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ABSTRACT

Low-density precipitation measurements impair the ability of hydrological models to estimate surface water resour-
ces accurately. Remote sensing techniques and climate models can help to improve the estimation of the space-time 
rainfall variability. However, they alone are not good enough to be used in surface models built to support water ma-
nagement. In this research, we test the improvement of rainfall field estimation by using hydrological modelling based 
on the premise that a higher hydrological performance generally implies that precipitation is more consistent with 
streamflow observations and evaporation estimates in the basin. The SWAT model was forced with two satellite and 
rain gauge blending techniques and with the traditional IDW deterministic interpolation method from stations. The 
three simulated streamflows were compared separately against observed records. We do not only focus the comparison 
on one hydrological performance metric but also conduct a deeper evaluation using several hydrological signatures 
and statistics. We included the bias, the temporal correlation, the relation of general variability, and an analysis of the 
Flow Duration Curves (we found that low and medium segments were estimated correctly, whereas the high segments 
were underestimated). We conclude that either combination technique has its advantages over the other and that both 
outperform the performance achieved by the IDW in most of the defined criteria, with an overall 10% improvement 
and with individual streamflow gauge performance enhancement up to 50%.
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Mejoras en estimativos de oferta del recurso hídrico en el norte de Suramérica tropical: comparación de dos 
procedimientos de mezcla con lluvia satelital

RESUMEN

 Las mediciones de precipitaciones de baja densidad perjudican la capacidad de los modelos hidrológicos para estimar 
con precisión los recursos hídricos superficiales. Las técnicas de teledetección y los modelos climáticos pueden ayudar 
a mejorar la estimación de la variabilidad espacio-temporal de las precipitaciones. Sin embargo, por sí solos los datos te-
ledetectados no son lo suficientemente buenos para ser utilizados en modelos de superficie, modelos construidos para 
apoyar la gestión del agua. En esta investigación, probamos la mejora en la estimación de un campo de lluvia mediante 
el uso de modelos hidrológicos basados en la premisa de que: un mayor desempeño hidrológico generalmente implica 
que la precipitación es más consistente con las observaciones de caudal y con las estimaciones de evaporación en la 
cuenca. El modelo SWAT fue forzado con dos técnicas de combinación de satélites y pluviómetros, y con el método 
tradicional de interpolación de estaciones determinista (IDW). Las tres series de caudales simulados se compararon 
por separado con los registros observados. No solo centramos la comparación en una métrica de desempeño hidroló-
gico, sino que también realizamos una evaluación más profunda (diagnóstica) utilizando varias firmas y estadísticas 
hidrológicas. Incluimos el sesgo, la correlación temporal, la relación de variabilidad general y un análisis de las Curvas 
de Duración del Flujo (encontramos que los segmentos bajo y medio se estimaron correctamente, mientras que los 
segmentos altos se subestimaron). Concluimos que cualquiera de las técnicas de combinación tiene sus ventajas sobre 
la otra y que ambas superan el rendimiento logrado por el IDW en la mayoría de los criterios definidos, con una mejora 
general del 10% y con una mejora individual de hasta el 50%.
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1. Introduction

There is an increasing need to acquire hydrological information in small 
basins or ungauged river reach for water resources assessment and water-related 
policy implementation. Hydrological modelling has been used as an alternative 
in determining water resources when streamflow and level measurements 
are scarce (Silberstein, 2006). Estimated precipitation (Ppt) fields are used 
in distributed hydrological and land surface models, and their influence is 
significant in model performance (Arnaud et al., 2002). However, precipitation 
gauges in areas with complex spatio-temporal behaviour are lacking, which 
can compromise models’ ability to represent the system appropriately. 
Moreover, several knowledge areas require distributed rainfall estimates 
to understand hydro-bio-geochemical natural processes and connections. 
Climate classification indices (Beck et al., 2018; Rodríguez et al., 2020), and 
environmental conditions monitoring need accurate rainfall fields to perform 
a proper policy implementation. Evaluation of the uncertainty in hydrological 
modelling due to rainfall is another kind of study (Muñoz et al., 2015).

