged as the most significant 
spectral predictors in our analysis, it would be valuable to compare our findings 
with the results of Ukrainian scientists who have studied the same type of soils. 
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According to the study (Chornyy and Abramov, 2016; Achasov and Bidolah, 
2008; Chatohin and Lindin, 2001; Sakhatsky, 2008; Truskavetsky, 2006; 
Byndych, 2021) the humus content (SOM) is most linearly related to RED, 
NIR and GREEN band. In the study (Abramov, 2012) author built a parabolic 
relationship between spectral index RED/NIR and the humus content (SOM). 
Long-term studies of soils in Transcarpathia made it possible to conclude that the 
best relationship was traced between the humus content (SOM) and the spectral 
index NIR/RED (Hebryn-Baidy, 2017). According to study (Truskavetsky et 
al., 2015) there is a linear relationship between SWIR1,2 bands and the humus 
content (SOM). The fact that in the listed studies authors used exclusively 
spectral information is interesting. In our study, we used environmental factors 
in addition to spectral data. It should be noted that the mentioned authors did 
not specify the correlation between the bands. According to our research, for 
the selected area, there existed a high positive correlation between the GREEN 
and RED bands (R = +0.96). Therefore, including both of them simultaneously 
in the model would yield an incorrect result. This increased the accuracy of our 
research to some extent. Some studies prove that there is a relationship between 
SOM and other bands. Based on the MLR analysis, the authors (Ahmed and 
Iqbal, 2014) establish a significant relationship (R2 = 0.55) between SOM and 
spectral reflectance in the BLUE, Thermal and Mid-Infrared bands. Whereas 
in our study, the BLUE band showed worse significance, and others band were 
not considered. In the study (Demattê et al., 2007; Fiorio and Demattȩ, 2009; 
Reis et al., 2021), authors demonstrate that SOM, clay and sand are the most 
important attributes that can be predicted by MLR. It is important to note that 
the validation procedure compared the content of each soil attribute determined 
by the spectral models with laboratory traditional analysis. In our study, the 
accuracy of the obtained models was evaluated exclusively on the basis of 
mathematical calculations. A noteworthy approach is shown in the study 
(Bouasria et al., 2020), authors increase the resolution of the image (from 30 m 
to 15 m) by pansharpening method. Thus, the significance of the relationship 
between SOM and spectral reflectance in the multispectral range increases.

It should be noted that the research period and soil conditions vary 
depending on the natural and geographical location of study area. The authors 
also note that the soil should be in an air-dry state, the surface roughness should 
be minimal, and there should be no vegetation on the soil surface (Gopp et al., 
2017; Gopp et al., 2019; David, 2013; Wang and Ge, 2012; Wang et al., 2022; 
Savin et al., 2021). These conditions were met in our study by using NDSI, 
NDWI, NDVI, NDBI, and BAEI masks and climatic data. Stable relationships 
between SOM and spectral reflectance exist only at medium and high content of 
SOM (1-5%) (Sullivan et al., 2005; Reis et al., 2021). Indicators of SOM in our 
study fluctuate within the limits from 2.69% to 3.69%. It is also worth noting 
that the sample size can affect the accuracy of the model. However, this factor 
is worth a separate study. Additional factors not considered in this study, such as 
other soil components, the impact of human activity, and biodiversity changes, 
could further refine the model’s predictive capacity. Also, the model was built 
and tested only in the Kyiv region of Ukraine, primarily on chernozem soils, 
which may limit its applicability to other soil types and regions. In conclusion, 
the model serves as a useful tool for understanding and predicting SOM in 
chernozem soils. With the continuous advancements in satellite technology 
and increasing availability of detailed environmental data, refining this model 
for higher accuracy and broader applicability is a promising avenue for future 
research.

Conclusion

This article focuses on constructing a MLR model to predict the SOM in 
chernozem soils within the Forest-Steppe zone of Ukraine. The statistical data 
used for analysis consisted of percent values of SOM obtained from six rounds 
of field studies conducted between 1986 and 2015. The model development 
was carried out for 15 districts located predominantly on chernozem soils 
within the Kyiv region, Ukraine.

As regressors in the model, reflectance values from six bands of 
Landsat 5 TM and Landsat 8 OLI satellites, vegetation indices for bare 
soil detection, topographic data (slope), and climate data (temperature, 
precipitation, soil moisture) were employed. The optimal model was obtained 
through the Forward stepwise method, based on F-test and Akaike criteria. 
The model exhibited the following metrics: Multiple R = 0.651, R2 = 0.424, 
and Adjusted R2 = 0.397. Validation of the model demonstrated the absence 

of heteroscedasticity, multicollinearity, and potential outliers, indicating its 
reliability. The most influential predictors in the effective predictive model were 
identified as RED, NIR, slope, and soil moisture. The developed model can be 
utilized for predicting the SOM content in chernozem soils based on remote 
sensing data. Future research efforts could be directed towards exploring the 
efficacy of nonlinear regression models for predicting SOM in chernozem soils 
and evaluating the model’s performance on other soil types.
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