Rain gauge networks have been the traditional instrument for measuring 
rainfall or precipitation. The World Meteorological Organization (WMO) 
guidelines advise on their characteristics, yet networks need to be continuously 
adjusted to quantify rainfall variability at different temporal and spatial scales 
(Blöschl & Sivapalan, 1995). Deterministic or geostatistical methods are used 
to distribute the measured values (Grimes & Pardo-Igúzquiza, 2010). However, 
some places are almost inaccessible or financial resources are low enough to 
deter the expansion of the network, which could also impair its maintenance; 
as a result, rainfall records have decreased worldwide (García et al., 2016). 
Satellite (BARRETT, 1970), atmospheric reanalysis (Baatz et al., 2021), and 
multi-source merged products (Beck, Van Dijk, et al., 2017), are alternatives 
that can help tackle the lack of point measurements, albeit they often suffer from 
bias and temporal errors (Dinku et al., 2010). Those errors must be corrected 
for applying those distributed Ppt estimates in local hydrological modelling and 
forecasting (Serrat-Capdevila et al., 2014).

Rain gauges are generally considered the ground truth, although they 
might suffer from undercatch. Hence, correcting the alternative measurements 
with rain gauges can improve the accuracy of the distributed estimates (fields 
not produced initially with those specific rain gauges). The correction can also 
be done with downscaling methods based on physiographic variables like 
Digital Elevation Models (Long et al., 2016), vegetation indices (Immerzeel 
et al., 2009), or a combination of them (Ceccherini et al., 2015). The direct 
merging with rain stations has relied on: bias correction through coefficient 
multiplication or addition (Vila et al., 2009), a direct or linear combination of 
coefficients found with inverse variance weightings (Woldemeskel et al., 2013), 
spectral analysis combination (Heidinger et al., 2012), conditional merging 
based on geostatistics (Ehret et al., 2008), Bayesian conditioning (Todini, 
2001), filtering functions (Li & Shao, 2010) and recently, Random Forest 
Machine Learning (Baez-Villanueva et al., 2020).

Basin-specific studies that compare data merging schemes are scarce 
(Chua et al., 2022; Nerini et al., 2015; Ur Rahman et al., 2020). There is a 
plethora of methods for merging satellite precipitation and rain gauges to 
improve hydrological modelling performance, as described above. Some 
studies are focused on comparing radar-based and station blending rather 
than satellite-based estimates (Goudenhoofdt & Delobbe, 2009; Habib et al., 
2012; Nanding et al., 2015). In general, other studies are more focused on the 
evaluation of the available global satellite or reanalysis data (Beck, Vergopolan, 
et al., 2017; Sun et al., 2018), against local data and far few use hydrological 
modelling to recently intercompare the improvement of the merging techniques 
as far as the authors know.

The objective of this study is to evaluate two precipitation merging 
schemes and their respective improvement in local hydrological modelling 
performance in a recent time period (1980 to 2019). Rather than compare 
global precipitation products that may be created with rain gauges, we aimed to 
create local or regional products and analyse their performance in hydrological 
estimation. We focused on blending satellite-based and rain gauge estimates, 
as those are the most common precipitation datasets available worldwide and 
compared them with a traditional interpolation method.

2. Case of study and data

The Middle Magdalena Valley is an important bio-economical and 
energy production region in Colombia where many stakeholders use the water 
resource. Oil palm plantations are one of the region’s most extensive land 
covers, but other agricultural and livestock developments are also present and 
use water. Three hydrological watersheds comprise the right margin of the 
Middle Magdalena Valley, represented in hydrological management subzones 
according to the Instituto de Hidrología, Meteorología y Estudios Ambientales 
(IDEAM, 2013). Sogamoso River Basin is an interbasin whose model 
considered streamflow gauges as inputs (see Fig. 1). They were hydrologically 
modelled to fulfil the research objectives.

Figure 1. Location of watersheds, their hydrological network, and in situ 
hydrometeorological data

2.1 Hydrometeorological data

Point measurements are mainly managed by the IDEAM, but recently, 
they are also gathered by regional environmental authorities. The IDEAM 
freely and publicly deliver the data through a web portal (IDEAM, 2023) and 
the regional authorities by direct request; time series of meteorological variables 
provided by regional authorities were analysed and discarded since their 
records were only available after 2013. Relative humidity, solar radiation and 
wind speed records have many missing values and hence were not considered; 
we used the precipitation, minimum and maximum temperatures time series 
managed by IDEAM. Anomalous data were checked and retrieved. We 
analysed streamflow records, also looking for anomalous data and homogeneity 
in the series (Castro & Carvajal Escobar, 2010); some gauges were discarded 
due to the high number of missing values. Data statistics are listed in Table 1.
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Table 1. Available point measurement in the region

Variable Available Used

Precipitation 175 (from 1960 to 2019, 
mainly after 1970) 127 (after 1980)

Streamflow 42 (from 1965 to 2019, 
mainly after 1980) 17 (after 1980)

Temperature 
(minimum and 
maximum)

33 (from 1975 to 2019) 33 (after 1980)

2.2 Alternative hydrometeorological data to bolster hydrological modeling

We used the Climate Hazard Group Infrared Precipitation with Stations 
(CHIRPS) to enhance precipitation representation. CHIRPS is a multisource 
rainfall product that considers infrared cold cloud duration measurements and 
ground correction with some rain gauge data (Funk et al., 2015). It has a 0.05° 
spatial resolution at a daily time scale in the period 1981-present and has been 
used in several hydrological studies, even in Colombia (Kaune et al., 2019). 
This was the product used with the rain stations and the merging algorithms 
for the comparisons made in this study. Another adapted version of CHIRPS 
that uses rain gauges for bias correction at 10-day periods has also been used 
in Colombia for estimating the general water budget (IDEAM, 2019), called 
CHIRPS-IRE by IDEAM.

Due to the lack of appropriate measurement of some meteorological 
variables that influence evapotranspiration, atmospheric reanalysis data had to 
be collected to supplement the deficiency. Reanalysis are numerical systems 
that incorporate mainly simulations of physical systems and assimilation of 
satellite, gauge or radiosonde observations (Baatz et al., 2021). We chose to use 
the Climate Forecast System Reanalysis (CFSR) (Saha et al., 2010) because 
it has already been used and recommended to be used with the Soil & Water 
Assessment Tool (SWAT) model, with good results (Dile & Srinivasan, 2014; 
Tan et al., 2021); its data can be acquired from the SWAT webpage of the Texas 
A&M University (Texas A&M University, 2022).

3. Methodology

We evaluated the congruence of rainfall fields with streamflow records 
and the performance of the hydrological model in the region. This is based 
on suggestions made by other researchers stating that a higher hydrological 
performance (consistency with streamflow observations and evaporation 
estimates in the basin), generally implies that the evaluated precipitation field 
is more accurate than the one with a lower streamflow performance (Beck, 
Vergopolan, et al., 2017). However, we did not only focus on one hydrological 
performance metric and hence intended to conduct a deeper evaluation (see 
section 3.3). In this section, we describe the merging and benchmark rainfall 
fields, the hydrological modelling platform that we calibrate and validate for 
each rainfall field, and the evaluation of its robustness (see Fig. 2).

Figure 2. Methodology scheme

3.1 Precipitation merging schemes and interpolation benchmark

The purpose of the rainfall fields is to force the hydrological model. Due 
to the subbasins’ size, the field’s resolution was established at cells of 1 km. 

After the spatial interpolation or merging, the time series in each 1 km cell were 
aggregated using each of the subbasins’ boundaries to create the forcing for the 
SWAT model (see section 3.2); the aggregation used the mean value of the cells 
within a subbasin boundary.

3.1.1  Inverse Distance Weighting (IDW)

IDW is one of the most used interpolation methods in environmental 
sciences (Webster & Oliver, 2007), and specifically to interpolate rainfall 
fields. It has been highlighted that it produces as good as or the best estimates 
of rainfall fields even compared with geostatistical methods that work better in 
very high-density networks (Duque-Gardeazabal & Rodríguez, 2023; López 
López et al., 2018; Vargas et al., 2011). Therefore, using in situ data, we used 
it as the benchmark field for the hydrological modelling. We fix the exponent 
of distance weighting in the value of two because it is the most used exponent 
in rainfall interpolation and other environmental variables. This interpolation 
method was applied to rain gauges and temperature data, yet a linear regression 
against ground altitude was considered for temperature in each time step.

3.1.2 Random Forest Merging Precipitation (RFMEP)

RF-MEP is a procedure that combines precipitation information from 
ground-based stations with precipitation products and topographic information 
(Baez-Villanueva et al., 2020). It considers that: i) ground-based measurements 
are reliable at the point level, ii) precipitation products from satellites or 
reanalysis are biased but contain interesting information on spatial distribution, 
and iii) the combination of precipitation products and ground-based data can 
generate a better representation of the spatial distribution of precipitation.

This procedure has been proposed to improve the spatial representation 
of precipitation in areas with a scarcity of in situ measured information through 
an ensemble learning method called Random Forest (RF) (Breiman, 2001). 
A RF regression is applied in each time step (e.g., daily, monthly), which is 
trained with ground-based observation of the same time step. Due to the fitting 
necessary for training the forest, the method needs enhanced computation 
resources and parallel processing is available for taking advantage of them 
(Zambrano-Bigiarini et al., 2020); yet it is still computationally demanding. 
Even with parallel processing, we needed to create the rainfall field first at 0.05° 
(~5 km) and afterwards bilinearly rescale it to 1 km.

3.1.3 Double Smoothing Merging (DS)

This merging scheme is based on data assimilation techniques and does 
not rely on second stationary assumptions made by geostatistical methods (e.g., 
kriging and its derivatives) (Li & Shao, 2010). Its main characteristic is the 
interpolation of residuals obtained by subtracting the rain gauge values from a 
background field (i.e., satellite or reanalysis), which makes it suitable for sparse 
design rain gauge networks. After the interpolation of residuals, they are again 
subtracted from the background field to perform the merging; this makes it 
flexible and simple for implementation.

The interpolation is performed with kernel density estimation functions, 
of which the Gaussian kernel is the most used due to its infinite support and 
simplicity (one parameter). Its parameter has been studied regarding its change 
against the density of rain gauges (Duque-Gardeazábal et al., 2018); therefore, 
this was the function used in this study. The influence of the parameter in 
hydrological simulation performance has also been studied (Duque-Gardeazabal 
& Rodríguez, 2023). Based on that research, we fixed the parameter’s value to 
17.5 km.

3.2 Soil and Water Assessment Tool (SWAT)

SWAT is software for continuous hydrological modelling consisting of 
several modules representing physical process-based formulations (Arnold et 
al., 1998, 2012). It is spatially semi-distributed, runs at daily time scale, and 
considers a subdivision in Hydrological Response Units (HRUs) for enhanced 
surface-climate interactions representation in homogeneous areas. That makes 
it suitable for eco-hydrological studies (impact of land management, sediments, 
agriculture, etc.), climate change and scenario-based assessments. It has also 
been applied in tropical conditions and in Colombia (Caro Camargo & Velandia 
Tarazona, 2019; Uribe et al., 2018).



58 Nicolás Duque-Gardeazabal, Camila García-Echeverri, Juan José Montoya-Monsalve & Fabio Andrés Bernal-Quiroga

The main physical law in SWAT is the water balance, which is represented 
in several compartments associated with the hydrological cycle. For potential 
evaporation, it can consider a simplified energy balance using the Penman-
Monteith equation (the chosen one) or the simplified Prestley-Taylor equation; 
it can also use the empirical Hargreaves equation. It considers a plant growth 
model that afterwards affects the water balance in the soil profile; this allows the 
tool to appropriately simulate watersheds with several land covers. Moreover, 
it simulates other processes such as surface runoff, infiltration using CN curve 
(Mosquera et al., 2022), percolation, lateral flow, ponds, routing through 
channels, among others (Neitsch et al., 2011).

To build the models, we used the ASTER Global DEM from NASA 
(NASA/METI/AIST/Japan Spacesystems & U.S./Japan ASTER Science Team, 
2019) to create the subbasin boundaries and the slope classification to define 
HRUs. Regarding the soil properties, we reclassified the soil information gathered 
by the Agustin Codazzi Institute (Post et al., 2000; Saxton & Rawls, 2006) that is 
available in the regional soil studies (mainly Santander, Norte de Santander and 
Cesar) (IGAC, 2015). Land cover/use was reclassified to SWAT’s classification 
from Colombia’s Corine Land Cover maps (IDEAM, 2015). The models were 
calibrated and recalibrated for each rainfall field (details of calibration periods for 
each of the three watersheds are in the Supplementary material).

Calibration of parameters was performed using the SWAT-CUP 
application (K. C. Abbaspour et al., 2015), and using a split-parameter structure 
(Francés et al., 2007). The split-parameter structure consists of calibration 
factors that multiply the pre-assigned parameters based on soil and land cover 
properties (often called relative calibration factors). The latter ensures that the 
model conserves the spatial variability of parameters.

We first perform semi-manual trials using the limited parallel processing 
in SWAT-CUP; the latter is to find a region of the parameter space that achieves 
good performance but follows what we believe is the near-real physical 
behaviour of the catchments. Second, the Particle Swarm Optimization (PSO) 
(Kennedy & Eberhart, 1995) calibration algorithm was set to search for other 
nearby regions of the parameter space and refine the finally chosen parameters. 
To achieve that aim, at least 60 particles with at least 30 evolution steps were 
used (in some streamflow gauges, we used 100 particles with 40 evolutions). 
The objective function selected to guide the algorithm was the Kling-Gupta 
Efficiency (KGE) (Gupta et al., 2009), calculated with simulated and observed 
streamflow. After the completion of the algorithm, the tested sets of parameters 
were filtered to choose one set with high performance but with credible values.

3.3 Robustness of hydrological representation

Model performance can be estimated with traditional metrics such as 
the Nash-Sutcliffe Efficiency (NSE) (Nash & Sutcliffe, 1970) or the KGE to 
determine the general behaviour of the model. However, the representation 
of the whole hydrological system needs to be assessed to have confidence 
in its modelled estimates. Hydrological signatures evaluation is needed to 
perform what some call the Diagnostic Model Evaluation (Gupta et al., 2009), 
a diagnosis which is needed to improve the deficiencies of simulated fluxes. 
This must be done on both daily and monthly scale as the model represents 
processes at daily time scale and its use for water resources management needs 
to represent monthly scale accordingly.

Although the general calibration of the model parameters was conducted 
with the KGE, we also analysed the metric sub-components represented 
in three signatures (Gupta et al., 2009). The percent bias (PBias) serves as 
indication of water balance general agreement (precipitation, evaporation, and 
runoff); the determination coefficient (R2), assesses the temporal representation 
of streamflow and indirectly of precipitation; and the relative variability of 
simulated and observed streamflows (alpha). That allowed us to identify 
whether the rainfall fields were temporally similar to the actual field. Moreover, 
the representation of model precipitation transformation into streamflow was 
assessed by comparing Flow Duration Curve (FDC) percentiles; the latter 
was performed visually and numerically through the Root Mean Square Error 
(RMSE, or difference RMSD) of FDC percentiles. A previous comparison of 
the three rainfall fields was also performed.

4. Results & Discussion

4.1 Precipitation Fields Comparison

We performed a comparative analysis between the rainfall fields without 
assuming which of them is the true field. Those differences can be spatially 
initially analysed with the long-term annual rainfall values maps, depicted in 
Fig. 3. The zones with similar values between the three maps are in the high 
area of the Lebrija and Sogamoso basin. In contrast, the north of the Lebrija 
and the west of the Sogamoso basin have higher values in the RFMEP and 
even higher in the DS compared with the IDW. The most noticeable difference 
is in the south, in the highlands of the Opón basin, where the values of the DS 
field are quite higher than the other two forcings (the RFMEP also has higher 
values than the IDW); that zone almost does not have rain gauges (see Fig.1). 
Considering that we did not calibrate the bandwidth value of the DS (as Duque-
Gardeazabal & Rodríguez (2023) did), it is clear that the method has a heavy 
influence from the background field.

The differences in the temporal dimension are also important. Therefore, 
we compare some features in each subbasin’s time series. Fig. 4 depicts the 
metrics calculated between daily forcing’s Ppt time series for each subbasin 
(each black dot is a subbasin). It shows their distribution through violin plots 
with quartiles as horizontal lines and the 5 % and 95 % percentiles. R2 plot 
shows that all fields are temporally similar (most of subbasins coefficients are 
higher than 0.9), but RFMEP and IDW are the most (the mean value and the 
distribution is higher than the other two comparisons). Regarding the Percent 
Bias (PBias), the field with the higher volume is the DS which is on average 
12.41% higher compared to the IDW and 12.38% compared with RFMEP; 
RFMEP and IDW are quite similar in volume (with a distribution between 
-15% and 10%), being the RFMEP 1.2% lower on average. In all volume 
comparisons, there are subbasins where one forcing is lower than the other 
and vice versa. The relation of temporal variabilities (alpha) shows that most 
subbasins with the RFMEP and IDW rainfall fields have very similar temporal 
variability (near 1.0), and the variability of the DS is higher than IDW and 
RFMEP variability. As a consequence of all this behaviour, the RMSE or 
Difference (RMSD) is lower between the RFMEP and IDW than between the 
DS and IDW; similar values are reported when comparing RFMEP and DS, yet 
in some subbasins the DS is more similar to IDW.

Figure 3. Mean annual precipitation fields for the period 1983-2020 generated with IDW, RFMEP and DS.
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Figure 4. Metrics of comparison between the precipitation fields. Black dots 
represent the value for each modelling subbasin, and the colour dots indicate the 

mean of those values. Horizontal lines inside the violins depict the data’s 5, 25, 50, 
75 and 95% percentiles.

4.2 Streamflow Evaluation

Once the model was configured and calibrated, its performance was 
evaluated. The final values of the parameters for each forcing and each part of 
the models are shown in tables S2, S3 and S4 of the supplementary material 
(SM); it can be seen that the relative percentage of change of the soil parameters 
is low and the groundwater parameters are within physical range. As a result, 
Fig. 5 displays the daily streamflow performance measured by the NSE 
coefficient classified in the calibration and validation period for each forcing 
input in the models (the distribution of results is shown on the right side). 
Overall, the use of merged precipitation products increases the hydrological 
performance, and in certain cases, there is a considerable improvement (see 
gauges 23197680, 23197400 and 23197270, whose improvements were 27%, 
56%, 52%, respectively, with RFMEP). The distribution of RFMEP values in 
the validation period is higher but not as significant as for those specific gauges 
since some gauges reported a reduction of performance (most of them already 
had values lower than 0.5). The monthly performance is shown in the SM; 
according to D. N. Moriasi et al. (2007)), the 50% of streamflow gauges can be 
classified as satisfactory, 25% as good or very good (three as very good with the 
RFMEP or the DS forcing and one with IDW).

The conjunction of three hydrological signatures expressed through 
the KGE is shown in Fig. 6 (daily performance can be seen in the SM). From 
these results, we can see that KGE informs about the general representation of 
the observed streamflow, but it is necessary to evaluate the other hydrological 
signatures that comprise it to achieve a diagnostic evaluation of the model. 
Gauges 23187040 and 23197130 reported low values, but we needed to identify 
the reason for those results (in the validation period, gauge 23197400 has few 
records and hence does not display a proper evaluation).

Regarding the evaluation of the temporal variation between simulated 
and observed streamflow, Fig. 7 shows the daily coefficient of determination for 
the different forcings. Some simulations were significantly improved by using 
the RFMEP or the DS rainfall fields instead of the IDW (gauge 23197680 which 
already had a satisfactory correlation and was improved to good category). 
That evidenced the contribution of temporal information by CHIRPS and the 
RFMEP method for creating a proper field. Interestingly, the DS deteriorated 
some performances in gauges with good results and improved others, causing 
that overall performance to be similar to the IDW. Monthly results are displayed 
in the supplementary material (SM).

Figure 5. Daily NSE values for each streamflow gauge and the distribution of their 
values, for calibration and validation period

Figure 6. Monthly KGE values for each streamflow gauge and the distribution of 
their values, for calibration and validation period

Figure 7. Daily coefficient of determination between simulated and observed 
streamflows and the distribution of their values, for calibration and validation 

period

Fig. 8 displays the relation between simulated and observed streamflow 
variability on a monthly scale. The results clearly show that the forcings coming 
from merging CHIRPS and rain gauges have a more concentrated distribution 
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near the value of one (1), which represents the same variability in simulated and 
measured time series, most of all in the validation period. Even though there are 
streamflow gauges with results higher or lower than 1.25 and 0.75, the majority 
of results in DS and RFMEP are within those boundaries. Daily streamflow 
variability can be seen in SM.

Figure 8. Relation between simulated and measured streamflow variability 
at monthly time scale and the distribution of their values, for calibration and 

validation period

Another metric analysed was bias error, Fig. 9 depicts its results which 
can be related to the general water balance (this metric gives the same results for 
daily and monthly scale due to its calculation). Gauges 23147020, 23147040, 
23187040 and 23197130 have a higher bias (mainly negative) than the other 
streamflow gauges. Still, almost all values are within plus or less 25%, which 
classifies them as at least satisfactory results, according to D. N. Moriasi et 
al. (2007). Those basins do not have many rain gauges inside their limits, 
which could influence the model’s performance. Although all forcings form 
a distribution, RFMEP concentrates more gauges near 0% in the calibration 
periods, yet its average is further than the DS and IDW due to an extreme value.

An analysis of the general signatures in the streamflow was conducted 
with the FDC and is depicted in Fig. 10 for three selected gauges. Graph a) 
reveals a streamflow gauge where low, medium and high discharge values are 
similar; b) shows a general good agreement with measurements except in the 
high flows; whereas c) displays a gauge where only medium flows are well 
represented by simulations. That behaviour repeats in other gauges where the 
model was evaluated, with a tendency to misrepresent high flows while having 
similar results for medium and low flows. These results might stem from the use 
of the KGE metric for broadly calibrating the model; other researchers have stated 
the challenge of calibrating a model that satisfactorily reproduces high, medium 
and low phases (Pfannerstill et al., 2014) and specific calibration methodologies 
are designed to achieve precise objectives (K. Abbaspour et al., 2017).

The FDCs shown in Fig. 10 were analysed through the RMSE. RMSE 
corresponds to the error between the daily simulated and observed FDC for 
each forcing (calculated using the 100 percentiles as point entries). In Fig. 11, 
the percentiles were calculated using all the available data to ensure a proper 
statistical estimation of values. The streamflow produced with the IDW appears 
to slightly better represent the percentiles of streamflow, yet that produced 
by the merged forcings represents better those stations with lower values of 
annual streamflow (e.g. 23197680, 23197700, 23197270). In those streamflow 
gauges with high annual values (e.g. Sogamoso River or La Colorada River), 
the differences between simulated and observed streamflow are higher, and the 
IDW tends to better represent the percentiles in some cases nearly followed 
by the RFMEP. Although gauges over the Oro and Lebrija rivers have a 
considerable annual flow (23197290 & 23197370), the difference in the FDC 
percentiles is quite small and lower in those coming from merging than in the 
IDW. The distribution of the RFMEP values is slightly lower under the median 
than in the other two forcings.

Figure 9. Percent bias between simulated and measured streamflows and the 
distribution of their values, for calibration and validation period

Figure 10. Flow Duration Curves of three selected streamflow gauges, which 
represent the general agreement between simulations with all forcings and 

observations
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Figure 11. RMSE between the simulated and observed FDC percentiles for each 
forcing and the distribution of their values

5. Conclusions

In this research, we have tested the ability and influence of different 
rainfall fields to properly represent surface water availability variation over 
time. The physical representation of hydrological components in the SWAT 
tool was key to ensure a fair comparison between different forcing inputs. The 
evaluation was performed using several streamflow signatures and the FDC 
to retrieve insights from various hydrological phenomena rather than just a 
general metric performance.

Overall, the two merging techniques slightly increase the estimation of 
streamflow. The mean performance improved by 10%, with higher or lower 
improvements depending on the evaluated streamflow gauge, most of all in the 
temporal and magnitude of the variability. Considering individual streamflow 
gauges, the enhancement in NSE was up to 50%. Regarding the bias, it is 
unclear that merging techniques concentrate the values around 0%. The main 
conclusion of this study is that, whenever possible, hydrological models 
should use several rainfall fields to achieve the best modelling agreement with 
observations, being the merging of sources a tool worth trying.

Regarding the FDC and the streamflow signatures associated with it. 
The calibration of the continuous hydrological model was not specifically 
focused on representing the high segment of the FDC; hence, the differences 
in that segment can heavily influence the value of RMSE used to compare the 
simulated and observed FDC. As the main objective of model building was 
to reproduce the general water budget and variability, it is understandable that 
some hydrological signatures have big differences in some streamflow gauges, 
and specific methodologies can tackle particular objectives.

From the comparison of merging methods and the IDW, we retrieve a 
special conclusion in the south of the Opon River basin. Considering the lack 
of rain gauges in that zone, the streamflow evaluation is a good alternative 
for evaluating the rainfall fields estimated by merging and the interpolation 
methods. Some of the metrics in the 23187020 gauges are better with the 
merged rainfall fields, and in some cases, the difference is substantial. Another 
important improvement is the better relation of streamflow variabilities, which 
in the case of the DS concentrates the distribution towards the value of 1. 
Regarding the bias, the DS reports a slightly better agreement than the RFMEP, 
but RFMEP has a better temporal correlation.

It is clear that the DS merging method is highly influenced by the 
background field (CHIRPS). The change in the background field due to the 
bandwidth value apparently did not affect too much those areas with low rain 
gauge density, generating that the background field had an even heavier weight 
in the final value of the field. An increase in bandwidth value could reduce the 
general bias, but it will also reduce the high spatial variability that one expects 
in daily rainfall fields.

The small difference in performance in the validation with respect to the 
calibration period when comparing forcing might be explained by the fact that 
more rainfall records are available in the validation period. This induces a short 
improvement of the rainfall fields by using the CHIRPS background field in 
that period of time. The improvement is higher in the calibration period since 
there are fewer rain gauge records.

Future work could include using other background fields to improve the 
estimates (e.g. MSWEP, PERSIANN, etc). Moreover, other meteorological 
variables can benefit from satellite-based estimations, for instance, temperature.

A call for open access to local hydrometeorological data is another 
conclusion of this study and a reminder that rain gauges are what we consider 
the ground truth. While the plethora of rain gauge time series are not shared 
with international organisations that create satellite or reanalysis-based global 
products, local or regional merged datasets can improve hydrological studies 
estimates, such as the one exposed here. However, global or continental 
products are highly useful for transboundary watershed studies; those could be 
better when considering more local data.
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